Болезни Военный билет Призыв

Лабораторная работа по физике 11 измерение длины. Лабораторная работа "измерение длины световой волны". Проверка домашнего задания творческого характера

Федеральное государственное образовательное учреждение

высшего профессионального образования

"Сибирский федеральный университет"

Институт градостроительства, управления и региональной экономики

Кафедра Физики

Отчет по лабораторной работе

Измерение длины световой волны с помощью дифракционной решетки

Преподаватель

В.С Иванова

Студент ПЭ 07-04

К.Н. Дубинская

Красноярск 2009

Цель работы

Изучение дифракции света на одномерной решетке, измерение длины световой волны.

Краткое теоретическое введение

Одномерная дифракционная решетка представляет собой ряд прозрачных параллельных щелей одинаковой ширины а, разделенных равными непрозрачными промежутками b. Сумму размеров прозрачного и непрозрачного участков принято называть периодом, или постоянной решеткой d.

Период решетки связан с числом штрихов на одном миллиметре n соотношением

Общее число штрихов решетки N равно

где l – ширина решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех N щелей, т.е. дифракционная решетка осуществляет многолучевую интерференцию когерентных дифрагированных пучков света, идущих от всех щелей.

Пусть на решетку падает параллельный пучок монохроматического света с длиной волны . За решеткой в результате дифракции лучи будут распространяться по разным направлениям. Так как щели находятся на одинаковых расстояниях друг от друга, то разности хода ∆ вторичных лучей, образующихся согласно принципу Гюйгенса – Френеля и идущих от соседних щелей в одном направлении , будут одинаковы в пределах всей решетки и равны

Если эта разность хода кратна целому числу длин волн, т.е.

то при интерференции в фокальной плоскости линзы возникнут главные максимумы. Здесь m = 0,1,2, … - порядок главных максимумов.

Главные максимумы расположены симметрично относительно центрального, или нулевого, с m = 0, соответствующего лучам света, прошедшим через решетку без отклонений (недифрагированным, = 0). Равенство (2) называют условием главных максимумов на решетке. Каждая щель также образует свою дифракционную картину. В тех направлениях, в которых одна щель дает минимумы, будут наблюдаться минимумы и от других щелей. Эти минимумы определяются условием

Положение главных максимумов зависит от длины волны λ. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (т = 0), разложатся в спектр, фиолетовая часть которого будет обращена к центру дифракционной картины, а красная - наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света, т.е. дифракционная решетка может быть использована как спектральный прибор.

Обозначим расстояние между серединой нулевого максимума и максимумами 1,2, ... m- го порядков, соответственно, х 1 х 2 ... х т а расстояние между плоскостью дифракционной решетки и экраном -L. Тогда синус угла дифракции

Используя последнее соотношение, из условия главных максимумов можно определить λ любой линии спектра.

В экспериментальной установке имеются:

S- источник света, КЛ- коллиматорная линза, Щ- щель для ограничения размеров пучка света, ФЛ- фокусирующая линза, ДР- дифракционная решетка с периодом d = 0.01 мм, Э- экран для наблюдения дифракционной картины. Для работы в монохроматическом свете используются светофильтры.

Порядок выполнения работы

    Расположим детали установки по 1 оси в указанном порядке, закрепляем на экране лист бумаги.

    Включаем источник света S. Устанавливаем светофильтр белого цвета.

    Измеряем прикрепленной к установке линейкой расстояние L от решетки до экрана.

L 1 = 13.5см=0.135м, L 2 =20.5см=0.205м.

    Отмечаем на листе бумаги середины нулевого, первого и других максимумов вправо и влево от центра. С предельной точностью измерить расстояние х 1, х 2 .

    Рассчитаем длины волн, пропускаемых светофильтром.

    Найдем среднеарифметическое значение длины волны по формуле

    Рассчитаем абсолютную погрешность измерений по формуле

где n – число изменений, ɑ - доверительная вероятность измерения, t ɑ (n) – соответствующий коэффициент Стьюдента.

    Окончательный результат записываем в виде

    Сравниваем полученную длину волны с теоретическим значением. Записываем вывод по работе.

Ход работы

Порядок максимума

X m вправо от 0

X m влево от 0

Светофильтр - зеленый

5,3 * 10 -5 см

5,7 * 10 -5 см

6,9 * 10 -5 см

Урок- исследование

Таблица самоконтроля

Мульти-медиа

Странич-ки истории

Доверяй, но проверяй

Термины. Фор-мулы.

Дополнительно

учащегося

Тестирование

Урок- исследование

по теме «Определение длины световой волны»

Таблица самоконтроля

Ф. И. уч – ся ___________________________

Тестиро-вание (уровень А,В,C )

Мульти-медиа

Странич-ки истории

Доверяй, но проверяй

Термины. Фор-мулы.

Дополнительно

учащегося

Тестирование


«Разработка урока»

Урок - исследование

(11 класс)



Определение длины

световой волны



Учитель: Радченко М.И.

Тема : Определение длины световой волны. Лабораторная работа «Измерение длины световой волны».

Урок - исследование. (Приложение.)

Цели :

Обобщить, систематизировать знания о природе света, экспериментально исследовать зависимость длины световой волны от других физических величин, научить видеть проявления изученных закономерностей в окружающей жизни, формировать навыки коллективной работы в сочетании с самостоятельностью учащихся, воспитание мотивов учения.

Без сомнения, все наше знание начинается с опыта.

Кант Иммануил

(Немецкий философ, 1724-1804гг.)

Оформление – портреты ученых, биографическая справка, достижения в науке. Основные звенья научного творчества: исходные факты, гипотеза, следования, эксперимент, исходные факты.

Ход урока

    Орг. момент.

Вступительное слово учителя. Тема урока и цели выполнены в Power Point , проектируются по сети на экраны мониторов и интерактивную доску.

Учитель зачитывает и поясняет слова эпиграфа и основные звенья научного творчества

    Актуализация знаний. Повторение, обобщение изученного материала о природе света. Решение задач. Учащиеся знакомят с результатами своих теоретических исследований, подготовленными в виде презентаций в Power Point (дисперсия, интерференция, дифракция света, дифракционная решетка. Приложения ).

    Выполнение лабораторной работы «Измерение длины световой волны». (Приложение, материал учебника.) Анализ полученных результатов, выводы.

    Компьютерное тестирование. Задания подготовлены в четырех уровнях сложности. Результат заносят в «Таблицу самоконтроля». (Приложение).

    Подведение итогов.

Учащиеся заполняют таблицы самоконтроля с проставлением оценки по различным видам деятельности.

Учитель анализирует вместе с учащимися результаты работы.

Просмотр содержимого документа
«Световые явления уровень А»

СВЕТОВЫЕ ЯВЛЕНИЯ

Уровень А

А. Телевизор.

Б. Зеркало.

Г. Солнце.

2. Для того, чтобы узнать скорость света в неизвестном прозрачном веществе, достаточно определить …

А. Плотность.

Б. Температуру.

В. Упругость.

Г. Давление.

Д. Показатель преломления.

3. Световая волна характеризуется длиной волны, частотой и скоростью распространения. При переходе из одной среды в другую не изменяется …

А. Скорость.

Б. Температура.

В. Длина волны.

Г. Только частота.

Д. Показатель преломления.

4. Оптическая система глаза строит изображение далеких предметов за сетчаткой. Какой это дефект зрения и какие линзы нужны для очков?

Б. Близорукость, собирающие.

В. Нет дефекта зрения.

5. Если показатель преломления алмаза равен 2,4, то скорость света (с=3*10 8 м/с)

в алмазе равна …

А. 200000 км/с.

Б. 720000 км/с.

В. 125000 км/с.

Г. 725000 км/с.

Д. 300000 км/с.

В. Длина волны изменяется.

Г. Только частота одинаковая.

7. Человек приближается к плоскому зеркалу со скоростью 2 м/с. Скорость, с которой он приближается к своему изображению, равна …

А. Молния.

Б. Блеск драгоценных камней.

В. Радуга.

Г. Тень от дерева.

9. Во время работы свет должен падать…

А. Справа.

В. Сверху.

Г. Спереди.

10.

А. Плоское зеркало.

Б. Стеклянная пластинка.

В. Собирающая линза.

Г. Рассеивающая линза.

11. На сетчатке глаза изображение…

Просмотр содержимого документа
«Световые явления уровень В»

СВЕТОВЫЕ ЯВЛЕНИЯ

Уровень В

1. Для того, чтобы узнать скорость света в неизвестном прозрачном веществе, достаточно определить …

А. Плотность.

Б. Температуру.

В. Упругость.

Г. Давление.

Д. Показатель преломления.

2. Световая волна характеризуется длиной волны, частотой и скоростью распространения. При переходе из одной среды в другую не изменяется …

А. Скорость.

Б. Температура.

В. Длина волны.

Г. Только частота.

Д. Показатель преломления.

3. Оптическая система глаза строит изображение далеких предметов за сетчаткой. Какой это дефект зрения и какие линзы нужны для очков?

А. Дальнозоркость, собирающие.

Б. Близорукость, собирающие.

В. Нет дефекта зрения.

Г. Близорукость, рассеивающие.

Д. Дальнозоркость, рассеивающие.

4. Если показатель преломления алмаза равен 2,4, то скорость света (с=3*10 8 м/с)

в алмазе равна …

А. 200000 км/с.

Б. 720000 км/с.

В. 125000 км/с.

Г. 725000 км/с.

Д. 300000 км/с.

5. Определить длину волны, если ее скорость равна 1500 м/с, а частота колебаний 500 Гц.

Б. 7,5*10 5 м.

Д. 0,75*10 5 м.

6. Отраженная волна возникает, если …

А. Волна падает на границу раздела сред с разной плотностью.

Б. Волна падает на границу раздела сред с одинаковой плотностью.

В. Длина волны изменяется.

Г. Только частота одинаковая.

Д. Показатель преломления одинаковый.

7. Человек приближается к плоскому зеркалу со скоростью 2 м/с. Скорость, с которой он приближается к своему изображению, равна …

8. Какое из названных ниже явлений объясняется прямолинейным распространением света?

А. Молния.

Б. Блеск драгоценных камней.

В. Радуга.

Г. Тень от дерева.

9. Какой оптический прибор может давать увеличенное и действительное изображение предмета?

А. Плоское зеркало.

Б. Стеклянная пластинка.

В. Собирающая линза.

Г. Рассеивающая линза.

10. На сетчатке глаза изображение…

А. Увеличенное, прямое, действительное.

Б. Уменьшенное, перевернутое (обратное), действительное.

В. Уменьшенное, прямое, мнимое.

Г. Увеличенное, перевернутое (обратное), мнимое.

11. Найти период решетки, если дифракционное изображение первого порядка получено на расстоянии 2,43 см от центрального, а расстояние от решетки до экрана 1 м. Решетка была освещена светом с длиной волны 486 нм.

Просмотр содержимого документа
«Световые явления уровень Д»

СВЕТОВЫЕ ЯВЛЕНИЯ

Уровень Д

1.Из перечисленных ниже тел выберите тело, являющееся естественным источником света.

А. Телевизор.

Б. Зеркало.

Г. Солнце.

2. Угол падения светового луча равен30º. Угол отражения светового луча равен:

3. При солнечном затмении на Земле образуется тень и полутень от Луны (см. рис.). Что видит человек, находящийся в тени в точке А?

4. При помощи дифракционной решетки с периодом 0,02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального максимума и на расстоянии 1,8 м от решетки. Найти длину световой волны.

5. Фокусное расстояние двояковыпуклой линзы 40 см. Чтобы изображение предмета получилось в натуральную величину, его надо поместить от линзы на расстоянии, равном …

6. Первый дифракционный максимум для света с длиной волны 0,5 мкм наблюдается под углом 30 градусов к нормали. На 1 мм в дифракционной решетке содержится штрихов …

7. При фотографировании с расстояния 200 м высота дерева на негативе оказалась равной 5 мм. Если фокусное расстояние объектива 50 мм, то действительная высота дерева …

8. Для того, чтобы узнать скорость света в неизвестном прозрачном веществе, достаточно определить …

А. Плотность.

Б. Температуру.

В. Упругость.

Г. Давление.

Д. Показатель преломления.

9. Световая волна характеризуется длиной волны, частотой и скоростью распространения. При переходе из одной среды в другую не изменяется …

А. Скорость.

Б. Температуру.

В. Длина волны.

Г. Только частота.

Д. Показатель преломления.

10. Оптическая система глаза строит изображение далеких предметов за сетчаткой. Какой это дефект зрения и какие линзы нужны для очков?

А. Дальнозоркость, собирающие.

Б. Близорукость, собирающие.

В. Нет дефекта зрения.

Г. Близорукость, рассеивающие.

Д. Дальнозоркость, рассеивающие.

11. Определить длину волны, если ее скорость равна 1500 м/с, а частота колебаний 500 Гц.

Б. 7,5*10 5 м.

Д. 0,75*10 5 м.

12. Если показатель преломления алмаза равен 2,4, то скорость света (с=3*10 8 м/с)

в алмазе равна …

А. 200000 км/с.

Б. 720000 км/с.

В. 125000 км/с.

Г. 725000 км/с.

Д. 300000 км/с.

13. Отраженная волна возникает, если …

А. Волна падает на границу раздела сред с разной плотностью.

Б. Волна падает на границу раздела сред с одинаковой плотностью.

В. Длина волны изменяется.

Г. Только частота одинаковая.

Д. Показатель преломления одинаковый.

14. Человек приближается к плоскому зеркалу со скоростью 2 м/с. Скорость, с которой он приближается к своему изображению, равна …

15. Найти период решетки, если дифракционное изображение первого порядка получено на расстоянии 2,43 см от центрального, а расстояние от решетки до экрана 1 м. Решетка была освещена светом с длиной волны 486 нм.

16. Оптическая система глаза приспосабливается к восприятию предметов, находящихся на разном расстоянии за счет…

А. Изменения кривизны хрусталика.

Б. Дополнительного освещения.

В. Приближения и удаления предметов.

Г. Световых раздражений.

1 7. Какое из названных ниже явлений объясняется прямолинейным распространением света?

А. Молния.

Б. Блеск драгоценных камней.

В. Радуга.

Г. Тень от дерева.

18. Какой оптический прибор может давать увеличенное и действительное изображение предмета?

А. Плоское зеркало.

Б. Стеклянная пластинка.

В. Собирающая линза.

Г. Рассеивающая линза.

19. Во время работы свет должен падать…

А. Справа.

В. Сверху.

Г. Спереди.

20. На сетчатке глаза изображение…

А. Увеличенное, прямое, действительное.

Б. Уменьшенное, перевернутое (обратное), действительное.

В. Уменьшенное, прямое, мнимое.

Г. Увеличенное, перевернутое (обратное), мнимое.


«Дифракционная решетка.»


Дифракционная решетка

На явлении дифракции основано устройство замечательного оптического прибора-дифракционной решетки.


Определение длины световой волны

AC=AB*sin φ=D*sin φ

Где k=0,1,2 …



Просмотр содержимого презентации
«Дифракция»


Дифракция

отклонение от прямолинейного

распространения волн, огибание волнами препятствий

Дифракция

механических волн

Дифракция



Опыт Юнга


Теория Френеля


Юнг Томас (1773-1829) английский ученый

Френель Огюстен (1788 - 1821) французский физик

Просмотр содержимого презентации
«Интерференция»


Интерференция

Сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний


Открытие интерференции

Явление интерференции наблюдал Ньютон

Открытие и термин интерференция принадлежат Юнгу


Условие максимумов

  • Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн

d=k λ


Условие минимумов

  • Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн.

d=(2k+1) λ /2


«Мыльный пузырь, витая в воздухе… зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы»

Марк Твен


Интерференция в тонких пленках

  • Различие в цвете связано с различием в длине волны. Световым пучкам различного цвета соответствуют волны различной длины. Для взаимного усиления волн требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

  • Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на ней плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны.

  • Волны 1 и 2 когерентны. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга. Вызываемые ими колебания происходят в одной фазе.
  • Если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга

  • Проверка качества обработки поверхностей.
  • Нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной. Тогда неровности вызовут заметные искривления интерференционных полос.

  • Просветление оптики. Часть пучка после многократного отражения от внутренних поверхностей все же проходит через оптический прибор, но рассеивается и уже не участвует в создании четкого изображения. Для устранения этих последствий используют просветление оптики. На поверхность оптического стекла наносят тонкую пленку. Если амплитуды отраженных волн одинаковы или очень близки друг к другу, то гашение света будет полным. Гашение отраженных волн у объективов означает, что весь свет проходит сквозь объектив.

Просмотр содержимого презентации
«Определение длины световой волны л р»


Формула:

λ =( d sin φ ) /k ,

где d - период решетки, k порядок спектра, φ – угол, под которым наблюдается максимум света


Расстояние а отсчитывается по линейке от решетки до экрана, расстояние b – отсчитывается по шкале экрана от щели до выбранной линии спектра

Максимум света


Конечная формула

λ = db/ka


Световая волна

Интерференционные опыты позволяют измерить длину световой волны: она очень мала – от 4*10 -7 до 8*10 -7 м

Лабораторная работа №6.

Измерение световой волны.

Оборудование: дифракционная решетка с периодом 1/100 мм или 1/50 мм.

Схема установки:

  1. Держатель.

  2. Черный экран.

    Узкая вертикальная щель.

Цель работы: экспериментальное определение световой волны с помощью дифракционной решетки.

Теоретическая часть:

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными помежутками.

Источник

Длина волны определяется по формуле:

Где d – период решетки

k – порядок спектра

    Угол, под котором наблюдается максимум света

Уравнение дифракционной решетки:

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 , можно вместо синусов углов использовать их тангенсы.

Следовательно,

Расстояние а отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

Окончательная формула для определения длины волны имеет вид

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра.

Примерный ход работы:

    b=8 см, a=1 м; k=1; d=10 -5 м

(красный цвет)

d – период решетки

Вывод: Измерив экспериментально длину волн красного света с помощью дифракционной решетки, мы пришли к выводу, что она позволяет очень точно измерить длины световых волн.

Лабораторная работа №5

Лабораторная работа №5

Определение оптической силы и фокусного расстояния собирающей линзы .

Оборудование: линейка, два прямоугольных треугольника, длиннофокусная собирающая линза, лампочка на подставке с колпачком, источник тока, выключатель, соединительные провода, экран, направляющая рейка.

Теоретическая часть:

Простейший способ измерения оптической силы и фокусного расстояния линзы основан на использовании формулы линзы

d – расстояние от предмета до линзы

f – расстояние от линзы до изображения

F – фокусное расстояние

Оптической силой линзы называют величину

В качестве предмета используется светящаяся рассеянным светом буква в колпачке осветителя. Действительное изображение этой буквы получают на экране.

Изображение действительное перевернутое увеличенное:

Изображение мнимое прямое увеличенное:

Примерный ход работы:

    F = 8 см = 0,08 м

    F = 7 см = 0,07 м

    F = 9 см = 0,09 м

Лабораторная работа № 4

Лабораторная работа № 4

Измерение показателя преломления стекла

ученицы 11 класса «Б» Алексеевой Марии.

Цель работы: измерение показателя преломления стеклянной пластины, имеющей форму трапеции.

Теоретическая часть: показатель преломления стекла относительно воздуха определяется по формуле:

Таблица вычислений:

Вычисления:

n пр1=AE 1 / DC 1 =34мм/22мм=1,5

n пр2=AE 2 / DC 2 =22мм/14мм=1,55

Вывод: Определив показатель преломления стекла, можно доказать что это величина не зависит от угла падения.

Лабораторная работа по физике №3

Лабораторная работа по физике №3

ученицы 11 класса «Б»

Алексеевой Марии

Определение ускорения свободного падения при помощи маятника.

Оборудование:

Теоретическая часть:

Для измерения ускорения свободного падения применяются разнообразные гравиметры, в частности маятниковые приборы. С их помощью удается измерить ускорение свободного падения с абсолютной погрешностью порядка 10 -5 м/с 2 .

В работе используется простейший маятниковый прибор – шарик на нити. При малых размерах шарика по сравнению с длиной нити и небольших отклонениях от положения равновесия период колебания равен

Для увеличения точности измерения периода нужно измерить время t остаточно большого числа N полных колебаний маятника. Тогда период

И ускорение свободного падения может быть вычислено по формуле

Проведение эксперимента:

    Установить на краю стола штатив.

    У его верхнего конца укрепить с помощью муфты кольцо и повесить к нему шарик на нити. Шарик должен висеть на расстоянии 1-2 см от пола.

    Измерить лентой длину l маятника.

    Возбудить колебания маятника, отклонив шарик в сторону на 5-8 см и отпустив его.

    Измерить в нескольких экспериментах время t 50 колебаний маятника и вычислить t ср:

    Вычислить среднюю абсолютную погрешность измерения времени и результаты занести в таблицу.

    Вычислить ускорение свободного падения по формуле

    Определить относительную погрешность измерения времени.

    Определить относительную погрешность измерения длины маятника

    Вычислить относительную погрешность измерения g по формуле

Вывод: Получается, что ускорение свободного падения, измеренное при помощи маятника, приблизительно равно табличному ускорению свободного падения (g=9,81 м/с 2) при длине нити 1 метр.

Алексеева Мария, ученица 11 “Б” класса гимназии № 201 , г. Москва

Учитель физики гимназии № 201 Львовский М.Б.

Лабораторная работа по физике №7

Ученицы 11 класса «Б» Садыковой Марии

Наблюдение сплошного и линейчатого спектров.

О
борудование:
проекционный аппарат, спектральные трубки с водородом, неоном или гелием, высоковольтный индуктор, источник питания, штатив, соединительные провода, стеклянная пластина со скошенными гранями.

Цель работы: с помощью необходимого оборудования наблюдать (экспериментально) сплошной спектр, неоновый, гелиевый или водородный.

Ход работы:

Располагаем пластину горизонтально перед глазом. Сквозь грани наблюдаем на экране изображение раздвижной щели проекционного аппарата. Мы видим основные цвета полученного сплошного спектра в следующем порядке: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Данный спектр непрерывен. Это означает, что в спектре представлены волны всех длин. Таким образом, мы выяснили, что сплошные спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы.

Мы видим множество цветных линий, разделенных широкими темными полосами. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенной длины волны.

Водородный спектр: фиолетовый, голубой, зеленый, оранжевый.


Наиболее яркой является оранжевая линия спектра.

Спектр гелия: голубой, зеленый, желтый, красный.


Наиболее яркой является желтая линия.

Основываясь на нашем опыте, мы можем сделать вывод, что линейчатые спектры дают все вещества в газообразном состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Изолированные атомы излучают строго определенные длины волн.

Лабораторная работа №2 (решеба, ответы) по физике 11 класс - Определение световой волны с помощью дифракционной решётки

2. Установите экран на расстоянии L ~ 45-50 см от дифракционной решётки. ИзмерьтеL не менее 5 раз, рассчитайте среднее значение . Данные занесите в таблицу.

5. Рассчитайте средние значения. Данные занесите в таблицу.

6. Рассчитайте период d решётки, запишите его значение в таблицу.

7. По измеренному расстоянию от центра щели в экране до положения красного края спектра и расстоянию от дифракционной решётки до экрана вычислите sin0кр, под которым наблюдается соответствующая полоса спектра.

8. Вычислите длину волны, соответствующую красной границе воспринимаемого глазом спектра.

9. Определите длину волны для фиолетового края спектра.

10. Рассчитайте абсолютные погрешности измерений расстояний L и l.

L = 0.0005 м + 0.0005 м = 0.001 м
l = 0.0005 м + 0.0005 м = 0.001 м

11. Рассчитайте абсолютную и относительную погрешности измерения длин волн.

Ответы на контрольные вопросы

1. Объясните принцип действия дифракционной решётки.

Принцип действия такой же, как и призмы - отклонение проходящего света на определённый угол. Угол зависит от длины волны падающего света. Чем больше длина волны, тем больше угол. Представляет собой систему из одинаковых параллельных щелей в плоском непрозрачном экране.

Нажмите, чтобы увеличить

2. Укажите порядок следования основных цветов в дифракционном спектре?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится дифракционный спектр, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота - величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

Федеральное государственное образовательное учреждение

высшего профессионального образования

"Сибирский федеральный университет"

Институт градостроительства, управления и региональной экономики

Кафедра Физики

Отчет по лабораторной работе

Измерение длины световой волны с помощью дифракционной решетки

Преподаватель

В.С Иванова

Студент ПЭ 07-04

К.Н. Дубинская

Красноярск 2009


Цель работы

Изучение дифракции света на одномерной решетке, измерение длины световой волны.

Краткое теоретическое введение

Одномерная дифракционная решетка представляет собой ряд прозрачных параллельных щелей одинаковой ширины а, разделенных равными непрозрачными промежутками b. Сумму размеров прозрачного и непрозрачного участков принято называть периодом, или постоянной решеткой d.

Период решетки связан с числом штрихов на одном миллиметре n соотношением

Общее число штрихов решетки N равно

где l – ширина решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех N щелей, т.е. дифракционная решетка осуществляет многолучевую интерференцию когерентных дифрагированных пучков света, идущих от всех щелей.

Пусть на решетку падает параллельный пучок монохроматического света с длиной волны

. За решеткой в результате дифракции лучи будут распространяться по разным направлениям. Так как щели находятся на одинаковых расстояниях друг от друга, то разности хода ∆ вторичных лучей, образующихся согласно принципу Гюйгенса – Френеля и идущих от соседних щелей в одном направлении , будут одинаковы в пределах всей решетки и равны

Если эта разность хода кратна целому числу длин волн, т.е.

то при интерференции в фокальной плоскости линзы возникнут главные максимумы. Здесь m = 0,1,2, … - порядок главных максимумов.

Главные максимумы расположены симметрично относительно центрального, или нулевого, с m = 0, соответствующего лучам света, прошедшим через решетку без отклонений (недифрагированным,

= 0). Равенство (2) называют условием главных максимумов на решетке. Каждая щель также образует свою дифракционную картину. В тех направлениях, в которых одна щель дает минимумы, будут наблюдаться минимумы и от других щелей. Эти минимумы определяются условием

Положение главных максимумов зависит от длины волны λ. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (т = 0), разложатся в спектр, фиолетовая часть которого будет обращена к центру дифракционной картины, а красная - наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света, т.е. дифракционная решетка может быть использована как спектральный прибор.

Обозначим расстояние между серединой нулевого максимума и максимумами 1,2, ... m- го порядков, соответственно, х 1 х 2 ... х т а расстояние между плоскостью дифракционной решетки и экраном -L. Тогда синус угла дифракции

Используя последнее соотношение, из условия главных максимумов можно определить λ любой линии спектра.

В экспериментальной установке имеются:

S- источник света, КЛ- коллиматорная линза, Щ- щель для ограничения размеров пучка света, ФЛ- фокусирующая линза, ДР- дифракционная решетка с периодом d = 0.01 мм, Э- экран для наблюдения дифракционной картины. Для работы в монохроматическом свете используются светофильтры.

Порядок выполнения работы

1. Расположим детали установки по 1 оси в указанном порядке, закрепляем на экране лист бумаги.

2. Включаем источник света S. Устанавливаем светофильтр белого цвета.

3. Измеряем прикрепленной к установке линейкой расстояние L от решетки до экрана.


L 1 = 13.5см=0.135м, L 2 =20.5см=0.205м.

4. Отмечаем на листе бумаги середины нулевого, первого и других максимумов вправо и влево от центра. С предельной точностью измерить расстояние х 1, х 2 .

5. Рассчитаем длины волн, пропускаемых светофильтром.

6. Найдем среднеарифметическое значение длины волны по формуле

7. Рассчитаем абсолютную погрешность измерений по формуле