Болезни Военный билет Призыв

Аналитическое сглаживание временного ряда. Уравнение тренда. Методика изучения и показатели колеблемости

Линейное уравнение тренда имеет вид y = at + b.

Параметры уравнений функции тренда находят с помощью теории корреляции методом наименьших квадратов.

1.Метод наименьших квадратов.
Метод наименьших квадратов МНК), является одним из способов противостоять ошибкам измерений.(Как в Физике погрешность отклонений)
Этот метод как правило используют для нахождения параметров уравнений (Линий, гипербол парабол и т.д.)
Этот способ заключается в минимизации суммы квадратов отклонений.
Смысл МНК можно выразить через вот этот график

2. Анализ точности определения оценок параметров уравнения тренда(по таблице стьюдента находим ТТабл и делаем интервальный прогноз,т.е. выявляем реднеквадратическую ошибку)

3.Проверка гипотез относительно коэффициентов линейного уравнения тренда(статистика критерий стьюдента,фишера)

Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
Проверка наличия гетероскедастичности .
1) Методом графического анализа остатков .
В этом случае по оси абсцисс откладываются значения объясняющей переменной X, а по оси ординат либо отклонения e i , либо их квадраты e 2 i .
Если имеется определенная связь между отклонениями, то гетероскедастичность имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии гетероскедастичности.
2) При помощи теста ранговой корреляции Спирмена.
Коэффициент ранговой корреляции Спирмена.

36. Методы измерения устойчивости тенденций динамики (коэффициент рангов Спирмена).

Понятие «устойчивость» используется в весьма различных смыслах. По отношению кстатистическому изучению динамики мы рассмотрим два аспекта этого понятия: 1) устойчивостькак категория, противоположная колеблемости; 2) устойчивость направленности изменений, т.е. устойчивость тенденции.

Устойчивость во втором смысле характеризует не сами по себе уровни, а процесс ихнаправленного изменения. Можно узнать, например, насколько устойчив процесс сокращенияудельных затрат ресурсов на производство единицы продукции, является ли устойчивойтенденция снижения детской смертности и т. д. С этой точки зрения полной устойчивостьюнаправленного изменения уровней динамического ряда следует считать такое изменение, впроцессе которого каждый следующий уровень либо выше всех предшествующих (устойчивыйрост), либо ниже всех предшествующих (устойчивое снижение). Всякое нарушение строгоранжированной последовательности уровней свидетельствует о неполной устойчивостиизменений.


Из определения понятия устойчивости тенденции вытекает и метод построения ее показателя.В качестве показателя устойчивости можно использовать коэффициент корреляции рангов Ч.Спирмэна (Spearman) - rx.

где п - число уровней;

I - разность рангов уровней и номеров периодов времени.

При полном совпадении рангов уровней, начиная с наименьшего, и номеров периодов (моментов)времени по их хронологическому порядку коэффициент корреляции рангов равен +1. Этозначение соответствует случаю полной устойчивости возрастания уровней. При полнойпротивоположности рангов уровней рангам лет коэффициент Спирмэна равен -1, что означаетполную устойчивость процесса сокращения уровней. При хаотическом чередовании ранговуровней коэффициент близок к нулю, это означает неустойчивость какой-либо тенденции.

Отрицательное значение rx указывает на наличие тенденции снижения уровней, причемустойчивость этой тенденции ниже средней.

При этом следует иметь в виду, что даже при 100%-ной устойчивости тенденции в рядудинамики может быть колеблемость уровней, и коэффициент их устойчивости будет ниже100%. При слабой колеблемости, но еще более слабой тенденции, напротив, возможен высокийкоэффициент устойчивости уровней, но близкий к нулю коэффициент устойчивости тренда. Вцелом же оба показателя связаны, конечно, прямой зависимостью: чаще всего большаяустойчивость уровней наблюдается одновременно с большей устойчивостью тренда.

37. Моделирование тенденции ряда динамики при наличии структурных изменений.

От сезонных и циклических колебаний следует отличать единовременные изменения характера тенденции временного ряда, вызванные структурными изменениями в экономике или иными факторами. В этом случае, начиная с некоторого момента времени t, происходит изменение характера динамики изучаемого показателя, что приводит к изменению параметров тренда, описывающего эту динамику.

Момент t сопровождается значительными изменениями ряда факторов, оказывающих сильное воздействие на изучаемый показатель Моделирование тенденции временного ряда при наличии структурных изменений.. Чаще всего эти изменения вызваны изменениями в общеэкономической ситуации или событиями глобального характера, приведшими к изменению структуры экономики. Если исследуемый временной ряд включает в себя соответствующий момент времени, то одной из задач его изучения становится выяснение вопроса о том, значительно ли повлияли общие структурные изменения на характер этой тенденции.

Если это влияние значимо, то для моделирования тенденции данного временного ряда следует использовать кусочно-линейные модели регрессии, т.е. разделить исходную совокупность на 2 подсовокупности (до момента времени t и после) и строить отдельно по каждой подсовокупности уравнения линейной регрессии.

Если структурные изменения незначительно повлияли на характер тенденции ряда Моделирование тенденции временного ряда при наличии структурных изменений., то ее можно писать с помощью единого для всей совокупности данных уравнения тренда.

Каждый из описанных выше подходов имеет свои положительные и отрицательные стороны. При построении кусочно-линейной модели снижается остаточная сумма квадратов по сравнению с единым для всей совокупности уравнением тренда. Но разделение совокупности на части ведет к потере числа наблюдений, и к снижению числа степеней свободы в каждом уравнении кусочно-линейной модели. Построение единого уравнения тренда позволяет сохранить число наблюдений исходной совокупности, но остаточная сумма квадратов по этому уравнению будет выше по сравнению с кусочно-линейной моделью. Очевидно, что выбор модели зависит от соотношения между снижением остаточной дисперсии и потерей числа степеней свободы при переходе от единого уравнения регрессии к кусочно-линейной модели.

38. Регрессионный анализ связных динамических рядов.

Многомерные временные ряды, показывающие зависимость результативного признака от одного или нескольких факторных, называютсвязными рядами динамики. Применение методов наименьших квадратов для обработки рядов динамики не требует выдвижения никаких предположений о законах распределения исходных данных. Однако при использовании метода наименьших квадратов для обработки связных рядов следует учитывать наличие автокорреляции (авторегрессии), которая не учитывалась при обработке одномерных рядов динамики, поскольку ее наличие способствовало более плотному и четкому выявлению тенденции развития рассматриваемого социально – экономического явления во времени.

Выявление автокорреляции в уровнях ряда динамики

В рядах динамики экономических процессов между уровнями, особенно близко расположенными, существует взаимосвязь. Ее удобно представить в виде корреляционной зависимости между рядами y1,y2,y3,…..yn h y1+h, y2+h,…, yn+h. Временное смещение L называется сдвигом,а само явление взаимосвязи – автокорреляцией.

Автокорреляционная зависимость особенно существенна между последующими и предшествующими уровнями ряда динамики.

Различают два вида автокорреляции:

Автокорреляция в наблюдениях за одной или более переменными;

Автокорреляция ошибок или автокорреляция в отклонениях от тренда.

Наличие последней приводит к искажению величин средних квадратических ошибок коэффициентов регрессии, что затрудняет построение доверительных интервалов для коэффициентов регрессии, а так же проверку их значимости.

Автокорреляцию измеряют при помощи циклического коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (L). Этот сдвиг, именуемыйвременным лагом, определяет и порядок коэффициентов автокорреляции: первого порядка (при L=1), второго порядка (при L=2) и т.д. Однако наибольший интерес для исследования представляет вычисление нециклического коэффициента (первого порядка), так как наиболее сильные искажения результатов анализа возникают при корреляции между исходными уровнями ряда и теми же уровнями, сдвинутыми на одну единицу времени.

Для суждения о наличии или отсутствия автокорреляции в исследуемом ряду фактическое значение коэффициентов автокорреляции сопоставляется с табличным (критическим) для 5% - го или 1% - го уровня значимости.

Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда же фактическое значение больше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.

Тренд - это закономерность описывающая подъем или падение показателя в динамике. Если изобразить любой динамический ряд (статистические данные, представляющие собой список зафиксированных значений изменяемого показателя во времени) на графике, часто выделяется определенный угол – кривая либо постепенно идет на увеличение или на уменьшение, в таких случаях принято говорить, что ряд динамики имеет тенденцию (к росту или падению соответственно).

Тренд как модель

Если же построить модель, описывающую это явление, то получается довольно простой и очень удобный инструмент для прогнозирования не требующий каких-либо сложных вычислений или временных затрат на проверку значимости или адекватности влияющих факторов.

Итак, что же собой представляет тренд как модель? Это совокупность расчетных коэффициентов уравнения, которые выражают регрессионную зависимость показателя (Y) от изменения времени (t). То есть, это точно такая же регрессия, как и те, что мы рассматривали ранее, только влияющим фактором здесь выступает именно показатель времени.

Важно!

В расчетах под t обычно подразумевается не год, номер месяца или недели, а именно порядковый номер периода в изучаемой статистической совокупности – динамическом ряде. К примеру, если динамический ряд изучается за несколько лет, а данные фиксировались ежемесячно, то использовать обнуляющуюся нумерацию месяцев, с 1 по 12 и опять сначала, в корне неверно. Также неверно в случае, если изучение ряда начинается, к примеру, с марта месяца в качестве значения t использовать 3 (третий месяц в году), если это первое значение в изучаемой совокупности, то его порядковый номер должен быть 1.

Модель линейного тренда

Как и любая другая регрессия, тренд может быть как линейным (степень влияющего фактора t равна 1) так и нелинейным (степень больше или меньше единицы). Так как линейная регрессия является самой простейшей, хотя далеко не всегда самой точной, то рассмотрим более детально именно этот тип тренда.

Общий вид уравнения линейного тренда:

Y(t) = a 0 + a 1 *t + Ɛ

Где a 0 – это нулевой коэффициент регрессии, то есть, то каким будет Y в случае, если влияющий фактор будет равен нулю, a 1 – коэффициент регрессии, который выражает степень зависимости исследуемого показателя Y от влияющего фактора t, Ɛ – случайная компонента или стандартная ошибка, по сути являет собой разницу между реально существующими значениями Y и расчетными. t – это единственный влияющий фактор – время.

Чем более выраженная тенденция роста показателя или его падения, тем будет больше коэффициент a 1 . Соответственно, предполагается, что константа a 0 совместно со случайной компонентой Ɛ отражают остальные регрессионные влияния, помимо времени, то есть всех прочих возможных влияющих факторов.

Рассчитать коэффициенты модели можно стандартным Методом наименьших квадратов (МНК). Со всеми этими расчетами Microsoft Excel справляется на ура самостоятельно, при чем, чтобы получить модель линейного тренда либо готовый прогноз существует целых пять способов, которые мы по отдельности разберем ниже.

Графический способ получения линейного тренда

В этом и во всех дальнейших примерах будем использовать один и тот же динамический ряд – уровень ВВП, который вычисляется и фиксируется ежегодно, в нашем случае исследование будет проходить на периоде с 2004-го по 2012-й гг.

Добавим к исходным данным еще один столбец, который назовем t и пометим цифрами по возрастающей порядковые номера всех зафиксированных значений ВВП за указанный период с 2004-го по 2012-й гг. – 9 лет или 9 периодов .

Эксель добавит пустое поле – разметку под будущий график, выделяем этот график и активируем появившуюся вкладку в панели меню – Конструктор , ищем кнопку Выбрать данные , в отрывшемся окне жмем кнопочку Добавить . Всплывшее окошко предложит выбрать данные для построения диаграммы. В качестве значения поля Имя ряда выбираем ячейку, которая содержит текст, наиболее полно отвечающий названию графика. В поле Значения X указываем интервал ячеек стобца t – влияющего фактора. В поле Значения Y указываем интервал ячеек столбца с известными значениями ВВП (Y) – исследуемого показателя.

Заполнив указанные поля, несколько раз нажимаем кнопку ОК и получаем готовый график динамики. Теперь выделяем правой кнопкой мыши саму линию графика и из появившегося контекстного меню выбираем пункт Добавить линию тренда

Откроется окошко для настройки параметров построения линии тренда, где среди типов моделей выбираем Линейная , ставим галочки напротив пунктов Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации R2 , этого будет достаточно чтобы на графике отобразилась уже построенная линия тренда, а также математический вариант отображения модели в виде готового уравнения и показатель качества модели R 2 . Если вас интересует отображение на графике прогноза, чтобы визуально оценить отрыв исследуемого показателя укажите в поле Прогноз вперед на количество интересующих периодов.

Собственно это все, что касается этого способа, можно конечно добавить, что отображаемое уравнение линейного тренда это и есть непосредственно сама модель, которую можно использовать, в качестве формулы, чтобы получить расчетные значения по модели и соответственно точные значения прогноза (прогноз отображаемый на графике, оценить можно лишь приблизительно), что мы и сделали в приложенному к статье примере.

Построение линейного тренда с помощью формулы ЛИНЕЙН

Суть этого метода сводится к поиску коэффициентов линейного тренда с помощью функции ЛИНЕЙН , затем, подставляя эти влияющие коэффициенты в уравнение, получим прогнозную модель.

Нам потребуется выделить две рядом стоящие ячейки (на скриншоте это ячейки A38 и B38), далее в строке формул вверху (выделено красным на скриншоте выше) вызываем функцию, написав «=ЛИНЕЙН(», после чего эксель выведет подсказки того, что требуется для этой функции, а именно:

  1. выделяем диапазон с известными значениями описываемого показателя Y (в нашем случае ВВП, на скриншоте диапазон выделен синим) и ставим точку с запятой
  2. указываем диапазон влияющих факторов X (в нашем случае это показатель t, порядковый номер периодов, на скриншоте выделено зеленым) и ставим точку с запятой
  3. следующий по порядку требуемый параметр для функции – это определение того нужно ли рассчитывать константу, так как мы изначально рассматриваем модель с константой (коэффициент a 0 ), то ставим либо «ИСТИНА» либо «1» и точку с запятой
  4. далее нужно указать требуется ли расчет параметров статистики (в случае, если бы мы рассматривали этот вариант, то изначально пришлось бы выделить диапазон «под формулу» на несколько строк ниже). Указывать необходимость расчета параметров статистики, а именно стандартного значение ошибки для коэффициентов, коэффициента детерминированности, стандартной ошибки для Y, критерия Фишера, степеней свободы и пр. , есть смысл только тогда, когда вы понимаете, что они означают, в этом случае ставим либо «ИСТИНА», либо «1». В случае упрощенного моделирования, которому мы пытаемся научиться, на этом этапе прописывания формулы, ставим «ЛОЖЬ» либо «0» и добавляем после закрывающую скобочку «)»
  5. чтобы «оживить» формулу, то есть заставить ее работать после прописывания всех необходимых параметров, не достаточно нажать кнопку Enter, необходимо последовательно зажать три клавиши: Ctrl, Shift, Enter

Как видим на скриншоте выше, выделенные нами под формулу ячейки заполнились расчетными значениями коэффициентов регрессии для линейного тренда, в ячейке B38 находится коэффициент a 0 , а в ячейке A38 - коэффициент зависимости от параметра t (или x ), то есть a 1 . Подставляем полученные значения в уравнение линейной функции и получаем готовую модель в математическом выражении – y = 169 572,2+138 454,3*t

Чтобы получить расчетные значения Y по модели и, соответственно, чтобы получить прогноз, нужно просто подставить формулу в ячейку экселя, а вместо t указать ссылку на ячейку с требуемым номером периода (смотрите на скриншоте ячейку D25 ).

Для сравнения полученной модели с реальными данными, можно построить два графика, где в качестве Х указать порядковый номер периода, а в качестве Y в одном случае – реальный ВВП, а, в другом – расчетный (на скриншоте диаграмма справа).

Построение линейного тренда с помощью инструмента Регрессия в Пакете анализа

В статье , по сути, полностью описан этот метод, единственная же разница в том, что в наших исходных данных только один влияющий фактор Х (номер периода – t ).

Как видно на рисунке выше, диапазон данных с известными значениями ВВП выделен как входной интервал Y , а соответствующий ему диапазон с номерами периодов t – как входной интервал Х . Итоги расчетов Пакетом анализа выносятся на отдельный лист и выглядит как набор таблиц (см. рисунок ниже) на котором нас интересуют ячейки, которые были закрашены мною в желтый и зеленый цвета. По аналогии с порядком, расписанным в указанной выше статье, из полученных коэффициентов собирается модель линейного тренда y=169 572,2+138 454,3*t , на основе которой и делаются прогнозы.

Прогнозирование с помощью линейного тренда через функцию ТЕНДЕНЦИЯ

Этот метод отличается от предыдущих тем, что он пропускает необходимые ранее этапы расчета параметров модели и подстановки полученных коэффициентов вручную в качестве формулы в ячейку, чтобы получить прогноз, эта функция как раз и выдает уже готовое рассчитанное прогнозное значение на основе известных исходных данных.

В целевую ячейку (ту ячейку, где хотим видеть результат) ставим знак равно и вызываем волшебную функцию, прописав «ТЕНДЕНЦИЯ(», далее необходимо выделить , то есть , после ставим точку с запятой и выделяем диапазон с известными значениями Х, то есть с номерами периодов t , которые соответствуют столбцу с известными значениями ВВП, опять ставим точку с запятой и выделяем ячейку с номером периода, для которого мы делаем прогноз (правда, в нашем случае, номер периода можно указать не ссылкой на ячейку, а просто цифрой прямо в формуле), далее ставим еще одну точку с запятой и указываем ИСТИНА или 1 , в качестве подтверждения для расчета коэффициента a 0 , наконец, ставим закрывающую скобочку и нажимаем клавишу Enter .

Минус данного метода в том, что он не показывает ни уравнения модели, ни его коэффициентов, из-за чего нельзя сказать, что на основе такой-то модели мы получили такой-то прогноз, также как и нет какого-либо отражения параметров качества модели, того таки коэффициента детерминации, по которому можно было бы сказать имеет ли смысл брать во внимание полученный прогноз или нет.

Прогнозирование с помощью линейного тренда через функцию ПРЕДСКАЗ

Суть данной функции целиком и полностью идентична предыдущей, разница лишь в порядке прописывания исходных данных в формуле и в том, что нет настройки для наличия или отсутствия коэффициента a 0 (то есть функция подразумевает, что этот коэффициент, в любом случае, есть)

Как видно с рисунка выше, в целевую ячейку прописываем «=ПРЕДСКАЗ(» и затем указываем ячейку с номером периода , для которого необходимо просчитать значение по линейному тренду, то есть прогноз, после ставим точку с запятой, далее выделяем диапазон известных значений Y , то есть столбец с известными значениями ВВП , после ставим точку с запятой и выделяем диапазон с известными значениями Х , то есть с номерами периодов t , которые соответствуют столбцу с известными значениями ВВП и, наконец, ставим закрывающую скобочку и жмем клавишу Enter .

Полученные результаты, как и в методе выше, это лишь готовый результат расчета прогнозного значения по линейной трендовой модели, он не выдает ни погрешностей, ни самой модели в математическом выражении.

Подводя итог к статье

Можно сказать, что каждый из методов может быть наиболее приемлемым среди прочих в зависимости от текущей цели, которую мы ставим перед собой. Первые три метода пересекаются между собой как по смыслу, так и по результату, и годятся для любой более или менее серьезной работы, где необходимо описание модели и ее качества. В свою очередь, последние два метода также идентичны между собой и максимально быстро вам дадут ответ, например, на вопрос: «Какой прогноз продаж на следующий год?».

Статистические расчеты содержания влаги

контрольная работа

2. Уравнение тренда на основе линейной зависимости.

2.1. Основные элементы временного ряда.

Можно построить эконометрическую модель, используя два типа исходных данных:

Данные, характеризующие совокупность различных объектов в определённый момент времени.

Данные, характеризующие один объект за ряд последовательных моментов времени.

Модели, построенные по данным первого типа, называются пространственными. Модели, построенные на основе второго типа данных, называются временными рядами.

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

Факторы, формирующие тенденцию ряда.

Факторы, формирующие циклические колебания ряда.

Случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.

Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. На рис. 1. показан временной ряд, содержащий возрастающую тенденцию.

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес цикла, в которой находится экономика страны. На рис. 2. представлен временной ряд, содержащий только сезонную компоненту.

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень базируется как сумма среднего уровня ряда и некоторой случайной компоненты. Пример ряда, содержащего только случайную компоненту, приведён на рис. 3.

Очевидно, что реальные данные не следуют полностью из каких-либо описанных моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью.

2.2. Автокорреляция уровней временного ряда.

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией. Количественно её можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми во времени.

Одна из рабочих формул для расчёта коэффициента корреляции имеет вид:

r xy = (x j - x ) * (y j - y ) .

(x j -x) 2 * (y j -y) 2

В качестве переменной x мы рассмотрим ряд y 2 , y 3 , ... y t ; в качестве переменной y рассмотрим ряд y 1 , y 2 , ... y t -1 . Тогда данная формула примет вид:

r 1 = (y t - y 1 ) * (y t-1 - y 2 ) ; где y 1 = y t ; y 2 = y t-1 .

(y t -y 1) 2 * (y t-1 -y 2) 2 n - 1 n - 1

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка. Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается.

Свойства коэффициента автокорреляции:

Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной тенденции.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда.

Последовательность коэффициентов автокорреляции уровней первого, второго, и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости её значений от величины лага называется коррелограммой. Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а, следовательно, и лаг, при котором связь между текущим и предыдущим уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка t, ряд содержит циклические колебания с периодичностью в t моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать вывод: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

2.3. Моделирование тенденции временного ряда.

Одним из наиболее распространённых способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.

Т.к. зависимость от времени может принимать разные формы, для её формализации можно использовать различные виды функции. Для построения трендов чаще всего применяются следующие функции:

Линейный тренд: y t = a + b*t ;

Гипербола:y t = a + b/t ;

Экспоненциальный тренд: y t = e a + b * t ;

Тренд в форме степенной функции: y t = a*t ;

Парабола: y t = a + b 1 *t + b 2 *t 2 + ... + b k *t k ;

Параметры каждого из этих трендов можно определить методом наименьших квадратов, используя в качестве независимой переменной время t = 1, 2, ... ,n , а в качестве зависимой переменной - фактические уровни временного ряда y t . Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. К числу наиболее распространённых способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчёт некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляция первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни y t и y t -1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит не6линейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации R и выбора уравнения тренда с максимальным значением скорректированного коэффициента детерминации.

Высокие значения коэффициентов автокорреляции первого, второго и третьего порядков свидетельствуют о том, что ряд содержит тенденцию. Приблизительно равные значения коэффициентов автокорреляции по уровням этого ряда и по логарифмам уровней позволяют сделать следующий вывод: если ряд содержит нелинейную тенденцию, то она выражена в неявной форме. Поэтому для моделирования его тенденции в равной мере целесообразно использовать и линейную, и нелинейную функции, например степенной или экспоненциальный тренд. Для выявления наилучшего уравнения тренда необходимо определить параметры основных видов трендов.

Наиболее простую экономическую интерпретацию имеют параметры линейного и экспоненциального трендов. Параметры линейного тренда:

a - начальный уровень временного ряда в момент времени t = 0;

b - средний за период абсолютный прирост уровней ряда.

Расчётные по линейному тренду значения уровней временного ряда определяются двумя способами. Во-первых, можно последовательно подставлять в найденное уравнение тренда значения t = 1, 2, ..., n. Во-вторых, в соответствии с интерпретацией параметров линейного тренда каждый последующий уровень ряда есть сумма предыдущего уровня и среднего цепного абсолютного прироста.

Задача №1

Десять человек различного возраста имеют следующие параметры:

1. Определить результативный признак.

Рассчитаем зависимость роста от возраста:

Фактор (X): возраст.

Результативный признак (Y): рост.

a*x + b*x 2 = x*y

10*a + 248*b = 1812

248*a + 6492*b = 45023

a = 1812 - 248*b => 1812 - 248*b *248 + 6492*b = 45023

r = x*y - ( x* y)/n = 45023 - (248*1812)/10 =>

(x 2 - (x) 2 /n)*(y 2 - (y) 2 /n) (6492 - 248 2 /10)*(328444 - 1812 2 /10)

r = 0.44 - прямая умеренная связь

r 2 = 0.19 - рост на 19% зависит от возраста

Тест Фишера:

F cp = r 2 * (n - 2)

F cp = 0.19 * (10 - 2) = 1.78

F табл = 5.32

F cp < F табл =>

Рассчитаем зависимость веса от возраста:

Фактор (X): возраст.

Определим параметры линейной функции с помощью системы уравнений:

a*x + b*x 2 = x*y

10*a + 248*b = 753

248*a + 6492*b = 18856

a = 753 - 248*b => 1812 - 248*b *248 + 6492*b = 18856

r = x*y - ( x* y)/n = 18856 - (248*753)/10 =>

(x 2 - (x) 2 /n)*(y 2 - (y) 2 /n) (6492 - 248 2 /10)*(56967 - 753 2 /10)

r = 0.6 - заметная прямая связь

r 2 = 0.36 - вес на 36% зависит от возраста

Тест Фишера:

F cp = r 2 * (n - 2)

F cp = 0.36 * (10 - 2) = 4.5

F табл = 5.32

F cp < F табл => нулевая гипотеза подтвердилась, уравнение статистически незначимо.

Рассчитаем зависимость веса от роста:

Фактор (X): рост.

Результативный признак (Y): вес.

Определим параметры линейной функции с помощью системы уравнений:

a*x + b*x 2 = x*y

10*a + 1812*b = 753

1812*a + 328444*b = 136562

a = 753 - 1812*b => 753 - 1812*b *1812 + 328444*b = 136562

r = x*y - ( x* y)/n = 136562 - (1812*753)/10 =>

(x 2 - (x) 2 /n)*(y 2 - (y) 2 /n) (328444 - 1812 2 /10)*(56967 - 753 2 /10)

r = 0.69 - заметная прямая связь

r 2 = 0.47 - вес на 47% зависит от роста

x = 1812/10 = 181.2

Тест Фишера:

F cp = r 2 * (n - 2)

F cp = 0.47 * (10 - 2) = 7.1

F табл = 5.32

F cp > F табл => нулевая гипотеза не подтвердилась, уравнение имеет экономический смысл.

Тест Стьюдента:

Рассчитаем случайные ошибки:

.

m a = (y - y x ) 2 * x 2 .

n - 2 n*(x -x) 2

m b = (y - y x ) 2 / (n - 2)

m r = 1 - r 2

m a = 138.19 * 328444 = 72

m b = 138.19 / (10 - 2) = 1

m r = 1 - 0.47 = 0.26

t a = a/m a = 120/72 = 1.67

t b = b/m b = 1.08/1 = 1.08

t r = r/m r = 0.69/0.26 = 2.65

t табл = 2.3

Для расчёта доверительного интервала рассчитаем предельную ошибку:

a = t табл - t a = 2.3 - 1.67 = 0.63

b = t табл - t b = 2.3 - 1.08 = 1.22

r = t табл - t r = 2.3 - 2.65 = -0.35

Рассчитаем доверительные интервалы:

a = a a = -121.03 119.77

b = b b = -0.14 2.3

r = r r = 0.34 1.04

Задача №2

При контрольной выборочной проверке процента влажности почвы фермерских хозяйств региона получены следующие данные:

1. С вероятностью 0.95 и 0.99 установить предел, в котором находится средний процент содержания влаги.

2. Сделать выводы.

Генеральная средняя: x = x = 31.1 = 3.8875

Генеральная дисперсия: 2 = (x - x ) 2 = 1.8875 = 0.1261

n 8 .

Средняя квадратическая стандартная ошибка: x = 2 = 0.1261 = 0.126

Предельная ошибка выборки: x = t* x

Из таблицы значений t-критерия Стьюдента:

Для вероятности 0.95, предельная ошибка выборки:

x = 2.4469*0.126 = 0.308

Для вероятности 0.99, предельная ошибка выборки:

x = 3.7074*0.126 = 0.467

Доверительные интервалы:

Предел среднего процента содержания влаги с вероятностью 0.95:

Верхний центральный показатель некоторой линейной системы

Пусть дана система (2) и - ее решение. Рассмотрим семейство функций, Определение 5 : Функция R (t) называется верхней для системы (2), если она ограничена, измерима и осуществляет оценку, Где - норма матрицы Коши линейной системы...

Дифференциальное исчисление

Исходя из определения производной сформулируем следующее правило нахождения производной функции в точке: Чтобы вычислить производную функции f(x) в точке x0 нужно: 1) Найти f(x) - f(x0); 2) составить разностное отношение; 3) вычислить предел...

Дифференциальное исчисление

Исходя из определения производной...

Инвариантные подгруппы бипримарных групп

В заметке (1) исправлена ошибка, допущенная Бернсайдом в работе (2). А именно в (3) доказано, что группа порядка, где и - различные простые числа и, либо обладает характеристической -подгруппой порядка...

Использование современной компьютерной техники и программного обеспечения для решения прикладной задачи из инженерно-буровой практики

Зная значения коэффициентов а0, а1 и а2 можно найти значений y` по формуле, в нашем случае. Различие между экспериментальными и теоретическими данными невелико. Полученные данные позволяет нам найти зависимость, 5...

Линейная сложность циклотомических последовательностей

Пусть последовательность четвертого порядка, то есть, тогда, согласно лемме 1.1, она формируется по правилу: (2.1) Заметим, что правило (2.1) задает последовательность только тогда, когда...

Математическая модель цифрового устройства игры "Крестики-нолики" с человеком

Игровое поле игры в крестики-нолики может быть представлено в виде сетки, состоящей из строк и столбцов. Каждый элемент сетки может находиться в трех состояниях: пустое (начальное), отмечено крестиком, отмечено ноликом...

Методы отсечения

Среди совокупности п неделимых предметов, каждый i-и (i=1,2,…, п) из которых обладает по i-й характеристике показателем и полезностью найти такой набор, который позволяет максимизировать эффективность использования ресурсов величины...

Приближенное решение алгебраических и трансцендентных уравнений. Метод Ньютона

Информация о предыдущих приближениях корня используется для нахождения последующих приближений не только в методе касательных. В качестве примера другого такого метода мы приведём метод...

Статистические расчеты содержания влаги

Практические задачи: 1. Десять человек различного возраста имеют следующие параметры: Возраст, лет 18 20 21 22 22 24 25 26 31 39 Рост, см 174 183 182 180 178 179 185 185 184 182 Вес, кг 65 73 69 74 77 75 78 84 79 79 1...

ПРИМЕР . Статистическое изучение динамики численности населения.

    С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.

    С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.

    Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.

Метод аналитического выравнивания а) Линейное уравнение тренда имеет вид y = bt + a 1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала. Система уравнений МНК для линейного тренда имеет вид: a 0 n + a 1 ∑t = ∑y a 0 ∑t + a 1 ∑t 2 = ∑y t

Для наших данных система уравнений примет вид: 10a 0 + 0a 1 = 10400 0a 0 + 330a 1 = -4038 Из первого уравнения выражаем а 0 и подставим во второе уравнение Получаем a 0 = -12.236, a 1 = 1040 Уравнение тренда: y = -12.236 t + 1040

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации. Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

б) выравнивание по параболе Уравнение тренда имеет вид y = at 2 + bt + c 1. Находим параметры уравнения методом наименьших квадратов. Система уравнений МНК: a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

Для наших данных система уравнений имеет вид 10a 0 + 0a 1 + 330a 2 = 10400 0a 0 + 330a 1 + 0a 2 = -4038 330a 0 + 0a 1 + 19338a 2 = 353824 Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5 Уравнение тренда: y = 1.258t 2 -12.236t+998.5

Ошибка аппроксимации для параболического уравнения тренда. Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

Интервальный прогноз. Определим среднеквадратическую ошибку прогнозируемого показателя. m = 1 - количество влияющих факторов в уравнении тренда. Uy = y n+L ± K где L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 . По таблице Стьюдента находим Tтабл T табл (n-m-1;α/2) = (8;0.025) = 2.306 Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел. 1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02 Интервальный прогноз: t = 9+1 = 10: (930.76;1073.02)

Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га; b = 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид:

у̂ = 172,2 + 4,418t , где t = 0 в 1987 г Это означает,что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 ra a среднегодовой прирост составляет 4,418 ц/га в год

Параметры параболического тренда согласно (9.23) равны- b = 4,418; a = 177,75; с = -0,5571. Уравнение параболического тренда имеет вид у̃ = 177,75 + 4,418t - 0.5571t 2 ; t = 0 в 1991 г. Это означает, что абсолютный прирост урожайности замедляется в среднем на 2·0,56 ц/га в год за год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета т.е. 1991 г., тренд проходит через точку с ординатой 77,75 ц/га; Свободный член параболического тренда не является средним уровнем за период. Параметры экспоненциального тренда вычисляются по формулам(9.32) и (9.33) lnа = 56,5658/11 = 5,1423; потенцируя, получаем а = 171,1; lnk = 2,853:110 = 0,025936; потенцируя, получаем k = 1,02628.

Уравнение экспоненциального тренда имеет вид: y̅ = 171,1·1,02628 t .

Это означает, что среднегодовой темп поста урожайности за период составил 102,63%. В точке принятК начало отсчета, тренд проходит точку с ординатой 171,1 ц/га.

Рассчитанные по уравнениям трендов уровни записаны в трех последних графах табл. 9.5. Как видно по этим данным. расчетные значения уровней по всем трем видам трендов различаются ненамного, так как и ускорение параболы, и темп роста экспоненты невелики. Существенное отличие имеет парабола - рост уровней с 1995 г. прекращается, в то время как при линейном тренде уровни растут и далее, а при экспоненте их ост ускоряется. Поэтому для прогнозов на будущее эти три тренда неравноправны: при экстраполяции параболы на будущие годы уровни резко разойдутся с прямой и экспонентой, что видно из табл. 9.6. В этой таблицепредставлена распечатка решения на ПЭВМ по программе «Statgraphics» тех же трех трендов. Отличие их свободных членов от приведенных выше объясняется тем, что программа нумерует года не от середины, а от начала, так что свободные члены трендов относятся к 1986 г., для которого t = 0. Уравнение экспоненты на распечатке оставлено в логарифмированном виде. Прогноз сделан на 5 лет вперед, т.е. до 2001 г.. При изменении начала координат (отсчета времени) в уравнении параболы меняется и средний абсолютной прирост, параметр b. так как в результате отрицательного ускорения прирост все время сокращается, а его максимум - в начале периода. Константой параболы является только ускорение.


В строке «Data» приводятся уровни исходного ряда; «Forecast summary» означает сводные данные для прогноза. В следующих строках - уравнения прямой, параболы, экспоненты - в логарифмическом виде. Графа ME означает среднее расхождение между уровнями исходного ряда и уровнями тренда (выравненными). Для прямой и параболы это расхождение всегда равно нулю. Уровни экспоненты в среднем на 0,48852 ниже уровней исходного ряда. Точное совпадение возможно, если истинный тренд - экспонента; в данном случае совпадения нет, но различие, мало. Графа МАЕ -это дисперсия s 2 - мера колеблемости фактических уровней относительно тренда, о чем сказано в п. 9.7. Графа МАЕ - среднее линейное отклонение уровней от тренда по модулю (см. параграф 5.8); графа МАРЕ - относительное линейное отклонение в процентах. Здесь они приведены как показатели пригодности выбранного вида тренда. Меньшую дисперсию и модуль отклонения имеет парабола: она за период 1986 - 1996 гг. ближе к фактическим уровням. Но выбор типа тренда нельзя сводить лишь к этому критерию. На самом деле замедление прироста есть результат большого отрицательного отклонения, т. е. неурожая в 1996 г.

Вторая половина таблицы - это прогноз уровней урожайности по трем видам трендов на годы; t = 12, 13, 14, 15 и 16 от начала отсчета (1986 г.). Прогнозируемые уровни по экспоненте вплоть до 16-го года ненамного выше,.чем по прямой. Уровни тренда-параболы - снижаются, все более расходясь с другими трендами.

Как видно в табл. 9.4, при вычислении параметров тренда уровни исходного ряда входят с разными весами - значениями t p и их квадратов. Поэтому влияние колебаний уровней на параметры тренда зависит от того, на какой номер года приходится урожайный либо неурожайный год. Если резкое отклонение приходится на год с нулевым номером (t i = 0 ), то оно никакого влияния на параметры тренда не окажет, а если попадет на начало и конец ряда, то повлияет сильно. Следовательно, однократное аналитическое выравнивание неполно освобождает параметры тренда от влияния колеблемости, и при сильных колебаниях они могут быть сильно искажены, что в нашем примере случилось с параболой. Для дальнейшего исключения искажающего влияния колебаний на параметры тренда следует применить метод многократного скользящего выравнивания.

Этот прием состоит в том, что параметры тренда вычисляются не сразу по всему ряду, а скользящим методом, сначала за первые т периодов времени или моментов, затем за период от 2-го до т + 1, от 3-го до (т + 2)-го уровня и т.п. Если число исходных уровней ряда равно п, а длина каждой скользящей базы расчета параметров равна т, то число таких скользящих баз t или отдельных значений параметров, которые будут по ним определены, составит:

L = п + 1 - т.

Применение методики скользящего многократного выравнивания рассматривать, как видно из приведенных расчетов, возможно только при достаточно большом числе уровней ряда, как правило 15 и более. Рассмотрим эту методику на примере данных табл. 9.4 -динамики цен на нетопливные товары развивающихся стран, что опять же дает возможность читателю участвовать в небольшом научном исследовании. На этом же примере продолжим и методику прогнозирования в разделе 9.10.

Если вычислять в нашем ряду параметры по 11 -летним периодам (по 11 уровням), то t = 17 + 1 - 11 = 7. Смысл многократного скользящего выравнивания в том, что при последовательных сдвигах базы расчета параметров на концах ее и в середине окажутся разные уровни с разными по знаку и величине отклонениями от тренда. Поэтому при одних сдвигах базы параметры будут завышаться, при других - занижаться, а при последующем усреднении значений параметров по всем сдвигам базы расчета произойдет дальнейшее взаимопогашение искажений параметров тренда колебаниями уровней.

Многократное скользящее выравнивание не только позволяет получить более точную и надежную оценку параметров тренда, но и осуществить контроль правильности выбора типа уравнения тренда. Если окажется, что ведущий параметр тренда, его константа при расчете по скользящим базам не беспорядочно колеблется, а систематически изменяет свою величину существенным образом, значит, тип тренда был выбран неверно, данный параметр константой не является.

Что касается свободного члена при многократном выравнивании, то нет необходимости и, более того, просто неверно вычислять его величину как среднюю по всем сдвигам базы, ибо при таком способе отдельные уровни исходного ряда входили бы в расчет средней с разными весами, и сумма выравненных уровней разошлась бы с суммой членов исходного ряда. Свободный член тренда - это средняя величина уровня за период, при условии отсчета времени от середины периода. При отсчете от начала, если первый уровень t i = 1, свободный член будет равен: a 0 = у̅ - b ((N-1)/2). Рекомендуется длину скользящей базы расчета параметров тренда выбирать не менее 9-11 уровней, чтобы в достаточной мере погасить колебания уровней. Если исходный ряд очень длинный, база может составлять до 0,7 - 0,8 его длины. Для устранения влияния долго-периодических (циклических) колебаний на параметры тренда, число сдвигов базы должно быть равно или кратно длине цикла колебаний. Тогда начало и конец базы будут последовательно «пробегать» все фазы цикла и при усреднении параметра по всем сдвигам его искажения от циклических колебаний будут взаимопогашаться. Другой способ - взять длину скользящей базы, равной длине цикла, чтобы начало базы и конец базы всегда приходились на одну и ту же фазу цикла колебаний.

Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму, проводим расчет среднегодового абсолютного прироста, т. е. параметра b уравнения линейного тренда скользящим способом по 11-летним базам (см. табл. 9.7). В ней же приведен расчет данных, необходимых для последующего изучения колеблемости в параграфе 9.7. Остановимся подробнее на методике многократного выравнивания по скользящим базам. Рассчитаем параметр b по всем базам: