Болезни Военный билет Призыв

Школьный курс тригонометрии. Защита персональной информации. Сбор и использование персональной информации

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

На этом уроке мы познакомимся с определениями тригонометрических функций и их основными свойствами , узнаем, как работать с тригонометрической окружностью , выясним, что такое период функции и вспомним о различных способах измерения углов . Кроме этого, разберемся с применением формул приведения .

Данный урок поможет Вам подготовиться к одному из типов задания В7 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 7. Введение в тригонометрию.

Теория

Конспект урока

Сегодня мы с вами начинаем раздел, который имеет пугающее для многих название «Тригонометрия». Давайте сразу выясним, что это не отдельный предмет, похожий по названию на геометрию, как некоторые думают. Хотя в переводе с греческого слово «тригонометрия» означает «измерение треугольников» и имеет прямое отношение к геометрии. Кроме этого тригонометрические вычисления широко применяются в физике и технике. Но начнем мы с вами именно с рассмотрения того, как основные тригонометрические функции вводятся в геометрии с помощью прямоугольного треугольника.

Только что мы использовали термин «тригонометрическая функция» ‑ это означает, что мы введем целый класс определенных законов соответствия одной переменной величины от другой.

Для этого рассмотрим прямоугольный треугольник, в котором для удобства используются стандартные обозначения сторон и углов, которые вы можете видеть на рисунке:

Рассмотрим, например, угол и введем для него следующие действия:

Отношение противолежащего катета к гипотенузе назовем синусом, т.е.

Отношение прилежащего катета к гипотенузе назовем косинусом, т.е. ;

Отношение противолежащего катета к прилежащему назовем тангенсом, т.е. ;

Отношение прилежащего катета к противолежащему назовем котангенсом, т.е. .

Все эти действия с углом называют тригонометрическими функциями . Сам угол, при этом, принято называть аргументом тригонометрической функции и его можно обозначать, например, иксом, как это обыкновенно принято в алгебре.

Важно сразу понять, что тригонометрические функции зависят именно от угла в прямоугольном треугольнике, а не от его сторон. Это легко доказать, если рассмотреть треугольник, подобный данному, в нем длины сторон будут другими, а все углы и отношения сторон не изменятся, т.е. останутся неизменными и тригонометрические функции углов.

После такого определения тригонометрических функций может возникнуть вопрос: «А существует ли например ? Ведь угла в прямоугольном треугольнике быть не может » . Как ни странно, но ответ на этот вопрос утвердительный, причем, значение этого выражения равно , а это еще больше удивляет, поскольку все тригонометрические функции являются отношением сторон прямоугольного треугольника, а длины сторон являются положительными числами.

Но никакого парадокса в этом нет. Дело в том, что, например, в физике при описании некоторых процессов необходимо использовать тригонометрические функции углов не только больших , но и больших и даже . Для этого необходимо ввести более обобщенное правило вычисления тригонометрических функций с помощью так называемой «единичной тригонометрической окружности» .

Она представляет собой окружность с единичным радиусом, изображенную так, что ее центр находится в начале координат декартовой плоскости.

Для изображения углов в этой окружности необходимо договориться, откуда их откладывать. Принято за луч отсчета углов принимать положительное направление оси абсцисс, т.е. оси иксов . Направлением отложения углов принято считать направление против часовой стрелки. Исходя из этих договоренностей, отложим сначала острый угол . Именно для таких острых углов мы уже умеем вычислять значения тригонометрических функций в прямоугольном треугольнике. Оказывается, что с помощью изображенной окружности также можно вычислять тригонометрические функции, только более удобно.

Значения синуса и косинуса острого угла являются координатами точки пересечения стороны этого угла с единичной окружностью:

Это можно записывать в таком виде:

:

Исходя из того факта, что координаты по оси абсцисс показывают значение косинуса, а координаты по оси ординат значения синуса угла , названия осей в системе координат с единичной окружностью удобно переименовать так, как вы видите на рисунке:

Ось абсцисс переименовывается в ось косинусов, а ось ординат в ось синусов.

Указанное правило определения синуса и косинуса обобщается и на тупые углы, и на углы, лежащие в диапазоне от до . В таком случае синусы и косинусы могут принимать, как положительные, так и отрицательные значения. Различные знаки значений этих тригонометрических функций в зависимости от того, в какую четверть попадает рассматриваемый угол, принято изображать следующим образом:

Как видите, знаки тригонометрических функций определяются положительными и отрицательными направлениями соответствующих им осей.

Кроме того, стоит обратить внимание на то, что поскольку наибольшая координата точки на единичной окружности и по оси абсцисс и по оси ординат равна единице, а наименьшая минус единице, то и значения синуса и косинуса ограничены этими числами:

Эти записи еще принято записывать в таком виде:

Для того чтобы ввести функции тангенса и котангенса на тригонометрической окружности, необходимо изобразить дополнительные элементы: касательную к окружности в точке A - по ней определяется значение тангенса угла , и касательную к в точке B - по ней определяется значение котангенса угла .

Однако мы не будем углубляться в определение тангенсов и котангенсов по тригонометрической окружности, т.к. их легко можно вычислить, зная значения синуса и косинуса данного угла, что мы уже умеем делать. Если вам интересно ознакомиться с вычислением тангенса и котангенса по тригонометрической окружности, повторите программу курса алгебры 10 класса.

Укажем только изображение на окружности знаков тангенсов и котангенсов в зависимости от угла:

Отметим, что аналогично диапазонам значений синуса и косинуса можно указать диапазоны значений тангенса и котангенса. Исходя из их определения на тригонометрической окружности, значения этих функций не ограничены :

Что можно записать еще так:

Кроме углов в диапазоне от до тригонометрическая окружность позволяет работать и с углами, которые больше и даже с отрицательными углами. Такие значения углов хоть и кажутся бессмысленными для геометрии, но используются для описания некоторых физических процессов. Например, что вы ответите на вопрос: «На какой угол повернется стрелка часов за сутки?» За такое время она выполнит два полных оборота, а за один оборот пройдет , т.е. за сутки повернется на . Как видите, такие значения имеют вполне практический смысл. Знаки углов используются для обозначения направления вращения - одно из направлений договариваются измерять положительными углами, а другое отрицательными. Как же это учитывать в тригонометрической окружности?

На окружности с такими углами работают следующим образом:

1) Углы, которые больше , откладываются против часовой стрелки с прохождением начала отсчета столько раз, сколько это нужно. Например, для построения угла необходимо пройти два полных оборота и еще . Для окончательного положения и вычисляются все тригонометрические функции. Несложно увидеть, что значение всех тригонометрических функций для и для будут одинаковыми.

2) Отрицательные углы откладываются точно по тому же принципу, что и положительные, только по часовой стрелке.

Уже по способу построения больших углов можно сделать вывод, что значения синусов и косинусов углов, которые отличаются на , одинаковы. Если проанализировать значения тангенсов и котангенсов, то они будут одинаковы для углов, отличающихся на .

Такие минимальные ненулевые числа, при добавлении которых к аргументу, не меняется значение функции, называют периодом этой функции.

Таким образом, период синуса и косинуса равен , а тангенса и котангенса . А это означает, что сколько не добавляй или отнимай эти периоды от рассматриваемых углов, значения тригонометрических функций не изменятся.

Например , , а и т.д.

Позже мы еще вернемся к более подробному объяснению и применению этого свойства тригонометрических функций.

Между тригонометрическими функциями одного и того же аргумента существуют определенные соотношения, которые очень часто используются и называются основные тригонометрические тождества.

Они выглядят следующим образом:

1) , так называемая «тригонометрическая единица»

3)

4)

5)

Заметим, что, например, обозначение обозначает, что вся тригонометрическая функция возводится в квадрат. Т.е. это можно представить в такой форме: . Важно понимать, что это не равно такой записи как , в этом случае возводится в квадрат только аргумент, а не вся функция, к тому же выражения такого вида встречаются крайне редко.

Из первого тождества есть два очень полезных следствия, которые могут пригодиться при решении многих типов заданий. После несложных преобразований можно выразить синус через косинус того же угла и наоборот:

Два возможных знака выражений появляются, т.к. извлечение арифметического квадратного корня дает только неотрицательные значения, а синус и косинус, как мы уже видели, могут иметь и отрицательные значения. Причем знаки этих функций удобнее всего определять именно с помощью тригонометрической окружности в зависимости от того, какие углы в них присутствуют.

Теперь давайте вспомним о том, что измерение углов можно осуществлять двумя способами: в градусах и в радианах. Укажем определения одного градуса и одного радиана.

Один градус - это угол, образованный двумя радиусами, которые стягивают дугу равную окружности.

Один радиан - это угол, образованный двумя радиусами, которые стягивает дуга равная по длине радиусам.

Т.е. это просто два различных способа измерять углы, которые абсолютно равноправны. В описании физических процессов, которые характеризуются тригонометрическими функциями, принято использовать радианную меру углов, поэтому нам тоже придется к ней привыкать.

Измерять углы в радианах принято долями числа «пи», например, или . При этом значение числа «пи», которое равно 3,14, можно подставлять, но это делается редко.

Для перевода градусной меры углов в радианную пользуются тем фактом, что угол , из чего легко получить общую формулу перевода:

Например, переведем в радианы: .

Существует и обратная формула перевода из радиан в градусы :

Например, переведем в градусы: .

Использовать радианную меру угла в этой теме мы будем достаточно часто.

Теперь самое время вспомнить, какие конкретно значения могут давать тригонометрические функции различных углов. Для некоторых углов, кратных , существует таблица значений тригонометрических функций . В ней для удобства приведены углы в градусной и радианной мерах.

Эти углы часто встречаются во многих задачах и в указанной таблице желательно уметь уверенно ориентироваться. Значения тангенса и котангенса некоторых углов не имеют смысла, что указано в таблице в виде прочерков. Подумайте сами почему так или ознакомьтесь с этим более подробно во вставке к уроку.

Последнее, с чем нам надо ознакомиться в нашем первом уроке по тригонометрии, это преобразование тригонометрических функций по так называемым формулам приведения.

Оказывается, что есть определенный вид выражений для тригонометрических функций, который достаточно часто встречается и удобно упрощается. Например, это такие выражения: и т.п.

Т.е. речь пойдет о функциях, у которых в качестве аргумента выступает произвольный угол, измененный на целую или половинную часть . Такие функции упрощаются до аргумента, который равен произвольному углу добавления или вычитания частей . Например, , а . Как видим результатом может стать противоположная функция, и функция может поменять знак.

Поэтому правила преобразования таких функций можно разбить на два этапа. Во-первых, необходимо определить какая функция получится после преобразования:

1) Если произвольный аргумент изменен на целое число , то функция не изменяется. Это верно для функций типа , где любое целое число;

\(\blacktriangleright\) Рассмотрим прямоугольную систему координат и в ней окружность с единичным радиусом и центром в начале координат.

Угол в \(1^\circ\) - это такой центральный угол, который опирается на дугу, длина которой равна \(\dfrac1{360}\) длины всей окружности.

\(\blacktriangleright\) Будем рассматривать на окружности такие углы, у которых вершина находится в центре окружности, а одна сторона всегда совпадает с положительным направлением оси \(Ox\) (на рисунке выделено красным).
На рисунке таким образом отмечены углы \(45^\circ,\ 180^\circ,\ 240^\circ\) :

Заметим, что угол \(0^\circ\) - это угол, обе стороны которого совпадают с положительным направлением оси \(Ox\) .

Точку, в которой вторая сторона такого угла \(\alpha\) пересекает окружность, будет называть \(P_{\alpha}\) .
Положение точки \(P_{0}\) будем называть начальным положением.

Таким образом, можно сказать, что мы совершаем поворот по окружности из начального положения \(P_0\) до положения \(P_{\alpha}\) на угол \(\alpha\) .

\(\blacktriangleright\) Поворот по окружности против часовой стрелки - это поворот на положительный угол. Поворот по часовой стрелке - это поворот на отрицательный угол.

Например, на рисунке отмечены углы \(-45^\circ, -90^\circ, -160^\circ\) :

\(\blacktriangleright\) Рассмотрим точку \(P_{30^\circ}\) на окружности. Для того, чтобы совершить поворот по окружности из начального положения до точки \(P_{30^\circ}\) , необходимо совершить поворот на угол \(30^\circ\) (оранжевый). Если мы совершим полный оборот (то есть на \(360^\circ\) ) и еще поворот на \(30^\circ\) , то мы снова попадем в эту точку, хотя уже был совершен поворот на угол \(390^\circ=360^\circ+30^\circ\) (голубой). Также попасть в эту точку мы можем, совершив поворот на \(-330^\circ\) (зеленый), на \(750^\circ=360^\circ+360^\circ+30^\circ\) и т.д.


Таким образом, каждой точке на окружности соответствует бесконечное множество углов, причем отличаются эти углы друг от друга на целое число полных оборотов (\(n\cdot360^\circ, n\in\mathbb{Z}\) ).
Например, угол \(30^\circ\) на \(360^\circ\) больше, чем угол \(-330^\circ\) , и на \(2\cdot 360^\circ\) меньше, чем угол \(750^\circ\) .

Все углы, находящиеся в точке \(P_{30^\circ}\) можно записать в виде: \(\alpha=30^\circ+n\cdot 360^\circ, \ n\in\mathbb{Z}\) .

\(\blacktriangleright\) Угол в \(1\) радиан - это такой центральный угол, который опирается на дугу, длина которой равна радиусу окружности:

Т.к. длина всей окружности радиусом \(R\) равна \(2\pi R\) , а в градусной мере - \(360^\circ\) , то имеем \(360^\circ=2\pi \cdot 1\textbf{ рад}\) , откуда \ Это основная формула, с помощью которой можно переводить градусы в радианы и наоборот.

Пример 1. Найти радианную меру угла \(60^\circ\) .

Т.к. \(180^\circ = \pi \Rightarrow 1^\circ = \dfrac{\pi}{180} \Rightarrow 60^\circ=\dfrac{\pi}3\)

Пример 2. Найти градусную меру угла \(\dfrac34 \pi\) .

Т.к. \(\pi=180^\circ \Rightarrow \dfrac34 \pi=\dfrac34 \cdot 180^\circ=135^\circ\) .

Обычно пишут, например, не \(\dfrac{\pi}4 \text{ рад}\) , а просто \(\dfrac{\pi}4\) (т.е. единицу измерения “рад” опускают). Обратим внимание, что обозначение градуса при записи угла не опускают . Таким образом, под записью “угол равен \(1\) ” понимают, что “угол равен \(1\) радиану”, а не “угол равен \(1\) градусу”.

Т.к. \(\pi \thickapprox 3,14 \Rightarrow 180^\circ \thickapprox 3,14 \textbf{ рад} \Rightarrow 1 \textbf{ рад} \thickapprox 57^\circ\) .
Такую приблизительную подстановку делать в задачах нельзя, но знание того, чему приближенно равен \(1\) радиан в градусах часто помогает при решении некоторых задач. Например, таким образом проще найти на окружности угол в \(5\) радиан: он примерно равен \(285^\circ\) .

\(\blacktriangleright\) Из курса планиметрии (геометрии на плоскости) мы знаем, что для углов \(0<\alpha< 90^\circ\) определены синус, косинус, тангенс и котангенс следующим образом:
если дан прямоугольный треугольник со сторонами \(a, b, c\) и углом \(\alpha\) , то:

Т.к. на единичной окружности определены любые углы \(\alpha\in(-\infty;+\infty)\) , то нужно определить синус, косинус, тангенс и котангенс для любого угла.
Рассмотрим единичную окружность и на ней угол \(\alpha\) и соответствующую ему точку \(P_{\alpha}\) :

Опустим перпендикуляр \(P_{\alpha}K\) из точки \(P_{\alpha}\) на ось \(Ox\) . Мы получим прямоугольный треугольник \(\triangle OP_{\alpha}K\) , из которого имеем: \[\sin\alpha=\dfrac{P_{\alpha}K}{P_{\alpha}O} \qquad \cos \alpha=\dfrac{OK}{P_{\alpha}O}\] Заметим, что отрезок \(OK\) есть не что иное, как абсцисса \(x_{\alpha}\) точки \(P_{\alpha}\) , а отрезок \(P_{\alpha}K\) - ордината \(y_{\alpha}\) . Заметим также, что т.к. мы брали единичную окружность, то \(P_{\alpha}O=1\) - ее радиус.
Таким образом, \[\sin\alpha=y_{\alpha}, \qquad \cos \alpha=x_{\alpha}\]

Таким образом, если точка \(P_{\alpha}\) имела координаты \((x_{\alpha}\,;y_{\alpha})\) , то через соответствующий ей угол ее координаты можно переписать как \((\cos\alpha\,;\sin\alpha)\) .

Определение: 1. Синусом угла \(\alpha\) называется ордината точки \(P_{\alpha}\) , соответствующей этому углу, на единичной окружности.

2. Косинусом угла \(\alpha\) называется абсцисса точки \(P_{\alpha}\) , соответствующей этому углу, на единичной окружности.

Поэтому ось \(Oy\) называют осью синусов, ось \(Ox\) - осью косинусов.

\(\blacktriangleright\) Окружность можно разбить на \(4\) четверти, как показано на рисунке.


Т.к. в \(I\) четверти и абсциссы, и ординаты всех точек положительны, то косинусы и синусы всех углов из этой четверти также положительны.
Т.к. во \(II\) четверти ординаты всех точек положительны, а абсциссы - отрицательны, то косинусы всех углов из этой четверти - отрицательны, синусы - положительны.
Аналогично можно определить знак синуса и косинуса для оставшихся четвертей.

Пример 3. Так как, например, точки \(P_{\frac{\pi}{6}}\) и \(P_{-\frac{11\pi}6}\) совпадают, то их координаты равны, т.е. \(\sin\dfrac{\pi}6=\sin \left(-\dfrac{11\pi}6\right),\ \cos \dfrac{\pi}6=\cos \left(-\dfrac{11\pi}6\right)\) .

Пример 4. Рассмотрим точки \(P_{\alpha}\) и \(P_{\pi-\alpha}\) . Пусть для удобства \(0<\alpha<\dfrac{\pi}2\) .


Проведем перпендикуляры на ось \(Ox\) : \(OK\) и \(OK_1\) . Треугольники \(OKP_{\alpha}\) и \(OK_1P_{\pi-\alpha}\) равны по гипотенузе и углу (\(\angle P_{\alpha}OK=\angle P_{\pi-\alpha}OK_1=\alpha\) ). Следовательно, \(OK=OK_1, KP_{\alpha}=K_1P_{\pi-\alpha}\) . Т.к. координаты точки \(P_{\alpha}=(OK;KP_{\alpha})=(\cos\alpha\,;\sin\alpha)\) , а точки \(P_{\pi-\alpha}=(-OK_1;K_1P_{\pi-\alpha})=(\cos(\pi-\alpha)\,;\sin(\pi-\alpha))\) , следовательно, \[\cos(\pi-\alpha)=-\cos\alpha, \qquad \sin(\pi-\alpha)=\sin\alpha\]

Таким образом доказываются и другие формулы, называемые формулами приведения : \[{\large{\begin{array}{l|r} \hline \sin(\pi-\alpha)=\sin\alpha & \cos(\pi-\alpha)=-\cos\alpha\\ \sin(\pi+\alpha)=-\sin\alpha & \cos(\pi+\alpha)=-\cos\alpha\\ \sin(2\pi\pm\alpha)=\pm\sin\alpha & \cos (2\pi\pm\alpha)=\cos\alpha\\ \sin \left(\dfrac{\pi}2\pm\alpha\right)=\cos\alpha & \cos\left(\dfrac{\pi}2\pm\alpha\right)=\pm\sin\alpha\\ \hline \end{array}}}\]

С помощью этих формул можно найти синус или косинус любого угла, сведя это значение к синусу или косинусу угла из \(I\) четверти.

Таблица синусов, косинусов, тангенсов и котангенсов углов из первой четверти:
\[{\large{\begin{array}{|c|c|c|c|c|c|} \hline &&&&&\\[-17pt] & \quad 0 \quad (0^ \circ)& \quad \dfrac{\pi}6 \quad (30^\circ) & \quad \dfrac{\pi}4 \quad (45^\circ) & \quad \dfrac{\pi}3 \quad (60^\circ)& \quad \dfrac{\pi}2 \quad (90^\circ) \\ &&&&&\\[-17pt] \hline \sin & 0 &\frac12&\frac{\sqrt2}2&\frac{\sqrt3}2&1\\ \hline \cos &1&\frac{\sqrt3}2&\frac{\sqrt2}2&\frac12&0\\ \hline \mathrm{tg} &0 &\frac{\sqrt3}3&1&\sqrt3&\infty\\ \hline \mathrm{ctg} &\infty &\sqrt3&1&\frac{\sqrt3}3&0\\ \hline \end{array}}}\]

Заметим, что данные значения были выведены в разделе “Геометрия на плоскости (планиметрия). Часть II” в теме “Начальные сведения о синусе, косинусе, тангенсе и котангенсе”.

Пример 5. Найдите \(\sin{\dfrac{3\pi}4}\) .

Преобразуем угол: \(\dfrac{3\pi}4=\dfrac{4\pi-\pi}{4}=\pi-\dfrac{\pi}4\)

Таким образом, \(\sin{\dfrac{3\pi}4}=\sin\left(\pi-\dfrac{\pi}4\right)=\sin\dfrac{\pi}4=\dfrac{\sqrt2}2\) .

\(\blacktriangleright\) Для упрощения запоминания и использования формул приведения можно следовать следующему правилу.

Случай 1. \(n\cdot \pi\pm \alpha\) \[\sin(n\cdot \pi\pm \alpha)=\bigodot \sin\alpha\] \[\cos(n\cdot \pi\pm \alpha)=\bigodot \cos\alpha\]

Знак угла можно найти, определив, в какой четверти он находится. Пользуясь таким правилом, предполагаем, что угол \(\alpha\) находится в \(I\) четверти.

Случай 2. Если угол можно представить в виде , где \(n\in\mathbb{N}\) , то \[\sin(n\cdot \pi+\dfrac{\pi}2\pm \alpha)=\bigodot \cos\alpha\] где на месте \(\bigodot\) стоит знак синуса угла \(n\cdot \pi\pm \alpha\) . \[\cos(n\cdot \pi+\dfrac{\pi}2\pm \alpha)=\bigodot \sin\alpha\] где на месте \(\bigodot\) стоит знак косинуса угла \(n\cdot \pi\pm \alpha\) .

Знак определяется таким же образом, как и в случае \(1\) .

Заметим, что в первом случае функция остается неизменной, а во втором случае - меняется (говорят, что функция меняется на кофункцию).

Пример 6. Найти \(\sin \dfrac{13\pi}{3}\) .

Преобразуем угол: \(\dfrac{13\pi}{3}=\dfrac{12\pi+\pi}{3}=4\pi+\dfrac{\pi}3\) , следовательно, \(\sin \dfrac{13\pi}{3}=\sin \left(4\pi+\dfrac{\pi}3\right)=\sin\dfrac{\pi}3=\dfrac{\sqrt3}2\)

Пример 7. Найти \(\cos \dfrac{17\pi}{6}\) .

Преобразуем угол: \(\dfrac{17\pi}{6}=\dfrac{18\pi-\pi}{6}=3\pi-\dfrac{\pi}6\) , следовательно, \(\cos \dfrac{17\pi}{6}=\cos \left(3\pi-\dfrac{\pi}6\right)=-\cos\dfrac{\pi}6=-\dfrac{\sqrt3}2\)

\(\blacktriangleright\) Область значений синуса и косинуса .
Т.к. координаты \(x_{\alpha}\) и \(y_{\alpha}\) любой точки \(P_{\alpha}\) на единичной окружности находятся в пределах от \(-1\) до \(1\) , а \(\cos\alpha\) и \(\sin\alpha\) - абсцисса и ордината соответственно этой точки, то \[{\large{-1\leq \cos\alpha\leq 1 ,\qquad -1\leq\sin\alpha\leq 1}}\]

Из прямоугольного треугольника по теореме Пифагора имеем: \(x^2_{\alpha}+y^2_{\alpha}=1^2\)
Т.к. \(x_{\alpha}=\cos\alpha,\ y_{\alpha}=\sin\alpha \Rightarrow\) \[{\large{\sin^2\alpha+\cos^2\alpha=1}} - \textbf{основное тригонометрическое тождество (ОТТ)}\]

\(\blacktriangleright\) Тангенс и котангенс .

Т.к. \(\mathrm{tg}\,\alpha=\dfrac{\sin\alpha}{\cos\alpha}, \cos\alpha\ne 0\)

\(\mathrm{ctg}\,\alpha=\dfrac{\cos\alpha}{\sin\alpha}, \sin\alpha\ne 0\) , то:

1) \({\large{\mathrm{tg}\,\alpha\cdot \mathrm{ctg}\,\alpha=1, \cos\alpha\ne 0, \sin\alpha \ne 0}}\)

2) тангенс и котангенс положительны в \(I\) и \(III\) четвертях и отрицательны в \(II\) и \(IV\) четвертях.

3) область значений тангенса и котангенса - все вещественные числа, т.е. \(\mathrm{tg}\,\alpha\in\mathbb{R}, \ \mathrm{ctg}\,\alpha\in\mathbb{R}\)

4) для тангенса и котангенса также определены формулы приведения.

Случай 1. \[\mathrm{tg}\,(n\cdot \pi\pm \alpha)=\bigodot \mathrm{tg}\,\alpha\] где на месте \(\bigodot\) стоит знак тангенса угла \(n\cdot \pi\pm \alpha\) (\(\cos\alpha\ne 0\) ). \[\mathrm{ctg}\,(n\cdot \pi\pm \alpha)=\bigodot \mathrm{ctg}\,\alpha\] где на месте \(\bigodot\) стоит знак котангенса угла \(n\cdot \pi\pm \alpha\) (\(\sin\alpha\ne 0\) ).

Случай 2. Если угол можно представить в виде \(n\cdot \pi+\dfrac{\pi}2\pm\alpha\) , где \(n\in\mathbb{N}\) , то \[\mathrm{tg}\,(n\cdot \pi+\dfrac{\pi}2\pm \alpha)=\bigodot \mathrm{ctg}\,\alpha\] где на месте \(\bigodot\) стоит знак тангенса угла \(n\cdot \pi\pm \alpha\) (\(\sin\alpha\ne 0\) ). \[\mathrm{ctg}\,(n\cdot \pi+\dfrac{\pi}2\pm \alpha)=\bigodot \mathrm{tg}\,\alpha\] где на месте \(\bigodot\) стоит знак котангенса угла \(n\cdot \pi\pm \alpha\) (\(\cos\alpha\ne 0\) ).

5) ось тангенсов проходит через точку \((1;0)\) параллельно оси синусов, причем положительное направление оси тангенсов совпадает с положительным направлением оси синусов;
ось котангенсов - через точку \((0;1)\) параллельно оси косинусов, причем положительное направление оси котангенсов совпадает с положительным направлением оси косинусов.


Доказательство этого факта приведем на примере оси тангенсов.

\(\triangle OP_{\alpha}K \sim \triangle AOB \Rightarrow \dfrac{P_{\alpha}K}{OK}=\dfrac{BA}{OB} \Rightarrow \dfrac{\sin\alpha}{\cos\alpha}=\dfrac{BA}1 \Rightarrow BA=\mathrm{tg}\,\alpha\) .

Таким образом, если точку \(P_{\alpha}\) соединить прямой с центром окружности, то эта прямая пересечет линию тангенсов в точке, значение которой равно \(\mathrm{tg}\,\alpha\) .

6) из основного тригонометрического тождества вытекают следующие формулы: \ Первую формулу получают делением правой и левой частей ОТТ на \(\cos^2\alpha\) , вторую - делением на \(\sin^2\alpha\) .

Обращаем внимание, что тангенс не определен в углах, где косинус равен нулю (это \(\alpha=\dfrac{\pi}2+\pi n, n\in\mathbb{Z}\) );
котангенс не определен в углах, где синус равен нулю (это \(\alpha=\pi+\pi n, n\in\mathbb{Z}\) ).

\(\blacktriangleright\) Четность косинуса и нечетность синуса, тангенса, котангенса .

Напомним, что функция \(f(x)\) называется четной, если \(f(-x)=f(x)\) .

Функция называется нечетной, если \(f(-x)=-f(x)\) .

По окружности видно, что косинус угла \(\alpha\) равен косинусу угла \(-\alpha\) при любых значениях \(\alpha\) :

Таким образом, косинус - четная функция, значит, верна формула \[{\Large{\cos(-x)=\cos x}}\]

По окружности видно, что синус угла \(\alpha\) противоположен синусу угла \(-\alpha\) при любых значениях \(\alpha\) :

Таким образом, синус - нечетная функция, значит, верна формула \[{\Large{\sin(-x)=-\sin x}}\]

Тангенс и котангенс также нечетные функции: \[{\Large{\mathrm{tg}\,(-x)=-\mathrm{tg}\,x}}\] \[{\Large{\mathrm{ctg}\,(-x)=-\mathrm{ctg}\,x}}\]

Т.к. \(\mathrm{tg}\,(-x)=\dfrac{\sin (-x)}{\cos(-x)}=\dfrac{-\sin x}{\cos x}=-\mathrm{tg}\,x \qquad \mathrm{ctg}\,(-x)=\dfrac{\cos(-x)}{\sin(-x)}=-\mathrm{ctg}\,x\) )

Как показывает практика, один из сложнейших разделов математики, который встречается школьникам в ЕГЭ, - тригонометрия. С наукой о соотношениях сторон в треугольниках начинают знакомиться в 8 классе. Уравнения данного типа содержат переменную под знаком тригонометрических функций. Несмотря на то, что простейшие из них: \(sin x = a\) , \(cos x = a\) , \(tg x = a\) , \(ctg x = a\) - знакомы практически каждому школьнику, их выполнение зачастую вызывает сложности.

В ЕГЭ по математике профильного уровня правильно решенное задание по тригонометрии оценивается очень высоко. Школьник может получить до 4 первичных баллов за верно выполненную задачу из данного раздела. Для этого искать к ЕГЭ шпаргалки по тригонометрии практически бессмысленно. Наиболее разумное решение - хорошо подготовиться к экзамену.

Как это сделать?

Для того чтобы тригонометрия в ЕГЭ по математике вас не пугала, воспользуйтесь при подготовке нашим порталом. Это удобно, просто и эффективно. В данном разделе нашего образовательного портала, открытом для учащихся как Москвы, так и других городов, представлены доступно изложенный теоретический материал и формулы по тригонометрии для ЕГЭ. Также ко всем математическим определениям мы подобрали примеры с подробным описанием хода их решения.

После изучения теории по разделу «Тригонометрия» при подготовке к ЕГЭ рекомендуем перейти в «Каталоги», для того чтобы полученные знания лучше усвоились. Здесь вы сможете выбрать задачи по интересующей теме и просмотреть их решения. Таким образом, повторение теории по тригонометрии в ЕГЭ будет максимально эффективным.

Что нужно знать?

Прежде всего необходимо выучить значения \(sin\) , \(cos\) , \(tg\) , \(ctg\) острых углов от \(0°\) до \(90°\) . Также при подготовке к ЕГЭ в Москве стоит запомнить основные методы решения заданий по тригонометрии. Следует учесть, что, выполняя задачи, вы должны привести уравнение к простейшему виду. Сделать это можно следующим образом:

  • разложив уравнение на множители;
  • заменив переменную (сведение к алгебраическим уравнениям);
  • приведя к однородному уравнению;
  • перейдя к половинному углу;
  • преобразовав произведения в сумму;
  • введя вспомогательный угол;
  • использовав способ универсальной подстановки.

При этом чаще всего учащемуся приходится в ходе решения использовать несколько из перечисленных методов.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.