Болезни Военный билет Призыв

Что такое пространство и время с точки зрения физики. Что такое пространство и время

Новое представление о пространстве и времени в рамках целостной парадигмы

Отто ЭСТЕРЛЕ

Краткая история представлений о времени

Мы живем в переломное время, во время «переоценки всех ценностей», как предсказывал Фридрих Ницше. К фундаментальным понятиям, которыми философы занимались с древних времен, относятся пространство и время. Двадцатый век основательно пересмотрел представление об этих понятиях. Однако постепенно выясняется, что и современные представления несовершенны. В нижеследующем будет предложена новая модель пространства и новая формулировка сущности времени.

Ни одно слово не применяется чаще, чем слово «время», без того однако, чтобы задуматься, а что же оно означает, в чем его сущность? Святой Августин говорил, что он «вроде бы знает, что означает время, пока его о нем не спрашивают, когда же его спросят, он тотчас попадает в затруднительное положение».

Что же такое время? В словаре Брокгауза объясняется, что время есть «последовательность событий, которая выявляется из прошлого, настоящего и будущего, из возникновения и исчезновения вещей.» Это, так сказать, общепринятое, повседневное представление, которое однако сущность и причины времени не объясняет. Что же говорят философия или другие науки о сущности времени?

Философы исследуют время в соединении с пространством и много спорят о том, объективны ли эти понятия, другими словами, существуют ли они вообще независимо от восприятия человека, или они являются продуктом его воображения? Для Демокрита пространство было пустотой, в которой движутся атомы, а это движение может происходить только во времени. Аристотель представлял себе время как «число движения», для него время не могло существовать без души, так как лишь душа может считать. Для Галилео Галилея и Исаака Ньютона пространство было бесконечно и эвклидово (т.е. не кривое), а время текло равномерно и тоже бесконечно. Все изменения в мире распространялись бесконечно быстро во всей Вселенной.

Для сегодняшних философов-материалистов проблема «пространство-время» решается очень просто. «В мире не существует ничего кроме движущейся материи, и эта движущаяся материя не может двигаться иначе как в пространстве и во времени» (Ленин). Но что такое материя, как она возникла и почему она движется? Ответ материалистов таков: материя существует вечно, а движение является ее неотъемлемым свойством. И это считается научным объяснением!? Аналогично можно представить торнадо как неотъемлемое свойство горячего влажного воздуха и далее это явление не изучать. Френсис Бекон сформулировал проблему познания очень точно: «Истинное знание есть знание причин».

Альберт Эйнштейн изобрел «четырехмерный пространственно-временной континуум» (лат. континуум – единство) и утверждал, что время и масса тел зависят от их скорости. Когда тело достигает скорости света, его время якобы останавливается, а масса становится бесконечно большой (этому утверждению противоречит, между прочим, ошибочно приписываемое Эйнштейну знаменитое уравнение E = mc2, т.е. масса движется со скоростью света, но конечна. Как и ее энергия). Но почему все меняется со временем? Почему не только люди, но даже элементарные частицы стареют? И даже в относительном покое. И почему время должно образовывать с пространством единство? Лишь потому, что оба находятся в фундаменте наших знаний? Такое единство не обосновано причинно.

А «подтверждения» этой теории с помощью очень точных часов на Земле и на спутниках имеют совсем другое, намного более простое объяснение: параметры пространства различны в разных местах, а вместе с ними изменяется и состояние материала часов. Ко времени это не имеет отношения! Если Вы, дорогой читатель, установите магнит вблизи маятниковых часов с железным маятником и таким путем ускорите его колебания и ход часов, Вы же не будете утверждать, что ускорили время во Вселенной!? Вы всего-навсего изменили параметры пространства вблизи маятника.

После Эйнштейна были предприняты новые попытки понять суть времени (А.П. Левич, Б.В. Гнеденко, Н.А. Козырев). Илья Пригожин сделал шаг в правильном направлении в своей неравновесной термодинамике. Он предсказал (1986), что необратимость не может возникать на химическом уровне материи, а должна существовать уже на самых глубинных уровнях микромира. К этому мы еще вернемся.

Наиболее глубокое представление о времени имеют геологи и палеонтологи, так как они имеют дело с огромными отрезками времени. И они знают, что все в этом мире изменяется – независимо от того, покоится нечто или движется – и что время не обязательно течет равномерно, существуют как медленные изменения, так и скачки, бывает и ускоренное развитие.

Ревизия основ естествознания

Сначала один эмпирический (т.е. базирующийся на действительности, а не постулированный) принцип. Современная научная картина мира состоит из двух противоречащих друг другу представлений: из абсолютной части (абсолютное по Брокгаузу: отделенное, в смысле изолированное, независимое, неограниченное, идеальное, безусловное, бесконечное, вечное) и из относительной части (лат. relativ – сравнимое, ограниченное, конечное, зависимое). Абсолютное никогда никем не наблюдалось и экспериментально не установлено, оно противоречит принципу причинности (оно рвет причинно-следственные связи, изолированное не может на что-то влиять или подвергаться влиянию) и целостности (все части целого, например, Вселенной или человеческого тела между собой причинно связаны). Абсолютное математически отображается величинами «нуль» и «бесконечность». Объекты с такими параметрами в природе не существуют.

Этот принцип был назван автором для краткости IRENA (In Reality Exists Nothing Absolute). Он обобщает факты действительности (является эмпирическим) и лежит соответственно в самом фундаменте естествознания. На него опираются принципы причинности и целостности, имеющие статус постулатов. Благодаря этой опоре принцип причинности распространяется и на микромир, а принцип целостности «отбраковывает» «параллельные миры» и «всемогущие существа». Исходя из этого принципа, следует тщательно отделять друг от друга математические и физические представления и модели (что не нужно понимать как призыв не использовать математику в качестве исследовательского инструмента!).

В отличие от абсолютных представлений модели с относительными, сравнимыми, конечными, связанными между собой параметрами соответствуют принципам целостности и причинности, а также и действительности, так как их легко проверить в эксперименте.

В результате десятилетнего критического обсуждения принципа IRENA выявлено, что ему часто приписывается та самая абсолютизация, против которой он направлен, ведь принцип IRENA «абсолютно не допускает абсолютного». Рассмотрим, насколько верно это замечание. Существует правило «золотой середины», выдвинутое Конфуцием еще в пятом, а Аристотелем в третьем веке до нашей эры. Это правило гласит, что истина чаще всего в середине. Это правило хорошо «работает», когда есть шкала интенсивности: мало – средне – много, маленький – средний – большой, слабый – средний – сильный, например, температура больного низкая – средняя (т.е. нормальная) – высокая. Но существуют еще и качественные явления, такие как сложность, разумность, красота, совершенство, стабильность, здоровье, честность, истинность, которые правилу «золотой середины» не подчиняются. Никто не станет утверждать, что самое лучшее – это середина между уродливостью и красотой, глупостью и разумностью, истиной и заблуждением (или ложью). Здесь действует принцип «чем больше, тем лучше» (надо отметить, что качественные параметры достигают максимума при средних значениях связанных с ними количественных параметров: нос средних размеров красивее длинного или короткого, здоровье максимально при средней температуре тела и т.д.).

Мы уже установили выше, что абсолютное всегда ложно. Однако между ложью и истиной не может быть компромиссов, а значит, принцип IRENA не является абсолютизацией. Но если принцип IRENA верен (автор призывает читателей назвать хотя бы один пример, противоречащий этому принципу), то тогда теория относительности Эйнштейна должна быть ложной, так как она содержит абсолютное (подробнее в статье «Стратегия золотой середины» и книге автора «Золотая середина...», 1997 г.). Тогда пространство не пусто, а заполнено средой (точнее: пространство является средой, так как абсолютно пустого пространства, т.е. без физической среды не может быть). Каковы же свойства этой среды?

Пространство – это сверхтекучая жидкость

Существуют важные основания для утверждения, что пространство представляет из себя сжимаемую жидкость с очень малой вязкостью, подобную жидкому гелию-II. В этой жидкости легко возникают определенные структуры (вихри, волны), которые затем длительное время существуют. Многие возникшие независимо друг от друга теории (Гельмгольца, Томсона, Ацюковского, Бауэра, Хильгенберга, Мейла, Зейлера, Герловина и др.) показывают, что элементарные частицы, атомные ядра, атомы, молекулы и т.д. до галактик и силовых полей являются вихревыми структурами этой среды. Плотность этой среды была теоретически рассчитана Сухоруковыми (1993) и равняется 1,08 г/см3 (т.е. близка к плотности воды!).

Сама причина квантования объектов микромира следует из свойств этой среды: вихревые структуры не могут иметь произвольные параметры, а только такие, чтобы в них могло существовать целое число стоячих волн (бегущие волны связаны с большими энергетическими потерями, они излучают энергию и приводят к разрушению или изменению структуры). Поэтому есть смысл называть эту среду квантовым эфиром. Маделунг еще в 1926 году показал, что квантовая теория микромира следует просто из законов гидродинамики и не нуждается в невообразимых и бессмысленных корпускулярно-волновых дуализмах, плотностях вероятности и отношениях неопределенности.

Вихревые кольца имеют одну особенность: при больших скоростях движения они становятся меньше, а при малых – больше (это описывает и эмпирически найденное уравнение де Бройля λ = h/mV). Газ из таких частиц будет в отличие от "нормального" газа при охлаждении расширяться (как вода при замерзании). Поэтому все "просветы" между этими частицами всегда заполнены. Они образуют сплошную среду и не требуют бесконечного ряда все более мелких частиц для достижения сплошности. Материя при этом не бесконечно делима, что было бы абсолютностью. Эта модель не требует и виртуальных (в переводе: воображаемых, кажущихся!), колеблющихся около нуля пространственной энергии частиц.

Многие исследователи (Я. Ярковкий, Хильгенберг, Краффт, Кэри и др.) предположили, что небесные тела поглощают эфир и превращают (завихряют) его внутри себя в весомую материю, что сопровождается производством тепловой энергии. Сегодня известны десятки фактов геологии, подтверждающих рост земного шара. Вот некоторые из них. Все внешние границы континентов соответствуют друг другу, поэтому континенты можно (мысленно или в экспериментах с глобусом) свести друг с другом без просветов и получить шар меньших размеров (примерно 250 миллионов лет назад Атлантический океан еще не существовал, а диаметр Земли был в два раза меньше).

Согласно лазерных измерений со спутников континенты преимущественно удаляются друг от друга; количество продуцируемого в недрах Земли тепла растет (что ведет к потеплению климата!). Сила тяжести тоже медленно увеличивается, что подтверждают исследования древних песчаных откосов и сегодняшний рост веса эталонов. Вымирание гигантских и 80 миллионов лет назад в два раза более легких на меньшей Земле динозавров тоже является подтверждением, и т.д. (подробнее в упомянутой книге автора). Но ортодоксальные геологи не решаются возражать ортодоксальным физикам: «из ничего не может возникать материя!» и поэтому придерживаются тупиковой модели тектоники плит, которая утверждает, что древняя Пангея развалилась на осколки по неизвестным причинам и что эти осколки с тех пор хаотически плавают по поверхности Земли неизменных размеров.

Если эфир постоянно превращается в недрах Земли в «нормальное» вещество, что сопровождается его уплотнением, то земной шар должен со всех сторон постоянно «всасывать» новые порции эфира. Тогда мы находимся в «водопаде» эфира, который «увлекает» все тела в недра Земли и создает таким образом тяготение, вес. И чем больше небесное тело и меньше расстояние до него, тем сильнее всасывающая, увлекающая сила (как в постепенно сужающейся водопроводной трубе). И это вероятнее всего и есть причина ускорения свободно падающих тел, т.е. гравитации.

А так как во Вселенной становится все больше вихревых структур, т.е. частиц (что подтверждает и знаменитый физик Поль Дирак, открывший теоретически антиматерию) и все меньше «свободного» эфира, то постепенно изменяется и его плотность, а вместе с ней и величины мировых «констант» (их постоянство тоже не может быть абсолютным), что и может являться сущностью времени.

Истинная причина времени

Итак, мировые константы должны со временем изменяться. Причиной этого является необратимое превращение «свободного» эфира в «завихренное» вещество, физической среды пространства в материю. Поэтому плотность эфира, или другими словами, гравитационная «постоянная» должна со временем постепенно уменьшаться, а вместе с ней и другие «константы».

Одной из таких «констант» является «постоянная» Ридберга, которая в значительной мере определяет длину волны излучаемых атомами света, в том числе и атомами звезд и галактик. Эти волны становятся со временем все короче, а свет, соответственно, все «синее». От далеких галактик приходит к нам сегодня «красно смещенный» свет, который был излучен миллиарды лет назад в пространство с другими свойствами (с большей плотностью), поэтому его «красное смещение» объясняется вовсе не допплеровским эффектом, а «возрастом» света (О. Эстерле, 1992).

Существуют ли доказательства для такого объяснения красного смещения? Астрофизики из Пулковской обсерватории тщательно изучили спектр излучения галактики А2058+16 (К.П. Бутусов, 1998) и нашли, что красное смещение соседних линий, принадлежащих атомам щелочных металлов и железа, показывают разные величины смещения! Эти величины зависят от потенциалов ионизации атомов. В соответствии с допплеровским эффектом атомы железа должны были бы быстрее удалятся от нас, чем атомы щелочных металлов, хотя они и принадлежат одной галактике. Специалисты по Большому взрыву пришли в недоумение и назвали это явление «парадокс красного смещения» (как будто присвоение наименования решает проблему!). Если принять, что красное смещение не имеет ничего общего с допплеровским эффектом и что астрофизики анализируют «старый» свет, который был излучен миллиарды лет назад при других условиях, все становится на свои места. Тогда становится ясным, почему степень красного смещения зависит от потенциалов ионизации атомов: в более плотном эфире параметры атомов были другие!

Так что «стандартная модель Большого взрыва» ложна, что и подтверждается все новыми фактами, наблюдениями и теоретическими исследованиями (например, найдены галактики, которые старше самой Вселенной!). А также принципом IRENA: абсолютное начало Вселенной со временем ноль и бесконечными другими параметрами есть просто фикция.

Эти исследования Пулковских астрофизиков доказывают также, что распространенная гипотеза о «старении» света, о замедлении его скорости при распространении на далекие расстояния тоже неверна: не изменение длины волны или частоты света в процессе его распространения, а изменения условий излучения света атомами определяют красное смещение. Кроме того, свет не пуля, которая тормозится средой, а волна, являющаяся свойством среды. Звук тоже не меняет свою частоту при удалении от своего источника.

Уменьшение со временем плотности эфира приводит и к постепенному снижению скорости света в «пространственно-временном континууме». Время определяется не вторичной скоростью света, а скоростью изменения первичной плотности эфира, что влияет и на микромир (мы уже упоминали о «сквозной» необратимости процессов в микромире по Пригожину).

Скорость изменения мировых констант тоже не абсолютно постоянна, другими словами, время течет не с постоянной скоростью. При среднем возрасте Вселенной эта скорость должна быть максимальной, потому что к этому времени половина свободного эфира уже превратилась в «материю» и превращается максимальное количество эфира за единицу времени.

Можно ли эту скорость изменения как-то выразить через наши обычные единицы измерения? Для этого есть некоторые факты. «Молодые» звезды с массами, равными массе нашего Солнца, имеют мощность излучения, которая на 40% (т.е. в 1,4 раза) ниже, чем была у «молодого» Солнца 4,6 миллиардов лет назад (Ingersoll, 1987). Известно, сто мощность излучения звезд зависит от гравитационной постоянной (т.е. от плотности эфира) как корень из седьмой степени. Корень седьмой степени из 1,4 равен 1,04924144, или округленно 1,05. Таким образом плотность эфира была 4,6 миллиардов лет назад примерно на 5% выше, чем сегодня. Если взять в качестве первого приближения линейное снижение плотности эфира, то можно полное время существования нашей Вселенной оценить в 90 миллиардов лет.

Все это относится к среднему времени во Вселенной. Но можно представить себе и местное, локальное время. Вблизи Земного шара плотность эфира не снижается, как в среднем во Вселенной, а растет из-за ускоренного роста массы Земли и ее гравитационного «поля». Этот рост относительно невелик, но для жизни на Земле он может иметь решающее значение. Мы знаем, что каждая следующая ступень развития биосферы и ноосферы занимает все более короткие временные интервалы по сравнению с предыдущими. Это ускорение развития может быть причинно связано с ростом земного шара.

Развитие, эволюция есть накопление и самоорганизация стабильных долгоживущих систем со средними параметрами на всех уровнях организации вещества. На химическом уровне, например, открытые системы стабилизируются близ 310°К или 37°С и при химическом составе, близком к составу человеческого организма (О. Эстерле, «Почему жизнь концентрируется при 37°С?», 1997 г.).

Является ли время источником энергии?

Известный русский астрофизик Н.А.Козырев разработал в 1957 году концепцию «физического времени». Он утверждал, что время есть «вращение причины вокруг следствия» (?) и что оно содержит энергию, которую можно извлекать с помощью определенных технических средств. Эта концепция «разрешает» существование бесконечно больших скоростей, что противоречит принципу IRENA. Поразительно, но некоторые предсказания его теории были подтверждены его личными астрономическими наблюдениями, а также наблюдениями других астрономов. Он утверждал, например, что звезда или галактика может наблюдаться одновременно в трех позициях: в прошлом (там, где объект виден сейчас), в настоящем (где он сейчас действительно находится) и в будущем (где он будет находиться, когда его догонит посланный с Земли в данный момент световой сигнал). С помощью телескопа, оборудованного в фокусе светочувствительным электрическим сопротивлением, эти три позиции были действительно зарегистрированы (аналогия: две позиции летящего самолета, установленные визуально и по звуку).

Эти наблюдения могут быть объяснены с помощью нашей гидродинамической модели эфира. Если «части» пространства «плывут» в виде вихревых структур с разной скоростью и плотностью и в разных направлениях, то в них могут быть и разные скорости распространения сигналов. И если знать параметры этих течений, можно находить и пути быстрейшего достижения определенного места. С этой точки зрения можно наглядно представить себе и «червячные дыры» в пространстве, постулируемые некоторыми современными астрофизиками (это вихревые трубки эфира!). Принципиальная возможность машины времени также не исключается: если время действительно «течет», то существуют несколько возможностей движения: пассивное движение вместе с потоком, а также активное движение против, по и поперек потока.

Технически создаваемые вихри. Стационарные эфирные вихревые кольца можно «конструировать» с помощью различных эфирных структур, сильно взаимодействующих с эфиром: массивные вращающиеся тела (Würth), вращающиеся магнитные системы с супермагнитами (R.R.Searl, W. Müller), вращающиеся электрически заряженные изоляционные диски (P.Baumann "Testatika"), вращающиеся среды с высокой диэлектрической проницаемостью (напр. водяные вихри, V.Schauberger), режимы схлопывания (Implosion) газов (даже не горючих) в двигателях внутреннего сгорания) и т.д. Параллельные осям вихревых колец составляющие потоков эфира создают при этом антигравитационные эффекты, зарегистрированные на различных эфирных двигателях. Вихри – это машины, превращающие тепловую энергию непосредственно в кинетическую (О. Эстерле, 1998 г.), это делают и эфирные вихри (отсюда понижение температуры деталей эфирных двигателей). Таким образом эфир можно «завихрять» с помощью технических средств и получать таким путем так называемую свободную или пространственную энергию (подробнее в 6-й главе упомянутой книги автора), что приведет однако к дополнительному искусственному изменению плотности эфира (очень незначительному), а значит, и скорости течения времени, поэтому Козырев не совсем неправ, когда заявляет, что из времени можно извлекать энергию.

Похоже, что мы уже широко пользуемся энергией, извлекаемой из времени в... атомных электростанциях. В чем причина распада атомных ядер радиоактивных элементов? Ведь если нет ничего абсолютного, то нет и чисто случайного распада ядер атомов!? При постепенном уменьшении плотности эфира со временем, о котором говорилось выше, снижается и величина активационного барьера, удерживающего протоны и нейтроны в ядре. И там, где она достигает критического минимума, ядро распадается.

Резюме. Итак, мы видим, что определения пространства и времени сегодня еще несовершенны и противоречивы, но получают в рамках целостного естествознания ясную и логичную интерпретацию.

ПРОСТРАНСТВО И ВРЕМЯ

ПРОСТРАНСТВО И ВРЕМЯ

всеобщие формы бытия материи, её важнейшие атрибуты. В мире нет материи, не обладающей пространственно-временными свойствами, как не существует П. и в. самих по себе, вне материи или независимо от неё. Пространство есть бытия материи, характеризующая её протяжённость, структурность, и взаимодействие элементов во всех материальных системах. Время - форма бытия материи, выражающая её существования, последовательность смены состояний в изменении и развитии всех материальных систем. П. и в. неразрывно связаны между собой, их проявляется в движении и развитии материи.

В домарксистской философии, а также в классич. физике П. и в. нередко отрывались от материи, рассматривались как самостоят. сущности или внеш. условия существования и движения тел. В концепции Ньютона абс. пространство понималось как бесконечная протяжённость, вмещающая в себя всю материю и не зависящая от к.-л. процессов, а абс. время - как текущая безотносительно к к.-л. изменениям равномерная длительность, в которой всё возникает и исчезает. В ньютоновской концепции П. и в. приписывались некоторые субстанциональные признаки - абс. самостоятельность и самодостаточность существования; вместе с тем П. и в. не рассматривались как порождающие субстанции, из которых возникают все тела. В материа-листич. натурфилософии и основывавшихся на её принципах физич. теориях преобладало атомистич. структуры материи: конечной, абсолютной и порождающей субстанцией признавалась лишь движущаяся , существующая и изменяющаяся в П. и в. как внеш. условиях бытия.

В религ. и объективно-идеалистич. учениях выдвигалась сходная П. и в. как всеобщих внеш. условий бытия тел, однако П. и в. трактовались как созданные вместе с материей богом или абс. духом. С точки зрения теологии к богу понятия П. и в. не приложимы: как высшая, бесконечная и творящая он внепространствен и существует не во времени, а в вечности, являющейся одним из его атрибутов. В субъек-тивно-идеалистич. концепциях выдвигались эклектич. и внутренне противоречивые толкования П. и в. как априорных форм чувств. созерцания (Кант) либо как форм упорядочения комплексов ощущений и опытных данных, установления между ними функциональных зависимостей (Беркли , Мах, позитивизм) .

Впервые подлинно науч. понимание П. и в. как всеобщих атрибутов и форм существования материи было выдвинуто и обосновано К. Марксом и Ф. Энгельсом. Учение диалектич. материализма о П. и в. получило глубокое в естествознании 20 в. Значит. вклад в совр. представлений о П. и в. внесла А. Эйнштейна: она раскрыла неразрывную П. и в. как единой формы существования материи (пространство-время) , установила единство пространственно-временной и причинно-следственной структуры мира, обнаружила относительность пространственно-временных характеристик тел и явлений.

Предметом диалектико-материалистич. теории П. и в. являются методологич. важнейших достижений совр. науки в понимании П. и в. для разработки целостного мировоззрения, всеобщих свойств П. и в. в их связи с др. атрибутами материи, теоретич. бесконечности П. и в. в количеств. и качеств. отношениях, изучение закономерностей науч. познания П. и в. и форм связи сменяющихся науч. теорий о П. и в.

К всеобщим свойствам П. и в. относятся: объективность и независимость от сознания человека; абсолютность как атрибутов материи; неразрывная связь друг с другом и с движением материи; от структурных отношений и процессов развития в материальных системах; единство прерывного и непрерывного в их структуре; количеств. и качеств. . Различают метрич. (т. е. связанные с измерениями) и топо-логич. (напр., связность, пространства и , одномерность, необратимость времени) свойства П. и в. Познание всеобщих свойств П. и в. является результатом длит. историч. развития науки, выделения в процессе обобщения и абстрагирования таких инвариантных характеристик многообразных пространственновременных отношений, которые проявляются на всех структурных уровнях материи.

Наряду с едиными характеристиками, которые в равной степени присущи как пространству, так и времени, им свойственны некоторые особенности, характеризующие их как различные, хотя и тесно связанные между собой, атрибуты материи. К всеобщим свойствам пространства относятся прежде всего протяжённость, означающая рядоположенность и сосуществование различных элементов (точек, отрезков, объёмов и т. п.) , возможность прибавления к каждому данному элементу некоторого следующего элемента либо возможность уменьшения числа элементов. Протяжённой можно считать любую систему, в?-poa возможны изменения характера связей и взаимодействий составляющих её элементов, их числа, взаимного расположения и качеств. особенностей. Это означает, что протяжённость тесно связана со структурностью материальных систем, имеющей атрибутивный . Непротяжённые объекты не обладали бы структурой, внутр. связями, способностью к изменениям. Пространству присуща также связность и непрерывность, проявляющаяся как в характере перемещения тел от точки к точке, так и в распространении физич. воздействий через различные поля (электромагнитное, гравитационное, ядерное) в виде близкодействия в передаче материи и энергии. Связность означает отсутствие к.-л. «разрывов» в пространстве и нарушения близкодействия в распространении материальных воздействий в полях. Вместе с тем пространству свойственна относит. , проявляющаяся в раздельном существовании материальных объектов и систем, имеющих определ. размеры и границы, в существовании многообразия структурных уровней материи с различными пространств. отношениями. Общим свойством пространства, обнаруживающимся на всех известных структурных уровнях, является трёхмерность, которая органически связана со структурностью систем и их движением. Все материальные процессы и взаимодействия реализуются лишь в пространстве трёх измерений. В одномерном или двумерном пространстве (линия, плоскость) не могли бы происходить взаимодействия вещества и поля. Абстрактные (концептуальные) многомерные пространства в совр. математике и физике образуются путём добавления к трём пространств. координатам времени и др. параметров, учёт взаимной связи и изменения которых необходим для более полного описания процессов. Однако не следует отождествлять эти концептуальные пространства, вводимые как способ описания систем, с реальным пространством, которое всегда трёхмерно и характеризует протяжённость и структурность материи, сосуществование и взаимодействие элементов в различных системах. С протяжённостью пространства неразрывно связаны его метрич. свойства, выражающие особенности связи пространств. элементов, и количеств. законы этих связей. В природе метрич. свойств пространства определяется неоднородностью структурных отношений в системах, в частности распределением тяготеющих масс и величиной гравитац. потенциалов, определяющих «искривление» пространства.

К специфич. (локальным) свойствам пространства материальных систем относятся симметрия и асим» метрия, конкретная форма и размеры, местоположение, расстояние между телами, пространств. распределение вещества и поля, границы, отделяющие различные системы. Все эти свойства зависят от структуры и внеш. связей тел, скорости их движения, характера взаимодействий с внеш. полями. Пространство каждой материальной системы принципиально незамкнуто, непрерывно переходит в пространство др. системы, которое может отличаться по метрич. и др. локальным свойствам. Отсюда проистекает многосвязность реального пространства, его неисчерпаемость в количеств. и качеств. отношениях.

К всеобщим свойствам времени (или временных отношений в материальных системах) относятся: объективность ; неразрывная связь с материей, а также с пространством, движением и др. атрибутами материи; длительность, выражающая последовательность существования и смены состояний тел. Длительность образуется из возникающих один за другим моментов или интервалов времени, составляющих в совокупности весь период существования тела от его возникновения до перехода в качественно иные формы. Выступая как своеобразная «протяжённость» времени, длительность обус542 ПРОТАГОР

ловлена общим сохранением материи и движения при их превращениях из одних форм в другие. Время сущест-вования каждого конкретного объекта конечно и прерывно, т. к. любой имеет начало и конец существования. Однако составляющая материя при этом не возникает из ничего и не уничтожается, а только меняет формы своего бытия. Благодаря общей сохраняемости материи и движения время её существования непрерывно, и эта непрерывность абсолютна, тогда как прерывность относительна. Непрерывности времени соответствует его связность, отсутствие «разрывов» между его моментами и интервалами.

Время одномерно, асимметрично, необратимо и направлено всегда от прошлого к будущему. Конкретными физич. факторами, характеризующими необратимость времени, выступают возрастание энтропии в различных системах, с течением времени количеств. законов движения тел.

Специфич. свойствами времени являются конкретные периоды существования тел от возникновения до перехода в качественно иные формы, событий, которая всегда относительна, процессов, скорость изменения состояний, темпы развития, временные отношения между различными циклами в структуре систем.

Развитие науки в 20 в. раскрыло новые аспекты зависимости П. и в. от материальных процессов. Из теории относительности и экспериментальных фактов совр. физики следует, что с увеличением скорости движения тел и приближением её к скорости света возрастает , относительно сокращаются линейные размеры в направлении движения, замедляются все процессы по сравнению с состоянием относит. покоя тел. Замедление временных ритмов происходит также под действием очень мощных гравитационных полей, создаваемых большими массами вещества (что проявляется, напр. , в красном смещении спектральных линий излучения т. н. белых карликов и квазаров, обладающих очень высокой плотностью и мощными полями тяготения) . При количеств. возрастании плотности вещества (до значений порядка1094 г/см3 и более) должны качественно меняться метрич., а возможно, и некоторые топологич. свойства П.и в. Из наблюдательных данных внегалактич. астрономии следует, что средней плотности вещества в Метагалактике порядка 10-31 г/см3 соответствует незамкнутое пространство отрицат. кривизны. Однако эти данные нельзя распространять на весь в целом, поскольку материя неоднородна и в мире существует бесчисленное структурных уровней и типов материальных систем со свойственными им пространственно-временными отношениями.

Энгельс Ф., Диалектика природы, Маркс К. и Энгельс Ф., Соч., т. 20; его ж е, Анти-Дюринг, там же; Ленин В. И., Материализм и , ПСС , т. 18; его же, Филос. тетради, там же, т. 29; Эйнштейн А., Основы теории относительности, М.- Л., 19352; Hьютон И., Математич. начала натуральной философии, М.- Л., 1936 ; Фок В. А., Теория П., В. и тяготения, M., 19612; Штейнман Р. Я., П. и в. , М., 1962 ; Мелюхин С. Т., Материя в её единстве, бесконечности и развитии, М., 1966 ; ГрюнбаумА., Филос. проблемы П. и в. , пер. с англ. , М., 1969 ; Бесконечность и Вселенная. Сб. ст. ,М., 1969 ; МостепаненкоА. М., Проблема универсальности осн. свойств П. и в. , Л., 1969 ; его же, П. и в. в макро-, мега- и микромире, М., 1974 ; П., В., М., 1971 ; Варашенков В. С., Проблемы субатомного П. и в. , М., 1979 ; Ахундов М. Д., Концепции П. и в. : истоки, эволюция , перспективы, М., 1982.

С. Т. Мелюхин.

Философский энциклопедический словарь. - М.: Советская энциклопедия . Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов . 1983 .

ПРОСТРА́НСТВО И ВРЕ́МЯ

общие формы существования материи, а именно формы координации материальных объектов и явлений. Диалектич. и совр. показывают, что П. и в. не могут существовать вне материи и независимо от нее. Отличие этих форм друг от друга состоит в том, что пространство есть всеобщая форма сосуществования тел, время – всеобщая форма смены явлений. По Энгельсу, находиться в пространстве – значит быть в форме расположения одного возле другого, существовать во времени – значит быть в форме последовательности одного после другого. Пространство есть форма координации различных сосуществующих объектов и явлений, заключающаяся в том, что последние определ. образом расположены друг относительно друга и, составляя различные части той или др. системы, находятся в определ. количеств. отношениях друг к другу. Время есть общая форма координации явлений, сменяющих друг друга состояний материальных объектов, заключающаяся в том, что каждое (состояние), составляя ту или иную часть процесса, совершающегося в объекте, находится в определ. количеств. отношениях к др. явлениям (состояниям).

Пространств. характеристиками являются места объектов (при большом удалении объектов друг от друга или малости объектов эти места можно рассматривать как "точки" пространства), расстояния между местами, углы между различными направлениями, в к-рых располагаются объекты (отд. объект характеризуется протяженностью и формой, к-рые определяются расстояниями между частями объекта и их ориентацией). Врем. характеристики – "моменты", в к-рые происходят явления, продолжительности (длительности) процессов. Отношения между этими пространств.-врем. величинами наз. м е т р и ч е с к и м и. Существуют также и качеств., т о п о л о г и ч. характеристики – "соприкосновение" различных объектов или процессов, порядок их расположения, симметрия.

Пространств.-врем. отношения подчиняются специфич. закономерностям. В соответствии с наличием у материальных объектов и процессов неразрывно связанных противоположных сторон – целостности и дифференцированности, устойчивости и изменчивости, и в пространств.-врем. отношениях различают, с одной стороны, и длительность, с – порядок сосуществования и смены явлений. Протяженность объекта и длительность состояния (его "время жизни") выступают на первый план при рассмотрений объекта или состояния как целого; "порядка" выступает на первый план при рассмотрении отношений частей (объекта или состояния) или отношений различных объектов.

Согласно диалектич. материализму, П. и в. являются формами бытия дифференцированных объектов и процессов. Этим определяется всеобщий характер пространств.-врем. отношений и закономерностей. По мере углубления знаний о материи и движении углубляются и изменяются науч. представления о П. и в. Поэтому понять смысл и вновь открываемых закономерностей П. и в. можно только путем установления их связей с закономерностями взаимодействия и движения материи. Примером может служить неевклидова геометрия, реальный смысл к-рой стал ясен только после открытия релятивистских теорий гравитационного поля.

Непосредств. единство П. и в. выступает в движении материи; простейшая форма движения – перемещение – характеризуется величинами, включающими различные отношения П. и в. Совр. (см. Относительности теория) обнаружила более глубокое единство П. и в., выражающееся в совместном закономерном изменении пространств.-врем. характеристик систем при изменении движения последних, а также в зависимости этих величин от концентрации материи (масс) в окружающей среде.

С чисто пространств. (геометрич.) отношениями имеют дело лишь в том случае, когда можно отвлечься от движения тел и их частей. Тогда мир выступает как совокупность неизменных идеально твердых тел, расположенных вне друг друга, и внешние отношения этих тел сводятся к пространственным. С чисто врем. отношениями имеют дело в случае, когда можно отвлечься от многообразия сосуществующих объектов; тогда единственный "точечный" объект испытывает изменения состояния, характеризующиеся различными длительностями.

В реальном процессе измерения пространств. и врем. величин пользуются к.-л. системой отсчета.

Понятия П. и в. являются необходимой составной частью картины мира в целом и поэтому входят в философии. Учение о П. и в. углубляется и развивается вместе с развитием мировоззрения в целом, но особенно естествознания и прежде всего физики. Это объясняется тем, что свойства П. и в. имеют весьма существ. значение для физич. закономерностей, к-рые часто выражаются в виде зависимостей физич. величин от пространств.-врем. координат; кроме того, точные измерения пространств.-врем. величин производятся с помощью физич. устройств. Именно развитие физики в 20 в. привело к радикальной перестройке науч. представлений о П. и в. Из остальных наук значит. роль в прогрессе учения о П. и в. сыграла и в особенности .

Развитие физики, геометрии и астрономии в 20 в. подтвердило правильность воззрений диалектич. материализма на П. и в. В свою очередь диалектико-материалистич. концепция П. и в. позволяет дать правильную интерпретацию совр. физич. учения о П. и в., вскрыть неудовлетворительность как субъективистского понимания этого учения, так и попыток "развить" его, отрывая П. и в. от материи.

Пространств.-врем. отношения обладают не только общими закономерностями, но и специфическими, характерными для объектов того или иного класса, поскольку эти отношения определяются структурой материального объекта, его внутр. взаимодействиями и процессами. Поэтому такие характеристики, как размеры объекта (в частности, его форма), время жизни, ритмы процессов, типы симметрии, являются существ. параметрами объекта данного типа, зависящими также от условий, в к-рых он существует. Особенно важны и специфичны пространств.-врем. отношения в таких сложных развивающихся объектах, как биологич. или общество. В этом смысле можно говорить об индивидуальных П. и в. таких объектов (напр., о биологич. или социальном времени).

Основные концепции П. и в. Важнейшая филос. , относящаяся к П. и в., это о сущности П. и в., т.е. отношения этих форм бытия к материи, а также об объективности пространств.-врем. отношений и закономерностей.

На протяжении почти всей истории естествознания; и философии существовали две осн. концепции П. и в. Одна из них идет от древних атомистов – Демокрита, Эпикура, Лукреция, к-рые ввели пустого пространства и рассматривали его как однородное и (но не изотропное); понятие времени тогда было разработано крайне слабо. В время эту концепцию развил Ньютон, очистивший: ее от антропоморфизма. По Ньютону, П. и в. суть особые начала, существующие независимо от материи и друг от друга. Пространство само по себе (абс. пространство) есть "вместилище тел", абсолютно неподвижное, непрерывное, однородное (одинаковое во всех точках) и изотропное (одинаковое по всем направлениям), проницаемое – не воздействующее на материю и не подвергающееся ее воздействиям, и бесконечное; обладает тремя измерениями. От абс. пространства Ньютон отличал протяженность тел – их осн. , благодаря к-рому они занимают определ. места в абс. пространстве, совпадают с этими местами. Протяженность, по Ньютону, если говорить о простейших частицах (атомах), есть изначальное, первичное свойство, не требующее объяснения. Абс. пространство вследствие неразличимости своих частей неизмеримо и непознаваемо. Положения тел и расстояния между ними можно определять только по отношению к др. телам. Др. словами, наука и имеют дело только с относительным пространством.

Время в концепции Ньютона само по себе есть абсолютное и ни от чего не зависящее, чистая длительность как таковая, равномерно текущая от прошлого к будущему. Оно является пустым "вместилищем событий", к-рые могут его заполнять, но могут и не заполнять; ход событий не влияет на течение времени. Время универсально, одномерно, непрерывно, бесконечно, однородно (везде одинаково). От абс. времени, также неизмеримого, Ньютон отличал относит. время. Измерение времени осуществляется только с помощью часов, т.е. движений, к-рые являются достаточно равномерными. П. и в. в концепции Ньютона независимы друг от друга. Независимость П. и в. проявляется прежде всего в том, что расстояние между двумя точками и; промежуток времени между двумя событиями сохраняют свои значения независимо друг от друга в любой: системе отсчета, а отношения этих величин или скорости тел могут быть любыми.

Ньютон подвергал критике идею Декарта о заполненном мировом пространстве и о тождестве протяженной материи и пространства.

Концепция П. и в., разработанная Ньютоном, была господствующей в естествознании на протяжении 17–19 вв., т.к. она опиралась на науку того времени – евклидову геометрию и классич. механику. Законы ньютоновой механики справедливы только в инерциальных системах отсчета. Эта выделенность инерциальных систем объяснялась тем, что они движутся инерциально именно по отношению к абс. П. и в. и наилучшим образом соответствуют последним. Можно сказать, что часы в таких системах показывают равномерно текущее абсолютно универсальное время, а твердые тела, образующие пространств. "остов" такой системы, не деформируются при инерциальном движении. Конечно, измеренная скорость тела может не совпасть с его абс. скоростью, однако осн. механики, связывающий ускорение с создающей его силой, остается неизменным в любой инерциальной системе; инвариантны (неизменны) также и ускорение, и сами по себе. Если же перейти к произвольно движущимся ускоренным системам отсчета, то законы классич. механики окажутся неверными. Отсюда делался , что только при отнесении движения тел к абс. П. и в. получаются законы механики, оправдывающиеся на практике.

Ньютонова концепция П. и в. соответствовала всей физич. картине мира той эпохи, в частности филос. представлению о материи как изначально протяженной и инертной. Существ. противоречием концепции Ньютона было то, что абс. П. и в. оставались в ней непознаваемыми путем опыта. Согласно принципу относительности классич. механики, все инерциальные системы отсчета равноправны и невозможно отличить, движется система по отношению к абс. П. и в. или покоится. Это служило доводом для сторонников противоположной концепции П. и в., основы к-рой были сформулированы также еще в древности Аристотелем. Пространство, по Аристотелю, есть совокупность мест тел, а время – " движений"; время, в отличие от движения, течет всегда равномерно. В новое время т. зр. Аристотеля развил (очистив ее от телеологии) Лейбниц, опиравшийся также на нек-рые идеи Декарта. Особенность лейбницевой концепции П. и в. состоит в том, что в ней отвергается о П. и в. как о самостоят. началах бытия, существующих наряду с материей и независимо от нее. По Лейбницу, пространство – это порядок взаимного расположения множества индивидуальных тел, существующих вне друг друга, время – порядок сменяющих друг друга явлений или состояний тел. При этом Лейбниц в дальнейшем включал в понятие порядка также и понятие относит. величины. Представление о протяженности отд. тела, рассматриваемого безотносительно к другим, по концепции Лейбница, несостоятельно. Пространство есть ("порядок"), применимое лишь ко мн. телам, к "ряду" тел. Можно говорить только об относит. размере данного тела, в сравнении с размерами других тел. Если бы других тел не существовало, то нельзя было бы говорить о протяженности данного тела. Протяженность тела имеет смысл лишь постольку, поскольку тело рассматривается как часть мира. То же можно сказать и о длительности: понятие длительности применимо к отд. явлению постольку, поскольку оно рассматривается как звено в единой цепи событий. Протяженность любого объекта, по Лейбницу, не есть первичное свойство, а обусловлено силами отталкивания, действующими внутри объекта; внутренние и внешние взаимодействия определяют и длительность состояния; что же касается самой природы времени как порядка сменяющихся явлений, то оно отражает их причинно-следств. связь.

Логически концепция Лейбница связана со всей его филос. системой в целом. Осн. свойством частиц Лейбниц считал , стремление к действию и движению. Представления о материи древних атомистов и Ньютона, рассматривавших мир как конгломерат независимых частиц, связанных воедино лишь случайными столкновениями или мистич. силами дальнодействия, Лейбниц считал неудовлетворительными. Идея абс. атомизма не объясняет целостности объектов, их внутр. согласованности, она противоречит "гармонии", единству мира. Правда, Лейбниц понимает гармонию и активность в идеалистич., телеологич. духе: атомы – это монады, духовно отображающие мир. Но наука той эпохи не располагала данными, к-рые дали бы возможность рационально объяснить " " единства и целостности материальных объектов. Однако лейбницева концепция П. и в. не играла существ. роли в естествознании 17–19 вв., т.к. она не могла дать ответа на вопросы, поставленные наукой той эпохи. Прежде всего воззрения Лейбница на пространство казались противоречащими существованию вакуума (только после открытия поля в 19 в. проблема вакуума предстала в новом свете); кроме того, они явно противоречили всеобщему убеждению в единственности и универсальности евклидовой геометрии (если геометрия, обусловлены характером сил, то мыслима возможность иных пространств. отношений, чем евклидовы); наконец, концепция Лейбница казалась непримиримой с классич. механикой, поскольку признание чистой относительности движения не дает объяснения преимуществ, роли инерциальных систем. Ответ Лейбница, в к-ром он указал на устойчивых ("фиксированных") состояний материи, служащих "базисом" П. и в., не был понят в то время. Вообще, одностороннее подчеркивание Лейбницем "порядка" как гл. характеристики П. и в. казалось несовместимым с объективностью и "неизменностью" метрич. свойств П. и в., на к-рые опиралась наука. Поправки Лейбница, к-рый в ходе дискуссии с учеником Ньютона Кларком включил в понятие "порядка" также и метрич. отношения, не были приняты во . Т.о., современная Лейбницу оказалась в противоречии с его концепцией П. и в., к-рая строилась на гораздо более широкой филос. основе. Только два века спустя началось накопление науч. фактов, говоривших в ее пользу. Понятия П. и в. в философии и естествознании 18–19 вв.

Философы-материалисты 18–19 вв. решали проблему П. и в. в основном в духе концепций Ньютона или Лейбница, хотя, как , полностью не принимали к.-л. из них. Нек-рые философы 17 в. (напр., Локк) под влиянием успехов механики перешли от концепции Лейбница к концепции Ньютона. Большинство философов-материалистов выступало против ньютоновского пустого пространства. Еще Толанд указывал, что представление о пустоте связано с взглядом на материю как на инертную, бездеятельную. Таких же взглядов придерживался и Дидро. Еще далее в критике Ньютона шел Бошкович, к-рый рассматривал материю как состоящую из частиц – силовых центров; понятие протяженности, по Бошковичу, применимо не к отд. частице, а только к системе частиц.

Ближе к концепции Лейбница стоял и Гегель. Он критикует представление Ньютона о времени как потоке, увлекающем все в своем течении, и о пустом, ничем не заполненном пространстве. Вместе с тем Гегель не соглашается со сведением пространства к порядку вещей; пространство не совпадает и с протяженностью отдельных вещей, ему присущи свои специфич. отношения и закономерности. Гегель подчеркивает единство П. и в. как моментов движения. Только в представлении, пишет он, П. и в. совершенно отделены друг от друга. Однако утверждая, что понятие материи производно от понятий П. и в., Гегель теряет , высказанную уже Лейбницем, что пространств. и врем. отношения определяются взаимодействием.

Одним из самых замечат. открытий 19 в. было создание неевклидовой геометрии Лобачевским, Бойаи и Риманом (см. Пространство в математике).

Неевклидова геометрия противоречила ньютоновой концепции П. и в. Отвергнув ее, Лобачевский утверждал, что геометрич. свойства, будучи наиболее общими физич. свойствами, определяются общей природой сил, формирующих тела.

В концепциях субъективных идеалистов и агностиков проблемы П. и в. сводятся гл. обр. к вопросу об отношении П. и в. к сознанию, восприятию. Беркли отвергал ньютоновское абс. П. и в., но рассматривал пространств. и врем. отношения субъективистски, как порядок восприятий. Понятно, что при этом не было и речи об объективных геометрич. и механич. законах. Поэтому берклеанская т. зр. не сыграла существ. роли в развитии науч. представлений о П. и в. Иначе обстояло дело с воззрениями Канта, к-рый сначала примыкал к концепции Лейбница. Противоречие этой концепции и естеств.-науч. взглядов того времени привело Канта к принятию ньютоновой концепции и к стремлению философски обосновать ее. Главным здесь было объявление П. и в. априорными формами человеч. созерцания. Взгляды Канта на П. и в. нашли немало сторонников в конце 18 в. – 1-й пол. 19 в. Их несостоятельность была доказана лишь после создания и принятия неевклидовой геометрии: сама возможность различных геометрий и определить их области применения на основании опыта отвергает .

Кризис механистич. естествознания на рубеже 19–20 вв. привел к возрождению на новой основе субъективистских взглядов на П. и в. Критикуя концепцию Ньютона, Мах снова развил взгляд на П. и в. как на "порядок восприятий", подчеркивая опытное происхождение аксиом геометрии. Но понимался Махом субъективистски, поэтому и геометрия Эвклида, и геометрия Лобачевского и Римана рассматриваются им просто как различные способы описания пространств. соотношений. Неудивительно поэтому, что Мах отрицательно отнесся к теории относительности. Критика субъективистских взглядов Маха па П. и в. была дана Лениным в "Материализме и эмпириокритицизме".

Развитие представлений о П. и в. в 20 в. Метрические свойства П. и в. Кардинальное изменение физич. представлений о материи (прежде всего открытие физич. полей – см. Поле физическое) привело к коренной перестройке учения о П. и в. Совр. физич. П. и в.– теория относительности – показала, что при переходе от одной системы отсчета к другой, движущейся относительно первой, пространств. и врем. величины (расстояния, углы, промежутки времени, частоты) изменяются. Явления, одновременные в одной системе отсчета, неодновременны в другой. Остается неизменным при переходе от одной системы отсчета к другой только пространств.-врем. интервал между событиями. Теория относительности ввела новое понятие – "пространства-времени" как единой формы координации явлений. Разделение координации на чисто пространственную и чисто временную оказывается относительным: события, сосуществующие в одной системе (координированные только пространственно, расположенные в разных местах), в другой системе являются также и последовательными во времени (однако сама последовательность во времени таких событий, к-рые могут быть связаны отношением причины и следствия, не может измениться). Т.о., расстояния и длительности приобретают полную определенность только в той или иной системе отсчета.

Из сказанного неизбежно следует об ограниченности ньютоновой концепции абс. П. и в. Теория относительности логически непримирима с представлением о пустом пространстве, имеющем "собств." размеры, и с представлением о пустом времени, обладающем "собств." длительностью. Совр. физика подтвердила правильность концепции П. и в., идущей от Лейбница и развитой в дальнейшем диалектич. материализмом. Теория относительности показала, что именно играет роль физич. агента, посредством к-рого осуществляется пространств.-врем. явлений. Эта координация такова, что можно говорить об "индивидуальном", или локальном, П. и в. для каждой замкнутой системы.

Дальнейший шаг в развитии физич. представлений о П. и в. был сделан общей теорией относительности. Согласно этой теории, инерциальные системы, занимающие особое среди любых возможных систем отсчета (только в таких системах верны законы сохранения), выделяются не тем, что они инерциальны по отношению к абс. П. и в., как полагали последователи Ньютона, а тем, что материальные тела, базисом таких систем, не испытывают заметных внешних воздействий и совершают свободное движение в поле тяготения. Отсюда следует, что инерциальная система является таковой только локально, как в пространственном, так и во врем. отношении, т.е. только по отношению к ограниченному кругу явлений. Так было разрешено , к-рое в свое время не могла разрешить концепция Лейбница. Согласно общей теории относительности, поле тяготения проявляется в характере связи пространств. и врем. величин, или в метрике пространства-времени. Т. н. кривизна пространства-времени, определяющая их метрику (геометрию), зависит от распределения и движения материи – источника поля тяготения, причем эта геометрия не евклидова, а риманова. В поле тяготения имеет место разный ход времени (темп процессов) в разных точках поля; в различных местах поля различны также расстояния, разделяющие данные события. В поле тяготения невозможна синхронизация часов во всем пространстве. Только в статич. поле тяготения могла бы существовать "мировая" , со своим "мировым" временем во всей системе, но и такая система была бы локальна, а не универсальна. Изменение темпа процессов (хода времени) происходит, в частности, и при плавном ускорении (или замедлении) системы. Это создает возможность влиять на местный "ход времени".

Дальнейшее развитие общей теории относительности связано с космологич. проблемами – структурой П. и в. в наблюдаемой части мира в целом, нулевым "фоном", по отношению к к-рому изменяется метрика пространства-времени в поле тяготения (А. А. Фридман). Метрика "фона" определяется средней плотностью и давлением в "мире". Предположение об изменяющейся метрике нашей части мира нашло подтверждение в открытом Хабблом красном смещении.


November 16th, 2014

Многие исследователи считают, что физика не будет законченной, пока не сможет объяснить поведение пространства, времени и их происхождение.

«Представьте себе, однажды вы просыпаетесь и понимаете, что живете внутри компьютерной игры. Если это так, тогда все вокруг, весь трехмерный мир — это всего лишь иллюзия, информация, закодированная на двумерной поверхности» - Марк Ван Раамсдонк - физик, Университет Британской Колумбии, Ванкувер, Канада.

Это сделало бы нашу Вселенную с ее тремя пространственными измерениями, своего рода голограммой, источник которой находится в низших измерениях.

Этот «голографический принцип» довольно необычен для теоретической физики. Но Ван Раамсдонк является членом небольшой группы исследователей, которые считают, что это вполне нормально. Просто ни один из столпов современной физики: ни общая теория относительности, которая описывает гравитацию как искривление пространства и времени, ни квантовая механика, не могут объяснить существование пространства и времени. Даже , не может этого сделать.

Давайте рассмотрим эту теорию подробнее …

Ван Раамсдонк и его коллеги убеждены, что необходимо дать конкретное представление понятий пространства и времени, пусть даже такое во многом нелепое, как голография. Они утверждают, что радикальное переосмысление реальности является единственным способом объяснить, что происходит, когда бесконечно плотная сингулярность в центре черной дыры искажает пространство-время до неузнаваемости. Оно так же поможет объединить квантовую теорию и общую теорию относительности, а этого теоретики пытаются добиться уже не одно десятилетие.

«Все наши опыты свидетельствуют о том, что вместо двух полярных концепций реальности, должна быть найдена одна всеобъемлющая теория» - Абэй Аштекар - физик, Университет штата Пенсильвания, Юниверсити-Парк, штат Пенсильвания

Гравитация как термодинамика
Но ради чего все эти попытки? И как найти то самое «сердце» теоретической физики?

Ряд поразительных открытий, сделанных в начале 1970-х годов, натолкнули на мысль, что квантовая механика и гравитация тесно связаны с термодинамикой.

В 1974 году Стивен Хокинг из Кембриджского университета в Великобритании показал, что квантовые эффекты в космосе вокруг черной дыры могут привести к выбросу излучения высокой температуры. Другие физики быстро отметили, что это явление является довольно общим. Даже в совершенно пустом пространстве астронавт, испытывающий ускорение, будет ощущать вокруг себя тепло. Эффект слишком мал, чтобы его можно было заметить в случае с космическим кораблем, но само по себе предположение казалось фундаментальным. И если квантовая теория и общая теория относительности правильны (что подтверждается экспериментами), то излучение Хокинга действительно существует.

За этим последовало второе ключевое открытие. В стандартной термодинамике объект может излучать тепло только за счет уменьшения энтропии, меры количества квантовых состояний внутри него. То же самое и с черными дырами; еще до появления доклада Хокинга в 1974 году Джейкоб Бекенштейн, который в настоящее время работает в Еврейском университете в Иерусалиме, предположил, что черные дыры обладают энтропией. Но есть разница. В большинстве объектов энтропия пропорциональна числу атомов объекта, а значит и объему. Но энтропия черной дыры пропорциональна площади ее горизонта событий, границы, из которой даже свет не может вырваться. Как будто в этой поверхности закодирована информация о том, что внутри (прям как двумерные голограммы кодируют трехмерное изображение).

В 1995 году Тед Джекобсон, физик из Мэрилендского университета в Колледж-Парке, скомбинировал эти два открытия и предположил, что каждая точка в пространстве находится на крошечном «горизонте черной дыры», который также подчиняется пропорции энтропия-площадь. Даже уравнения Эйнштейна удовлетворяют этому условию (естественно, физик оперировал термодинамическими понятиями, а не пространством-временем).

«Возможно, это позволит нам узнать больше о происхождении гравитации», — говорит Якобсон. Законы термодинамики являются статистическими, поэтому его результат позволяет предположить, что гравитация – явление также статистическое (макроскопическое приближение к невидимым компонентам пространства-времени).

В 2010 году эта идея шагнула еще дальше. Эрик Верлинде, специалист по теории струн из университета Амстердама, предположил, что статистическая термодинамика пространственно-временных составляющих могла дать толчок закону Ньютона о гравитационном притяжении.

Сверхновые - звезды, блеск которых увеличивается на десятки звездных величин за сутки. В течение малого периода времени взрывающаяся сверхновая может быть ярче, чем все звезды ее родной галактики.
Существует два типа cверхновых: Тип I и Тип II. Считается, что Тип II является конечным этапом эволюции одиночной звезды с массой М*=10±3Мsun. Тип I связан, по-видимому, с двойной системой, в которой одна из звезд белый карлик, на который идет аккреция со второй звезды.

Гамма-всплески – выбросы гамма-излучения, связанные с самыми высокоэнергетическими взрывами. Изначальное гамма-излучение испускается в течение времени от десятка миллисекунд до нескольких минут, за ним следует послесвечение на более длинных волнах. Большая часть гамма-всплесков связана с образованием нейтронных звезд и черных дыр после взрывов сверхновых, самые короткие всплески возникают при столкновении двух нейтронных звезд.

В другой работе Тану Падманабан, космолог из Межвузовского центра астрономии и астрофизики в Пуне, показал, что уравнения Эйнштейна можно переписать в форме, идентичной законам термодинамики, как и многие другие альтернативные теории тяжести. В настоящее время Падманабан работает над обобщением термодинамического подхода, пытаясь объяснить происхождение и величину темной энергии, таинственной космической силы, ускоряющей расширение Вселенной.

Подобные идеи проверить эмпирически крайне сложно, но не невозможно. Чтобы понять, состоит ли пространство-время из отдельных компонентов, можно провести наблюдение за задержкой фотонов высоких энергий, путешествующих к Земле от далеких космических объектов, таких как сверхновые и γ-всплески.

В апреле Джованни Амелино-Камелия, исследователь квантовой гравитации из Римского Университета, и его коллеги обнаружили намеки именно на подобные задержки фотонов, идущих от γ-всплеска. Как говорит Амелино-Камелия, результаты не являются окончательными, но группа планирует расширить свои поиски, чтобы зафиксировать время движения нейтрино высоких энергий, создаваемых космическими событиями.

«Если теория не может быть проверена, то наука для меня не существует. Она превращается в религиозные убеждения, которые не представляют для меня никакого интереса»
- Джованни Амелино-Камелия - исследователь квантовой гравитации, Римский Университет

Другие физики концентрируются на лабораторных испытаниях. В 2012 году, например, исследователи из Венского университета и Имперского колледжа Лондона провели настольный эксперимент, в котором микроскопические зеркала перемещаются при помощи лазеров. Они утверждали, что пространство-время в Планковском масштабе приведет к изменению света, отраженного от зеркала.

Петлевая квантовая гравитация

Даже если термодинамический подход верен, он все равно ничего не говорит о фундаментальных составляющих пространства и времени. Если пространство-время представляет собой ткань, то каковы ее нити?

Один из возможных ответов вполне буквален. Теория петлевой квантовой гравитации, которую выдвинул в середине 1980-х Аштекар и его коллеги, описывает ткань пространства-времени как растущую паутину из нитей, которые несут информацию о квантованных площадях и объемах областей, через которые они проходят. Отдельные нити сети должны, в конечном итоге, образовывать петли. Отсюда и название теории. Правда, она не имеет ничего общего с гораздо более известной теорией струн. Последние движутся вокруг пространства-времени, тогда как нити и есть пространство-время, а информация, которую они несут, определяет форму пространственно-временной ткани вокруг них.

Петли – это квантовые объекты, однако, они также определяют минимальную единицу площади и, во многом, таким же образом, как и обычная квантовая механика определяют минимальную энергию электрона в атоме водорода. Попытайтесь вставить дополнительные нити меньшей площади, и они просто отсоединятся от остальной сети и не смогут больше связаться ни с чем.
Они как бы выпадают из пространства-времени.

Минимальная площадь хороша тем, что петлевая квантовая гравитация не может сжать бесконечное количество кривых в бесконечно малую точку. Это означает, что она не может привести к тем особенностям, когда уравнения Эйнштейна рушатся: в момент Большого Взрыва или в центре черных дыр.

Воспользовавшись этим фактом, в 2006 году Аштекар и его коллеги представили серию моделей, в которых повернули время вспять и продемонстрировали то, что было до Большого взрыва. По мере приближения к фундаментальному пределу размера, продиктованному петлевой квантовой гравитацией, сила отталкивания раскрыла и зафиксировала сингулярность открытой, превратив ее в туннель к космосу, предшествующему нашему.

В этом году Родольфо Гамбини из Республиканского Университета Уругвая в Монтевидео и Хорхе Пуйин из Университета Луизианы в Батон-Руж представили аналогичные модели, но уже для черной дыры. Если двигаться глубоко в сердце черной дыры, то можно обнаружить не сингулярность, а тонкий пространственно-временной туннель, ведущий в другую часть космоса.

Петлевая квантовая гравитация не является полноценной теорией, так как она не содержит никаких других сил. Кроме того, физикам еще предстоит показать, как «получилось» обычное пространство-время из информационной сети. Но Даниэле Орити, физик из Института гравитационной физики Макса Планка в Гольме, надеется найти вдохновение в работе ученых, представивших экзотические фазы материи, которая совершает переходы, описанные квантовой теорией поля. Орити и его коллеги ищут формулы для описания того, как Вселенная могла бы проходить аналогичные фазы от набора дискретных петель к плавному и непрерывному пространству-времени.

Причинный ряд
Разочарования заставили некоторых исследователей придерживаться минималистской программы, известной как теория причинного ряда. Основанная Рафаэлем Соркиным, теория постулирует, что строительные блоки пространства-времени – это простые математические точки, связанные либо с прошлым, либо с будущим.

Это «скелетное» представление причинности, которая утверждает, что более раннее событие может повлиять на более позднее, но не наоборот. В результате сеть как растущее дерево превращается в пространство-время.

«Пространство появляется из точки так же, как температура выходит из атома. Нет смысла говорить об одном атоме, значение заключено в их большом количестве»
- Рафаэль Соркинфизик, Институт Теоретической Физики «Периметр» в Ватерлоо, Канада

В конце 1980-х Соркин использовал эту структуру, чтобы представить число точек, которое должна включать Вселенная, и пришел к выводу, что они должны быть причиной малой внутренней энергии, которая ускоряет расширение Вселенной. Несколько лет спустя открытие темной энергии подтвердило его догадку. «Люди часто думают, что квантовая гравитация не может сделать проверяемых предсказаний, но здесь именно тот случай», — говорит Джо Хенсон, исследователь квантовой гравитации из Имперского колледжа в Лондоне. » Если значение темной энергии было бы больше или его не было бы совсем, тогда теория причинного ряда была бы исключена».

Причинная динамическая триангуляция
Едва ли найдутся доказательства, однако теория причинного ряда предложила несколько других возможностей, которые можно было бы проверить. Некоторые физики обнаружили, что гораздо удобнее использовать компьютерное моделирование. Идея, появившаяся в начале 1990-х, состоит в аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени, оказавшимися в бурлящем море квантовых флуктуаций, и наблюдении за тем, как эти кусочки спонтанно соединяются в более крупные структуры.

«Первые попытки аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени были неудачными. Строительные блоки пространства-времени были простыми гиперпирамидами, четырехмерные прототипы трехмерных тетраэдров, а предполагаемое соединение позволило им свободно комбинироваться. В результате получилась серия странных «вселенных», в которых было слишком много измерений (или слишком мало), часть из них существовала сама по себе, а часть разрушалась. Это была попытка показать то, что нас окружает. В конце концов, измерение времени не похоже на три измерения пространства. Мы не можем путешествовать назад и вперед во времени, поэтому визуализация была изменена с учетом причинности. Тогда мы обнаружили, что пространственно-временные кусочки начали собираться в четырехмерные вселенные со свойствами, подобными нашей»
- Рената Лолл физик, Университет Неймегена, Нидерланды

Интересно, что моделирование также намекает на то, что вскоре после Большого взрыва Вселенная прошла через младенческую фазу только с двумя измерениями: одно пространственное и одно временное. Это заключение было сделано независимо от попыток получить уравнения квантовой гравитации, и даже независимо от тех, кто полагает, что появление темной энергии является признаком того, что в нашей Вселенной появляется четвертое пространственное измерение.

Голография
Между тем, Ван Раамсдонк предложил совсем другое представление о появлении пространства-времени, основанное на голографическом принципе. Голограммоподобный принцип того, что у черных дыр вся энтропия находится на поверхности, был впервые представлен Хуаном Малдасеной, приверженцем теории струн из Института Передовых Исследований в Принстоне. Он опубликовал свою модель голографической Вселенной в 1998 году. В этой модели трехмерный «интерьер» Вселенной включал в себя струны и черные дыры, управляемые исключительно силой тяжести, в то время как ее двумерная граница имела элементарные частицы и поля, подчинявшиеся обычным квантовым законам, а не гравитации.

Гипотетические жители трехмерного пространства никогда бы не увидели эту границу, потому что она была бы бесконечно далеко. Но это никак не влияет на математику: все, что происходит в трехмерной Вселенной может быть одинаково хорошо описано уравнениями в случае двумерной границы, и наоборот.

В 2010 году Ван Раамсдонк объяснил запутывание квантовых частиц на границе. Это означает, что данные, полученные в одной части, неизбежно скажутся на другой. Он обнаружил, что если каждая частица запутывается между двух отдельных областей границы, она неуклонно движется к нулю, поэтому квантовая связь между ними исчезает, трехмерное пространство начинает постепенно делиться (как клетка) до тех пор, пока не порвется последняя связь.

Времени не существует? А ведь мы с вами еще обсуждали что такое и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Пространство и время

всеобщие формы существования материи (См. Материя). П. и в. не существуют вне материи и независимо от неё.

Пространственными характеристиками являются положения относительно др. тел (координаты тел), расстояния между ними, углы между различными пространственными направлениями (отдельные объекты характеризуются протяжённостью и формой, которые определяются расстояниями между частями объекта и их ориентацией). Временные характеристики - «моменты», в которые происходят явления, продолжительности (длительности) процессов. Отношения между этими пространственными и временными величинами называются метрическими. Существуют также и топологические характеристики П. и в. - «соприкосновение» различных объектов, число направлений. С чисто пространственными отношениями имеют дело лишь в том случае, когда можно отвлечься от свойств и движения тел и их частей: с чисто временными - в случае, когда можно отвлечься от многообразия сосуществующих объектов.

Однако в реальной действительности пространственные и временные отношения связаны друг с другом. Их непосредственное единство выступает в движении материи; простейшая форма движения - перемещение - характеризуется величинами, которые представляют собой различные отношения П. и в. (скорость, ускорение) и изучаются кинематикой (См. Кинематика). Современная физика обнаружила более глубокое единство П. и в. (см. Относительности теория), выражающееся в совместном закономерном изменении пространственно-временных характеристик систем в зависимости от движения последних, а также в зависимости этих характеристик от концентрации масс в окружающей среде.

По мере углубления знаний о материи и движении (См. Движение) углубляются и изменяются научные представления о П. и в. Поэтому понять физический смысл и значение вновь открываемых закономерностей П. и в. можно только путём установления их связей с общими закономерностями взаимодействия и движения материи.

Понятия П. и в. являются необходимой составной частью картины мира в целом, поэтому входят в предмет философии. Учение о П. и в. углубляется и развивается вместе с развитием естествознания (См. Естествознание) и прежде всего физики (См. Физика). Из остальных наук о природе значительную роль в прогрессе учения о П. и в. сыграла Астрономия и в особенности Космология .

Развитие физики, геометрии и астрономии в 20 в. подтвердило правильность положений диалектического материализма о П. и в. В свою очередь диалектико-материалистическая концепция П. и в. позволяет дать правильную интерпретацию современной физической теории П. и в., вскрыть неудовлетворительность как субъективистского ее понимания, так и попыток «развить» её, отрывая П. и в. от материи.

Пространственно-временные отношения подчиняются не только общим закономерностям, но и специфическим, характерным для объектов того или иного класса, поскольку эти отношения определяются структурой материального объекта и его внутренними взаимодействиями. Поэтому такие характеристики, как размеры объекта и его форма, Время жизни , ритмы процессов, типы симметрии, являются существенными параметрами объекта данного типа, зависящими также от условий, в которых он существует. Особенно специфичны пространственные и временные отношения в таких сложных развивающихся объектах, как организм или общество. В этом смысле можно говорить об индивидуальных П. и в. таких объектов (например, о биологическом или социальном времени).

Основные концепции пространства и времени. Важнейшие философские проблемы, относящиеся к П. и в., - это вопросы о сущности П. и в., об отношении этих форм бытия к материи, об объективности пространственно-временных отношений и закономерностей.

На протяжении почти всей истории естествознания и философии существовали 2 основные концепции П. и в. Одна из них идёт от древних атомистов - Демокрит а, Эпикур а, Лукреция (См. Лукреций), которые ввели понятие пустого пространства и рассматривали его как однородное (одинаковое во всех точках) и бесконечное (Эпикур полагал, что оно не изотропно, т. е. неодинаково по всем направлениям); понятие времени тогда было разработано крайне слабо и рассматривалось как субъективное ощущение действительности. В новое время в связи с разработкой основ динамики (См. Динамика) эту концепцию развил И. Ньютон , который очистил её от Антропоморфизм а. По Ньютону, П. и в. суть особые начала, существующие независимо от материи и друг от друга. Пространство само по себе (абсолютное пространство) есть пустое «вместилище тел», абсолютно неподвижное, непрерывное, однородное и изотропное, проницаемое - не воздействующее на материю и не подвергающееся её воздействиям, бесконечное; оно обладает 3 измерениями. От абсолютного пространства Ньютон отличал протяжённость тел - их основное свойство, благодаря которому они занимают определённые места в абсолютном пространстве, совпадают с этими местами. Протяжённость, по Ньютону, если говорить о простейших частицах (атомах), есть начальное, первичное свойство, не требующее объяснения. Абсолютное пространство вследствие неразличимости своих частей неизмеримо и непознаваемо. Положения тел и расстояния между ними можно определять только по отношению к др. телам. Др. словами, наука и практика имеют дело только с относительным пространством. Время в концепции Ньютона само по себе есть нечто абсолютное и ни от чего не зависящее, чистая длительность, как таковая, равномерно текущая от прошлого к будущему. Оно является пустым «вместилищем событий», которые могут его заполнять, но могут и не заполнять; ход событий не влияет на течение времени. Время универсально, одномерно, непрерывно, бесконечно, однородно (везде одинаково). От абсолютного времени, также неизмеримого, Ньютон отличал относительное время. Измерение времени осуществляется с помощью часов, т. е. движений, которые являются периодическими. П. и в. в концепции Ньютона независимы друг от друга. Независимость П. и в. проявляется прежде всего в том, что расстояние между 2 данными точками пространства и промежуток времени между 2 событиями сохраняют свои значения независимо друг от друга в любой системе отсчёта, а отношения этих величин (скорости тел) могут быть любыми.

Ньютон подверг критике идею Р. Декарт а о заполненном мировом пространстве, т. е. о тождестве протяжённой материи и пространства.

Концепция П. и в., разработанная Ньютоном, была господствующей в естествознании на протяжении 17-19 вв., т.к. она соответствовала науке того времени - евклидовой геометрии, классической механике и классической теории тяготения. Законы ньютоновой механики справедливы только в инерциальных системах отсчёта (См. Инерциальная система отсчёта). Эта выделенность инерциальных систем объяснялась тем, что они движутся поступательно, равномерно и прямолинейно именно по отношению к абсолютному П. и в. и наилучшим образом соответствуют последним.

Согласно ньютоновой теории тяготения, действия от одних частиц вещества к Другим передаются мгновенно через разделяющее их пустое пространство. Ньютонова концепция П. и в., т. о., соответствовала всей физической картине мира той эпохи, в частности представлению о материи как изначально протяжённой и по природе своей неизменной. Существенным противоречием концепции Ньютона было то, что абсолютное П. и в. оставались в ней непознаваемыми путём опыта. Согласно принципу относительности классической механики, все инерциальные системы отсчёта равноправны и невозможно отличить, движется ли система по отношению к абсолютному П. и в. или покоится. Это противоречие служило доводом для сторонников противоположной концепции П. и в., исходные положения которой восходят ещё к Аристотелю; это представление о П. и в. было разработано Г. Лейбниц ем, опиравшимся также на некоторые идеи Декарта. Особенность лейбницевой концепции П. и в. состоит в том, что в ней отвергается представление о П. и в. как о самостоятельных началах бытия, существующих наряду с материей и независимо от неё. По Лейбницу, пространство - это порядок взаимного расположения множества тел, существующих вне друг друга, время - порядок сменяющих друг друга явлений или состояний тел. При этом Лейбниц в дальнейшем включал в понятие порядка также и понятие относительной величины. Представление о протяжённости отдельного тела, рассматриваемого безотносительно к другим, по концепции Лейбница, не имеет смысла. Пространство есть отношение («порядок»), применимое лишь ко многим телам, к «ряду» тел. Можно говорить только об относительном размере данного тела в сравнении с размерами других тел. То же можно сказать и о длительности: понятие длительности применимо к отдельному явлению постольку, поскольку оно рассматривается как звено в единой цепи событий. Протяжённость любого объекта, по Лейбницу, не есть первичное свойство, а обусловлено силами, действующими внутри объекта; внутренние и внешние взаимодействия определяют и длительность состояния; что же касается самой природы времени как порядка сменяющихся явлений, то оно отражает их причинно-следственную связь. Логически концепция Лейбница связана со всей его философской системой в целом.

Однако лейбницева концепция П. и в. не играла существенной роли в естествознании 17-19 вв., т.к. она не могла дать ответа на вопросы, поставленные наукой той эпохи. Прежде всего воззрения Лейбница на пространство казались противоречащими существованию вакуума (только после открытия физического поля в 19 в. проблема вакуума предстала в новом свете); кроме того, они явно противоречили всеобщему убеждению в единственности и универсальности евклидовой геометрии; наконец, концепция Лейбница представлялась непримиримой с классической механикой, поскольку казалось, что признание чистой относительности движения не даёт объяснения преимущественной роли инерциальных систем отсчёта. Т. о., современное Лейбницу естествознание оказалось в противоречии с его концепцией П. и в., которая строилась на гораздо более широкой философской основе. Только два века спустя началось накопление научных фактов, показавших ограниченность господствовавших в то время представлений о П. и в.

Понятия пространства и времени в философии и естествознании 18-19 вв. Философы-материалисты 18-19 вв. решали проблему П. и в. в основном в духе концепции Ньютона или Лейбница, хотя, как правило, полностью не принимали какую-либо из них. Большинство философов-материалистов выступало против ньютоновского пустого пространства. Ещё Дж. Толанд указывал, что представление о пустоте связано со взглядом на материю как на инертную, бездеятельную. Таких же воззрений придерживался и Д. Дидро . Ближе к концепции Лейбница стоял Г. Гегель . В концепциях субъективных идеалистов и агностиков проблемы П. и в. сводились главным образом к вопросу об отношении П. и в. к сознанию, восприятию. Дж. Беркли отвергал ньютоновское абсолютное П. и в., но рассматривал пространственные и временные отношения субъективистски, как порядок восприятий; у него не было и речи об объективных геометрических и механических законах. Поэтому берклианская точка зрения не сыграла существенной роли в развитии научных представлений о П. и в. Иначе обстояло дело с воззрениями И. Кант а, который сначала примыкал к концепции Лейбница. Противоречие этих представлений и естественнонаучных взглядов того времени привело Канта к принятию ньютоновой концепции и к стремлению философски обосновать её. Главным здесь было объявление П. и в. априорными формами человеческого созерцания, т. е. обоснование их абсолютизации. Взгляды Канта на П. и в. нашли немало сторонников в конце 18 - 1-й половине 19 вв. Их несостоятельность была доказана лишь после создания и принятия неевклидовой геометрии (См. Неевклидовы геометрии), которая по существу противоречила ньютоновому пониманию пространства. Отвергнув его, Н. И. Лобачевский и Б. Риман утверждали, что геометрические свойства пространства, будучи наиболее общими физическими свойствами, определяются общей природой сил, формирующих тела.

Воззрения диалектического материализма на П. и в. были сформулированы Ф. Энгельсом. По Энгельсу, находиться в пространстве - значит быть в форме расположения одного возле другого, существовать во времени - значит быть в форме последовательности одного после другого. Энгельс подчёркивал, что «... обе эти формы существования материи без материи суть ничто, пустые представления, абстракции, существующие только в нашей голове» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 550).

Кризис механистического естествознания на рубеже 19-20 вв. привёл к возрождению на новой основе субъективистских взглядов на П. и в. Критикуя концепцию Ньютона и правильно подмечая её слабые стороны, Э. Мах снова развил взгляд на П. и в. как на «порядок восприятий», подчёркивая опытное происхождение аксиом геометрии. Но опыт понимался Махом субъективистски, поэтому и геометрия Евклида, и геометрии Лобачевского и Римана рассматривались им как различные способы описания одних и тех же пространственных соотношений. Критика субъективистских взглядов Маха на П. и в. была дана В. И. Лениным в книга «Материализм и эмпириокритицизм».

Развитие представлений о пространстве и времени в 20 в. В конце 19 - начале 20 вв. произошло глубокое изменение научных представлений о материи и, соответственно, радикальное изменение понятий П. и в. В физическую картину мира вошла концепция поля (см. Поля физические) как формы материальной связи между частицами вещества, как особой формы материи. Все тела, т. о., представляют собой системы заряженных частиц, связанных полем, передающим действия от одних частиц к другим с конечной скоростью - скоростью света. Полагали, что поле - это состояние Эфир а, абсолютно неподвижной среды, заполняющей мировое абсолютное пространство. Позже было установлено (Х. Лоренц и др.), что при движении тел с очень большими скоростями, близкими к скорости света, происходит изменение поля, приводящее к изменению пространственных и временных свойств тел; при этом Лоренц считал, что длина тел в направлении их движения сокращается, а ритм происходящих в них физических процессов замедляется, причём пространственные и временные величины изменяются согласованно.

Вначале казалось, что таким путём можно будет определить абсолютную скорость тела по отношению к эфиру, а следовательно, по отношению к абсолютному пространству. Однако вся совокупность опытов опровергла этот взгляд. Было установлено, что в любой инерциальной системе отсчёта все физические законы, включая законы электромагнитных (и вообще полевых) взаимодействий, одинаковы. Специальная теория относительности (см. Относительности теория) А. Эйнштейна, основанная на двух фундаментальных положениях - о предельности скорости света и равноправности инерциальных систем отсчёта, явилась новой физической теорией П. и в. Из неё следует, что пространственные и временные отношения - длина тела (вообще расстояние между двумя материальными точками) и длительность (а также ритм) происходящих в нём процессов - являются не абсолютными величинами, как утверждала ньютонова механика, а относительными. Частица (например, нуклон) может проявлять себя по отношению к медленно движущейся относительно неё частице как сферическая, а по отношению к налетающей на неё с очень большой скоростью частице - как сплющенный в направлении движения диск. Соответственно, время жизни медленно движущегося заряженного π-мезона составляет Пространство и время 10 -8 сек , а быстро движущегося (с околосветовой скоростью) - во много раз больше. Относительность пространственно-временных характеристик тел полностью подтверждена опытом. Отсюда следует, что представления об абсолютном П. и в. несостоятельны. П. и в. являются именно общими формами координации материальных явлений, а не самостоятельно существующими (независимо от материи) началами бытия. Теория относительности исключает представление о пустых П. и в., имеющих собственные размеры. Представление о пустом пространстве было отвергнуто в дальнейшем и в квантовой теории поля с его новым понятием вакуума (см. Вакуум физический). Дальнейшее развитие теории относительности (см. Тяготение) показало, что пространственно-временные отношения зависят также от концентрации масс. При переходе к космическим масштабам геометрия П.-в. не является евклидовой (или «плоской», т. е. не зависящей от размеров области П.-в.), а изменяется от одной области космоса к другой в зависимости от плотности масс в этих областях и их движения (см. Космология , где изложен также вопрос о конечности или бесконечности П. и в.). В масштабах метагалактики геометрия пространства изменяется со временем вследствие расширения метагалактики. Т. о., развитие физики и астрономии доказало несостоятельность как априоризма Канта, т. е. понимания П. и в. как априорных форм человеческого восприятия, природа которых неизменна и независима от материи, так и ньютоновой догматической концепции П. и в.

Связь П. и в. с материей выражается не только в зависимости законов П. и в. от общих закономерностей, определяющих взаимодействия материальных объектов. Она проявляется и в наличии характерного ритма существования материальных объектов и процессов - типичных для каждого класса объектов средних времён жизни и средних пространственных размеров.

Из изложенного следует, что П. и в. присущи весьма общие физические закономерности, относящиеся ко всем объектам и процессам. Это касается и проблем, связанных с топологическими свойствами П. и в. Проблема границы (соприкосновения) отдельных объектов и процессов непосредственно связана с поднимавшимся ещё в древности вопросом о конечной или бесконечной делимости П. и в., их дискретности или непрерывности. В античной философии этот вопрос решался чисто умозрительно. Высказывались, например, предположения о существовании «атомов» времени (Зенон). В науке 17-19 вв. идея атомизма П. и в. потеряла какое-либо значение. Ньютон считал, что П. и в. реально разделены до бесконечности. Этот вывод следовал из его концепции пустых П. и в., наименьшими элементами которых являются геометрическая точка и момент времени («мгновения» в буквально смысле слова). Лейбниц полагал, что хотя П. и в. делимы неограниченно, но реально не разделены на точки - в природе нет объектов и явлений, лишённых размера и длительности. Из представления о неограниченной делимости П. и в. следует, что и границы тел и явлений абсолютны. Представление о непрерывности П. и в. более укрепилось в 19 в. с открытием поля; в классическом понимании поле есть абсолютно непрерывный объект.

Проблема реальной делимости П. и в. была поставлена только в 20 в. в связи с открытием в квантовой механике неопределённостей соотношения (См. Неопределённостей соотношение), согласно которому для абсолютно точной локализации микрочастицы необходимы бесконечно большие импульсы, что физически не может быть осуществлено. Более того, современная физика элементарных частиц показывает, что при очень сильных воздействиях на частицу она вообще не сохраняется, а происходит даже множественное рождение частиц. В действительности не существует реальных физических условий, при которых можно было бы измерить точное значение напряжённостей поля в каждой точке. Т. о., в современной физике установлено, что невозможна не только реальная разделённость П. и в. на точки, но принципиально невозможно осуществить процесс их реального бесконечного разделения. Следовательно, геометрическое понятия точки, кривой, поверхности являются абстракциями, отражающими пространственные свойства материальных объектов лишь приближённо. В действительности объекты отделены друг от друга не абсолютно, а лишь относительно. То же справедливо и по отношению к моментам времени. Именно такой взгляд на «точечность» событий вытекает из т. н. теории нелокального поля (см. Нелокальная квантовая теория поля). Одновременно с идеей нелокальности взаимодействия разрабатывается гипотеза о квантовании П. и в., т. е. о существовании наименьших длины и длительности (см. Квантование пространства-времени). Сначала предполагали, что «квант» длины - 10 -13 см (порядка классического радиуса электрона или порядка «длины» сильного взаимодействия (См. Сильные взаимодействия)). Однако с помощью современных ускорителей заряженных частиц (См. Ускорители заряженных частиц) исследуются явления, связанные с длинами 10 -14 -10 -15 см; поэтому значения кванта длины стали отодвигать ко всё меньшим значениям (10 -17 , «длина» слабого взаимодействия (См. Слабые взаимодействия), и даже 10 -33 см ).

Решение вопроса о квантовании П. и в. тесно связано с проблемами структуры элементарных частиц (См. Элементарные частицы). Появились исследования, в которых вообще отрицается применимость к субмикроскопическому миру понятий П. и в. Однако понятия П. и в. не должны сводиться ни к метрическим, ни к топологическим отношениям известных типов.

Тесная взаимосвязь пространственно-временных свойств и природы взаимодействия объектов обнаруживается также и при анализе симметрии П. и в. Ещё в 1918 (Э. Нётер) было доказано, что однородности пространства соответствует закон сохранения импульса, однородности времени - закон сохранения энергии, изотропности пространства - закон сохранения момента количества движения. Т. о., типы симметрии П. и в. как общих форм координации объектов и процессов взаимосвязаны с важнейшими сохранения законами (См. Сохранения законы). Симметрия пространства при зеркальном отражении оказалась связанной с существенной характеристикой микрочастиц - с их Чётность ю.

Одной из важных проблем П. и в. является вопрос о направленности течения времени. В ньютоновой концепции это свойство времени считалось само собой разумеющимся и не нуждающимся в обосновании. У Лейбница необратимость течения времени связывалась с однозначной направленностью цепей причин и следствий. Современная физика конкретизировала и развила это обоснование, связав его с современным пониманием причинности (См. Причинность). По-видимому, направленность времени связана с такой интегральной характеристикой материальных процессов, как Развитие , являющееся принципиально необратимым.

К проблемам П. и в., также обсуждавшимся ещё в древности, относится и вопрос о числе измерений П. и в. В ньютоновой концепции это число считалось изначальным. Однако ещё Аристотель обосновывал трехмерность пространства числом возможных сечений (делений) тела. Интерес к этой проблеме возрос в 20 в. с развитием топологии (См. Топология). Л. Брауэр установил, что размерность пространства есть топологический инвариант - число, не изменяющееся при непрерывных и взаимно однозначных преобразованиях пространства. В ряде исследований была показана связь между числом измерений пространства и структурой электромагнитного поля (Г. Вейль), между трехмерностью пространства и спиральностью элементарных частиц. Всё это показало, что число измерений П. и в. неразрывно связано с материальной структурой окружающего нас мира.

Лит.: Энгельс Ф., Диалектика природы, Маркс К., Энгельс Ф., Соч., 2 изд., т. 20; его же, Анти-Дюринг, там же; Ленин В. И., Материализм и эмпириокритицизм, Полное собрание соч., 5 изд., т. 18; Эйнштейн А., Основы теории относительности, 2 изд., М. - Л., 1935; Ньютон И., Математические начала натуральной философии, М. - Л., 1936; Марков М. А., Гипероны и К-мезоны, М., 1958, § 34; Свидерский В. И., Пространство и время, М., 1958; Полемика Г. Лейбница и С. Кларка по вопросам философии и естествознания (1715-1716 гг.), [Л.], 1960; Фок В. А., Теория пространства, времени и тяготения, 2 изд., М., 1961; Штейнман Р. Я., Пространство и время, М., 1962; Грюнбаум А., Философские проблемы пространства и времени, пер. с англ., М., 1969; Мостепаненко А. М., Пространство и время в макро-, мега- и микромире, М., 1974; Jammer М., Concepts of space, Camb., 1954.











Сто лет назад Альберт Эйнштейн опубликовал общую теорию относительности - блестящую, элегантную теорию, которая пережила целый век и открыла единственный успешный путь к описанию пространства-времени (пространственно-временного континуума ).

Есть много различных моментов в теории, указывающих, что общая теория относительности - не последняя точка в истории о пространстве-времени. И в самом деле, пускай мне нравится ОТО как абстрактная теория, однако я пришел к мысли, что она, возможно, на целый век увела нас от пути познания истинной природы пространства и времени.

Я размышлял об устройстве пространства и времени немногим более сорока лет. В начале, будучи молодым физиком-теоретиком, я просто принимал эйнштейновскую математическую постановку задачи специальной и общей теории относительности, а так же занимался некоторой работой в квантовой теории поля, космологии и других областях, основываясь на ней.

Но около 35 лет назад, отчасти вдохновленный своим опытом в технических областях, я начал более детально исследовать фундаментальные вопросы теоретической науки, с чего и начался мой длинный путь выхода за рамки традиционных математических уравнений и использования вместо них вычислений и программ как основных моделей в науке. Вскоре после этого мне довелось выяснить , что даже очень простые программы могут демонстрировать очень сложное поведение, а затем, спустя годы, я обнаружил, что системы любого вида могут быть представлены в терминах этих программ.

Воодушевившись этим успехом, я стал размышлять, может ли это иметь отношение к важнейшему из научных вопросов - физической теории всего.

Во-первых, такой подход казался не слишком перспективным - хотя бы потому, что модели, которые я изучал (клеточные автоматы) , казалось, работали так, что это полностью противоречило всему тому, что я знал из физики. Но где-то в 88-м году - в то время, когда вышла первая версия Mathematica , я начал понимать, что если бы я изменил свои представления о пространстве и времени, возможно, это к чему то бы меня привело.

Простая теория всего?

Из статьи вовсе не кажется очевидным , что теория всего для нашей вселенной должна быть проста. И в самом деле, история физики привносит дополнительные сомнения, ведь чем больше мы узнаем, тем вещи оказываются более сложными, во всяком случае, в терминах математического аппарата, вводимого ими. Но, как отмечалось, к примеру, богословами много веков назад, есть очевидная черта нашей вселенной - в ней есть порядок. Частицы нашей вселенной не просто подчиняются каким-то своим законам, но и подчиняются определённому набору общих законов.

Но насколько простой может быть теория всего для нашей Вселенной? Скажем, мы можем представить её в виде программы, допустим, в Wolfram Language . Насколько большой будет эта программа? Будет ли оно сравнима с длиной человеческого генома, или больше походить по объему на операционную систему? Или же она будет значительно меньше?

Если бы я отвечал на этот вопрос до того, как начал исследовать вычислительную вселенную простых программ, я бы, скорее всего, ответил, что подобная программа должна быть чем то весьма сложным. Однако мне удалось обнаружить, что в вычислительной вселенной даже чрезвычайно простые программы могут демонстрировать сколь угодно сложное поведение (этот факт отражен в общем принципе вычислительной эквивалентности).

Структура данных Вселенной

Но какой должна быть такая программа? Ясно одно : если программа и вправду может быть чрезвычайно простой, то она будет слишком мала для того, чтобы в явной форме кодировать некоторые очевидные особенности нашей Вселенной, такие как массы частиц, разного рода симметрию, или даже пространственную размерность. Все эти вещи должны появляться каким-то образом из чего-то более низкоуровневого и фундаментального.

Но если поведение вселенной определяются простой программой, то какова структура данных, с которыми эта программа работает? Сперва я предположил, что это должно быть нечто простое для описания, как, к примеру, структура клеток, которая появляется в клеточном автомате. Но даже если подобная структура хорошо работает для описания моделей различных вещей , представляется, что она должна быть весьма неправдоподобной для фундаментальных физических моделей. Да, можно найти такие правила, что будут демонстрировать поведение , которое в большом масштабе не будет показывать очевидное свойства структуры. Однако если физика действительно может описываться некоторой простой моделью, то представляется, что столь жёсткая структура для пространства не может быть в неё включена, и что свойства пространства должны из чего-то проистекать.

Так какова альтернатива? Нам потребуется более низкоуровневое понятие, чем пространство, из которого оное и будет рождаться. Также нам потребуется базовая структура данных, которая будет максимально гибкой. Я размышлял об этом много лет, изучая самые разнообразные вычислительные и математические формальные системы. Но в конце концов я понял, что по сути все, с чем я сталкивался, может быть представлено одним способом - с помощью сетей.

Пространство как граф

Так может ли пространство состоять из чего-то подобного ? В классической физике и ОТО пространство не представляется как состоящее из чего бы то ни было. Оно представляется в виде некоторой математической конструкции, которая служит чем-то вроде сцены, на которой имеется непрерывный диапазон возможных положений, занимаемых разными объектами.

Однако можем ли мы точно сказать, что пространство является непрерывным? Когда квантовая механика зарождалась, была популярна идея о том, что пространство, как и всё остальное, квантуется. Но было не ясно, как эту идею можно сопрячь со СТО, собственно, не было и явных доказательств дискретности пространства. Когда я начал заниматься физикой в семидесятых, обсуждение дискретности пространства сошло на нет, плюс экспериментально было доказано, что в масштабах до 10 -18 м (1/1000 радиуса протона, или аттометр) дискретности не наблюдается. Спустя 40 лет и десятки миллиардов долларов, потраченные на ускорители частиц, в масштабах до 10 -22 м (или 100 йоктометров) дискретность пространства так и не обнаружили.

Однако есть мнение, что она должна проявиться в масштабах около планковской длины - 10 -34 метра. Но когда люди размышляют об этом , скажем, в контексте спиновых сетей, петлевой гравитации или чего бы ты ни было, то они склонны предполагать, что всё, что там происходит, тесно связано с формализмами и понятиями квантовой механики.

Но что, если пространство - вероятно, в планковских масштабах - есть лишь старый добрый граф, лишённый квантовых свойств? Звучит не особо впечатляюще, однако для задания подобного графа требуется значительно меньше информации - достаточно просто сказать, какие узлы с какими соединены.

Но как подобное может порождать пространство? Прежде всего, откуда на больших масштабах возникает видимая непрерывность пространства? На самом деле, всё очень даже просто: это может быть следствием большого количество узлов и связей. Немного напоминает то, что происходит в жидкостях - скажем, в воде. В малых масштабах мы можем наблюдать молекулы, мечущиеся в тепловом движении. Однако масштабный эффект заставляет все эти молекулы порождать то, что мы воспринимаем как непрерывную жидкость.

Так получилось, что в середине 80-х я много времени уделял изучению этого феномена - это было частью моей работы, в которой я разбирался в природе кажущейся случайности турбулентных потоков жидкости . В частности, мне удалось показать, что если представить молекулы как клетки клеточного автомата, то их крупномасштабное поведение будет точно описываться дифференциальными уравнениями для потоков жидкости.

И потому, когда я начал размышлять о возможности существования подструктуры пространства, которое можно представить в виде сети, мне подумалось, что здесь можно использовать те же методы, и что это может свести уравнения ОТО Эйнштейна к другим, существенно более низкоуровневым.

Может быть, нет ничего, кроме пространства

Хорошо. Допустим, пространство есть сеть. Но что можно сказать обо всех вещах, располагаемых в пространстве? Что можно сказать об электронах, кварках, протонах и прочем? Стандартные физические представления говорят о том, что пространство есть сцена, на которой располагаются частицы, струны или что бы то ни было. Однако подобное представление становится весьма сложным. Но есть и более простой вариант: возможно, всё в нашей вселенной состоит из пространства.

В последние годы своей жизни Эйнштейн был весьма увлечен этой идеей . Он полагал, что, быть может, такие частицы, как электроны, можно рассматривать как нечто вроде черных дыр, что состоят из одного лишь пространства. Однако, опираясь лишь на формализм ОТО, Эйнштейн не смог развить эту идею, в результате чего она была заброшена.

И, так уж было, что за сотню лет до этого в умах некоторых людей жили подобные идеи. Это были времена до СТО, когда люди думали, что пространство заполнено средой, подобной жидкости - эфиром (по иронии судьбы в настоящее время мы вернулись к модели заполненного пространства - полем Хиггса , квантовыми флуктуациями в вакууме и прочим). Между тем, было понятно, что существуют различные типы атомов, соответствующие различным химическим элементам. И было выдвинуто предположение (в частности, Кельвином), что разным атомам можно сопоставить различные узлы эфира .

Это интересная идея, хоть и неправильная. Но, представляя пространство как сеть, можно рассмотреть схожую идею: возможно, частицы соответствуют определенным структурам сети . Быть может, всё сущее во вселенной есть сеть, а материи соответствуют какие-то структуры этой сети. Подобные вещи легко можно обнаружить на поле клеточного автомата. Даже если каждая клетка подчиняется некоторым простым правилам, в системе появляются определенные структуры со своими свойствами - прямо как частицы с физикой взаимодействия друг с другом.

То, как всё это может реализовываться на сетях - отдельная и очень большая тема. Однако сперва нам стоит обсудить одну очень важную вещь - время.

Что есть время?

В 19-ом веке были понятия пространства и времени. Оба описывались координатами, а с помощью некоторых математических формализмов появлялись схожим путем. Однако мысль о том, что пространство и время в некотором роде есть одно и то же, не была в ходу. Но потом появился Эйнштейн с ОТО, и люди начали говорить о пространстве-времени , в котором пространство и время есть грани некоего единого понятия.

Оно вносит множество смыслов в СТО, в которой, к примеру, перемещение с переменной скоростью есть суть вращение в четырехмерном пространстве-времени. И весь этот век физики полагали пространство-время некоей сущностью, в которой пространство и время не имеют фундаментальных различий.

Но теперь все становится немного сложнее. Ведь может быть много мест в сети, где можно применить подобное правило. Так что определяет порядок обработки каждого фрагмента?

По сути, каждое возможное упорядочение соответствует своему временному потоку. И можно было бы вообразить теорию, в которой все потоки имеют место быть, и наша вселенная имеет множественную историю .

Но мы можем обойтись и без этой гипотезы. Вместо этого, вполне возможно, существует лишь одна нить времени - и это хорошо соотносится с тем, что мы знаем о мире, с нашим опытом. И чтобы понять это, нам следует сделать нечто наподобие того, что сделал Эйнштейн, формулируя СТО: нам следует ввести более реалистичную модель того, чем может являться наблюдатель.

Излишне говорить, что какой-либо реальный наблюдатель должен иметь возможность существовать в нашей вселенной. Таким образом, если вселенная представляет собой сеть, то наблюдатель должен быть некоей частью этой сети. Вспомним теперь о постоянных небольших изменениях, которые происходят в сети. Чтобы знать, что подобное изменение (обновление) произошло, наблюдатель и сам должен быть изменен (обновлен).

И тут вещи приобретают интересный оборот. Если сеть ведет себя как неискаженное в пространстве большей размерности d -мерное пространство, то число узлов всегда будет около r d . Но если поведение подобно искривленному пространству (как в ОТО), то будет иметь место поправочный член, пропорциональный такому математическому объекту, как тензор Риччи . И это весьма интересно, ведь тензор Риччи как раз и возникает в уравнениях Эйнштейна.

Тут много математических сложностей. Следует рассмотреть кратчайшие пути - геодезические линии сети. Следует понять, как сделать что бы то ни было не только в пространстве, но и на сети с течением времени. Так же следует понять то, до каких масштабов проявляются свойства сети.

При выводе математических результатов важно иметь возможность получать разного рода средние значения. По сути, это подобно выведению уравнений для жидкости из динамики молекул: нужно иметь возможность принимать среднее из некоторого диапазона случайных значений в низкоуровневых взаимодействиях.

Но хорошая новость заключается в том, что существует необъятное количество систем, построенных даже на чрезвычайно простых правилах, которые подобны цифрам числа пи , то есть для любых прикладных целей являются достаточно случайными . Получается, что даже если особенности причинной сети полностью определены для того, кто знает исходное состояние сети, то большая часть этих особенностей будут являться, по сути, случайными.

Вот что имеем в итоге. Если ввести предположение об эффективной микроскопической случайности и предположить, что поведение системы в целом не приводит к изменению во всех ограничивающих размерностях, то из этого следует, что масштабное поведение системы удовлетворяет уравнениям Эйнштейна !

Полагаю, это очень интересно. Уравнения Эйнштейна можно получить практически из ничего. Это означает, что эти простые сети воспроизводят черты гравитации, которые мы знаем из современной физики.

Есть ряд деталей, которые не подходят под формат этой статьи. Многие из них я озвучивал довольно давно в NKS , особенно в заметках в конце.

Некоторые из вещей, возможно, стоит упомянуть. Во-первых, стоит отметить, что эти базисные сети не только представляются в обычном непрерывно определенном пространстве, но и не определяют такие топологические понятия, как внутри и снаружи. Все эти понятия являются следствием и выводятся.

Когда дело доходит до вывода уравнений Эйнштейна, тензоры Риччи рождаются из геодезических линий на сети вместе с ростом сфер, которые берут начало из каждой точки на геодезической линии.

Полученные уравнения Эйнштейна являются уравнениями Эйнштейна для вакуума. Но как и в случае с гравитационными волнами, можно эффективно отделить особенности пространства, связанные с материей, а затем получить полные уравнения Эйнштейна в терминах материи-энергии-импульса.

Когда я пишу это, то понимаю, насколько легко скатываюсь к «языку физиков» (вероятно, это связано с тем, что я занимался физикой в молодости...). Но достаточно просто сказать, что на высоком уровне появляется захватывающая вещь, которая заключается в том, что из простой идеи о сетях и причинно-следственно инвариантных правил замены можно вывести уравнения ОТО. Сделав удивительно мало, мы получаем яркую звезду физики 20-го века: общую теорию относительности.

Частицы, квантовая механика и прочее

Весьма здорово - иметь возможность вывести ОТО. Но на этом физика не заканчивается. Другой очень важной её частью является квантовая механика . Боюсь, я не смогу в рамках этой статьи подробно развернуть эту тему, но, по-видимому, такие частицы, как электроны, кварки или бозоны Хиггса должны представляться в виде некоторых особых областей сети. В качественном смысле они могут не сильно отличаться от «эфирных узлов» Кельвина.

Но тогда их поведение должно следовать правилам, которые мы знаем из квантовой механики - или, если более конкретно - из квантовой теории поля. Ключевой особенностью квантовой механики является то, что она может быть сформулирована в терминах множественных поведений, каждое из которых связано с определенной квантовой амплитудой. Я не до конца со всем этим разобрался, однако есть намек на то, что нечто подобное происходит, если смотреть на эволюцию сети с различными возможными последовательностями низкоуровневых замен.

Моя сетевая модель, говоря строго, не имеет никаких квантовых амплитуд. Она больше похожа (но не в точности) на классическую, по сути, вероятностную модель. И в течение полувека люди считали, что с подобными моделями сопряжены практически нерешаемые проблемы. Ведь есть такая теорема Белла, в которой говориться, что если нет мгновенных нелокальных распространений информации, то не найдется и такой модели «скрытых переменных», что сможет воспроизвести квантово-механические результаты, наблюдаемые экспериментально.

Но есть принципиальные замечания. Вполне себе ясно, что означает нелокальность в обычном пространстве некоторой размерности. Но что можно сказать в контексте сетей? Тут всё по-другому. Потому что все определяется одними лишь связями. И хоть сеть и может в больших масштабах представляться трехмерной, остаётся возможность, что есть некие «нити», соединяющие некоторые области, которые без оных были бы отделены друг от друга. И мне не даёт покоя одна мысль - есть основания полагать, что эти нити могут генерироваться подобными частицам структурами, распространяющимися в сети.

В поисках вселенной

Хорошо, получается, что некоторые модели на основе сетей могут воспроизвести модели современной физики. Но с чего стоит начать поиск модели, в точности воспроизводящей нашу вселенную?

Первая мысль - начать с существующей физики и попытаться адаптировать инженерно-прикладные правила так, чтобы воспроизвести её. Но единственный ли это путь? А что если просто начать перечислять все возможные правила, ища среди них те, что будут описывать нашу вселенную?

Не начав изучение вычислительной вселенной простейших программ, я бы подумал, что это безумная затея: правила нашей вселенной никак не могут быть достаточно простыми для того, чтобы их можно было бы найти простым перечислением. Но увидев, что творится в вычислительной вселенной и увидев некоторые другие примеры, в которых потрясающие вещи были найдены одним лишь перебором, я понял, что ошибаюсь.

Но что будет, если кто-то действительно начнет осуществлять подобный поиск ? Вот подборка сетей, полученных после довольно небольшого числа шагов, используя все возможные правила определенного, весьма простого типа:

Некоторые из этих сетей явно не соответствуют нашей вселенной. Они просто замирали спустя несколько итераций, то есть время в них, по сути, останавливалось. Или структура их пространства была слишком простой. Или у них было бесконечное число измерений. Или какие-то другие проблемы.

Здорово, что с такой удивительной быстротой мы можем найти те правила, которые явно не соответствуют нашей вселенной. А сказать то, что именно этот объект - наша вселенная, является значительно более сложной задачей. Потому что даже если смоделировать большое количество шагов, то невероятно сложно будет показать то, что поведение этой системы демонстрирует то же самое, что говорят нам физические законы о ранних моментах жизни вселенной.

Хотя есть ряд обнадеживающих вещей. Например, эти вселенные могут рождаться с фактически бесконечным числом измерений, а затем постепенно сжиматься до конечного числа измерений, потенциально устраняя необходимость в явной инфляции в ранней Вселенной.

А если рассуждать на более высоком уровне, то следует помнить, что если использовать весьма простые модели, то будет иметь место большое расстояние между «соседними моделями», так что, скорее всего, эти модели будут либо точно воспроизводить известные физические построения, либо будут далеки от истины.

В конце концов, нужно воспроизвести не только правила, но и начальное состояние вселенной. И как только мы узнаем его, то мы принципиально сможем узнать точную эволюцию вселенной. Так означает ли это, что можно было бы сразу узнать все о вселенной? Однозначно нет. Из-за явления, которое я называю «вычислительной несводимостью» , и которое подразумевает, что если знать правила и начальное состояние для системы, она по-прежнему может требовать неприводимое количество вычислительной работы для прослеживания каждого шага системы в выяснения того, что она делает.

Тем не менее, существует вероятность, что кто-то сможет найти простое правило и начальное состояние, сказав: "Смотрите-ка, это наша вселенная! " Мы нашли бы нашу вселенную в пространстве всех возможных вселенных.

Конечно, это было бы знаменательным днём для науки.

Но возникло бы множество других вопросов. Почему именно это правило, а не другое? И почему наша Вселенная должна иметь правило, которое появляется достаточно рано в нашем списке всех возможных вселенных, и которое мы можем найти простым перечислением?

Можно было бы подумать, что именно особенности нашей вселенной и тот факт, что мы в ней находимся, заставят нас сформировать правила перечисления так, что вселенная появится достаточно рано. Но в настоящее время я полагаю, что всё должно быть значительно более экстравагантно, как, например, в случае с наблюдателем во вселенной - все из большого класса нетривиальных возможных правил для вселенных в действительности эквивалентны, потому можно выбрать любое из них и получить точно такие же результаты, просто по-другому.

Ок, покажите мне Вселенную

Но всё это лишь догадки. И пока мы и в самом деле не найдем кандидата на правило нашей вселенной, вероятно, на обсуждение этих вещей не стоит тратить много времени.

Так, хорошо. Какова наша текущая позиция во всем этом? Большую часть из того, что сейчас обсуждалось, я понял где-то в 99-ом - за несколько лет до окончания A New Kind of Science . И хоть я и писал на простом языке, а не в формате статьи по физике, мне удалось покрыть основные моменты этой темы в девятой главе книги, добавив некоторые технические детали в примечаниях в конце.

Но после того, как в 2002 году книга была закончена, я снова начал работать над физическими проблемами . Будет забавным сказать, что в моём подвале стоял компьютер, который искал фундаментальную физическую теорию. Но вот что на самом деле он делал: перечислял возможные правила различных типов и пытался обнаружить соответствие их поведения определенным критериям, которые могли бы сделать их правдоподобными в качестве моделей физики.

Я весьма скрупулёзно проделывал это работу, черпая идеи из простых случаев, последовательно продвигаясь к более реалистичным. Было много технических вопросов. Как представлять большие эфолюционирующие последовательности графов. Или как быстро распознавать слабоуловимые закономерности, которые показывают, что правило не соответствует нашей вселенной.

Работа разрослась на тысячи страниц, если её представлять в печатной форме, постепенно приближая к пониманию основ того, что могут делать системы, основанные на сетях.

В некотором смысле это было чем-то вроде хобби, которым я занимался параллельно с текучкой по управлению компанией и ее технологическим развитием . И был еще один отвлекающий фактор. В течение многих лет я занимался проблемой вычислительных знаний и построением движка, который мог бы всесторонне их реализовывать. И по результатам моей работы над A New Kind of Science я убедился, что это возможно, и что сейчас подходящее время для реализации этого.

К 2005 году стало ясно, что это действительно возможно реализовать, и потому я решил посвятить себя этому направлению. В результате получилась Wolfram|Alpha . И как только Wolfram|Alpha была запущена, то стало ясно, что можно сделать значительно большее - и я посвятил своё, пожалуй, наиболее продуктивное десятилетие на создание огромной системы из идей и технологий, которая дала возможность реализовать Wolfram Language в его нынешнем виде, а так же множество других вещей.

Заниматься физикой или нет - вот в чем вопрос

Но в течение этого десятилетия я не занимался физикой. И когда сейчас я смотрю на файловую систему на своем компьютере, я вижу большое количество ноутбуков с материалами по физике, сгруппированные с полученными мною результатами, и все это оставалось брошенным и нетронутым с начала 2005 года.

Должен ли я вернуться к вопросам физики? Я определенно хочу этого. Хотя есть и другие вещи, которые я хотел бы реализовать.

Я провел большую часть своей жизни, работая над очень большими проектами. И я упорно трудился, планируя то, что собираюсь сделать, пытаясь их распланировать на ближайшее десятилетие. Иногда я откладывал проекты, потому что существующие на тот момент технологии или инфраструктура были ещё не готовы к ним. Но как только я приступал к работе над проектом, я давал себе обещание найти способ его успешно завершить, даже если для его реализации потребуется много лет напряженной работы.

Однако поиск фундаментальной физической теории, пожалуй, несколько отличается от проектов, над которыми мне приходилось работать раньше. В некотором смысле критерии его успеха гораздо жестче: он или решает проблему и находит теорию, или нет. Да, можно было бы найти множество интересных абстрактных понятий из формирующийся теории (как в теории струн). И вполне вероятно, что такое исследование даст интересные побочные результаты.

Но в отличие от создания технологий или исследования научных областей, формулирование содержания этого проекта вне нашего контроля. Его содержание определяется нашей вселенной. И, вполне возможно, я просто ошибаюсь в предположениях о том, как работает наша вселенная. Или, быть может, что я прав, но есть практически непреодолимый барьер из-за вычислительной несводимости, который лишает нас возможностей познать эту сферу.

Кто-то может сказать, что есть вероятность того, что мы найдем некоторую вселенную, которая будет походить на нашу, но мы так никогда и не узнаем, наша ли она в действительности. Я, на самом деле, не особо беспокоюсь об этом. Я думаю, что есть достаточное количество аномалий в существующей физике, приписываемых таким вещам, как темная материя, объяснение которых даст нам полную уверенность в том, что мы нашли верную теорию. Будет здорово, если можно будет сделать предположение и быстро проверить его. Но к тому времени, как мы выведем все, казалось бы, произвольные массы частиц, и другие известные особенности физики, можно будет быть уверенным, что мы имеем дело с верной теорией.

Было занятно в течение многих лет спрашивать у своих друзей, должен ли я заниматься фундаментальными вопросами физики. И получал я три совершенно разных типа ответов.

Первый - простой: "Ты должен заниматься этим! " Они говорили, что проект является самым увлекательным и важным из тех, что можно себе вообразить, и не могут понять, зачем ждать ещё хоть один лишний день, прежде чем к нему приступить.

Второй тип ответов: "Зачем тебе этим заниматься? " Затем они говорят нечто вроде «Почему бы не решить проблему искусственного интеллекта, или молекулярной инженерии, биологического бессмертия, или, по крайней мере, не построить огромную многомиллиардную компанию? Зачем заниматься чем-то столь абстрактным и теоретическим, когда можно сделать что-то насущное и изменить тем самым мир?»

А есть третий тип ответов - весьма ожидаемый, если иметь в виду историю науки. В основном он исходит от моих друзей-физиков, и это некая комбинация из "Не трать своё время на это! " и "Пожалуйста, не надо этим заниматься ".

Дело в том, что нынешний подход к фундаментальной физике, основанный на теории квантового поля, насчитывает почти 90 лет. Он имел ряд успехов, однако не привел нас к фундаментальной физической теории. Но для большинства современных физиков нынешний подход и есть суть сама физика. И когда они слышат о том, над чем я работаю, им это кажется чем-то столь незнакомым, будто это на самом деле и не физика.

И некоторые из моих друзей прямо так и говорят: "Я надеюсь, что у тебя ничего не получится, потому что тогда все, над чем я работал, пойдет коту под хвост ". Ну, да, многое из сделанного окажется бессмысленным. Но вы всегда сталкиваетесь с этим риском, когда занимаетесь проектом, в котором природа решает что верно, а что нет. Но я должен сказать, что даже если можно будет найти по-настоящему фундаментальную физическую теорию, то останется ещё очень большое поле для работы квантовой теории поля, к примеру - объяснение различных эффектов на масштабах, с которыми мы работаем в настоящее время на ускорителях частиц.

Что требуется?

Так, хорошо, если я запущу проект по поиску фундаментальной физической теории, то что мне следует делать? Это сложный проект, которому потребуюсь не только я, но также и разнородная группа талантливых людей.

Будет ли он в конечном счете работать - не знаю, но думаю, что будет довольно интересно за ним наблюдать, и я планирую представить его в прозрачном формате, сделав его максимально доступным и познавательным (конечно, это будет ободряющим контрастом с тем режимом отшельника, в котором я работал над A New Kind of Science в течение десяти лет).

Безусловно, я не могу знать, насколько сложен этот проект, и принесет ли он вообще результаты. В конечном счете это зависит от того, какова есть на самом деле наша вселенная. Но, основываясь на том, что я сделал десять лет назад, у меня есть четкий план относительно того, с чего начать и каких людей свести вместе в рамках одной команды.

Тут потребуются как хорошие учёные, так и прикладники/инженеры. Потребуется проделать много работы в области разработки алгоритмов эволюции сетей и их анализа. Я уверен, что тут потребуется теория графов, современная геометрия, теория групп и, возможно, некоторые другие разделы абстрактной алгебры. И я не удивлюсь, если в итоге будут задействовано большое количество других областей математики и теоретической информатики.

Тут потребуется сложная и серьёзная физика, с понимаем основ квантовой теории поля, теории струн и, возможно, таких разделов, как спиновые сети. Также, вероятно, потребуются методы статистической физики и её современных теоретических основ. Потребуется понимание общей теории относительности и космологии. И, если дела идут хорошо, потребуется работа над большим количеством разнообразных физических экспериментов, а также их интерпретация.

Будут и технические проблемы - понять, к примеру, то, как проводить огромную вычислительную работу по сетям и визуализировать получаемые результаты. Но я подозреваю, что самые большие проблемы будут в строительстве здания новой теории и понимании того, что необходимо для изучения различных видов сетевых систем, которые я хочу исследовать. Будет не лишней поддержка из существующих ныне областей. Но, в конце концов, подозреваю, потребуется построение существенно новой интеллектуальной структуры, которая не будет похожа ни на что из того, что имеется сейчас.

Но пришло ли время?

Подходящее ли сейчас время для реализации подобного проекта? Может быть, следует подождать, пока компьютеры получат больше вычислительных возможностей. Или когда некоторые области математики продвинутся дальше. Или пока не будут получены ответы на еще несколько вопросов из физики.

Я не уверен. Но я и не вижу никаких непреодолимых препятствий, а лишь то, что на этот проект потребуются усилия и ресурсы. И кто знает: может быть, это окажется проще, чем мы думаем, и мы, оглядываясь назад, будем задаваться вопросом - почему этого никто не сделал ранее.

Одним из ключевых моментов, который привел к общей теории относительности 100 лет назад, заключался в том, что пятый постулат Евклида («параллельные линии никогда не пересекаются») может и не выполняться в реальной вселенной, давая возможность существования искривленного пространства. Но если мои подозрения о космосе и вселенной верны, то это означает, что на самом деле есть и более фундаментальная проблема в основаниях Евклида - в самых первых его определениях. Ведь если существует дискретная подпространственная сеть, то предположения Евклида о точках и линиях, которые могут занимать любые пространственные положения, попросту не верны.

  • новый вид науки
  • a new kind of science
  • nks
  • Добавить метки