Болезни Военный билет Призыв

Построение графика в методе симпсона. Смотреть что такое "Метод Симпсона" в других словарях

В этом методе предлагается подынтегральную функцию на частичном отрезке аппроксимировать параболой, проходящей через точки
(x j , f (x j )), где j = i -1; i -0.5; i , то есть подынтегральную функцию аппроксимируем интерполяционным многочленом Лагранжа второй степени:

(10.14)

Проведя интегрирование, получим:

(10.15)

Это и есть формула Симпсона или формула парабол. На отрезке
[a, b ] формула Симпсона примет вид

(10.16)

Графическое представление метода Симпсона показано на рис. 2.4.

Рис. 10.4. Метод Симпсона

Избавимся в выражении (2.16) от дробных индексов, переобозначив переменные:

(10.17)

Тогда формула Симпсона примет вид

(10.18)

Погрешность формулы (2.18) оценивается следующим выражением:

, (10.19)

где h·n = b - a , . Таким образом, погрешность формулы Симпсона пропорциональна O (h 4 ).

Замечание. Следует отметить, что в формуле Симпсона отрезок интегрирования обязательно разбивается на четное число интервалов.

10.5. Вычисление определенных интегралов методами
Монте–Карло

Рассматриваемые ранее методы называются детерминированными , то есть лишенными элемента случайности.

Методы Монте–Карло (ММК) – это численные методы решения математических задач с помощью моделирования случайных величин. ММК позволяют успешно решать математические задачи, обусловленные вероятностными процессами. Более того, при решении задач, не связанных с какими-либо вероятностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Рассмотрим вычисление определенного интеграла

(10.20)

При вычислении этого интеграла по формуле прямоугольников интервал [a, b ] разбиваем на N одинаковых интервалов, в серединах которых вычислялись значения подынтегральной функции. Вычисляя значения функции в случайных узлах, можно получить более точный результат:

(10.21)

(10.22)

Здесь γ i - случайное число, равномерно распределенное на интервале
. Погрешность вычисления интеграла ММК ~ , что значительно больше, чем у ранее изученных детерминированных методов.

На рис. 2.5 представлена графическая реализация метода Монте-Карло вычисления однократного интеграла со случайными узлами (2.21) и (2.22).


(2.23)

Рис. 10.6. Интегрирование методом Монте-Карло (2-й случай)

Как видно на рис. 2.6, интегральная кривая лежит в единичном квадрате, и если мы сумеем получать пары случайных чисел, равномерно распределенных на интервале , то полученные значения (γ 1, γ 2) можно интерпретировать как координаты точки в единичном квадрате. Тогда, если этих пар чисел получено достаточно много, можно приблизительно считать, что
. Здесь S – число пар точек, попавших под кривую, а N общее число пар чисел.

Пример 2.1. Вычислить следующий интеграл:

Поставленная задача была решена различными методами. Полученные результаты сведены в табл. 2.1.

Таблица 2.1

Замечание. Выбор табличного интеграла позволил нам сравнить погрешность каждого метода и выяснить влияние числа разбиений на точность вычислений.

11 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ
И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .

При вычислении определенного интеграла не всегда получаем точное решение. Не всегда удается представление в виде элементарной функции. Формула Ньютона-Лейбница не подходит для вычисления, поэтому необходимо использовать методы численного интегрирования. Такой метод позволяет получать данные с высокой точностью. Метод Симпсона является таковым.

Для этого необходимо дать графическое представление выведению формулы. Далее идет запись оценки абсолютной погрешности при помощи метода Симпсона. В заключении произведем сравнение трех методов: Симпсона, прямоугольников, трапеций.

Yandex.RTB R-A-339285-1

Метод парабол – суть, формула, оценка, погрешности, иллюстрации

Задана функция вида y = f (x) , имеющая непрерывность на интервале [ a ; b ] , необходимо произвести вычисление определенного интеграла ∫ a b f (x) d x

Необходимо разбить отрезок [ a ; b ] на n отрезков вида x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n с длиной 2 h = b - a n и точками a = x 0 < x 2 < x 4 < . . . < x 2 π - 2 < x 2 π = b . Тогда точки x 2 i - 1 , i = 1 , 2 , . . . , n считаются серединами отрезков x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n . Данный случай показывает, что определение узлов производится через x i = a + i · h , i = 0 , 1 , . . . , 2 n .

Каждый интервал x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n подынтегральной функции приближен при помощи параболы, заданной y = a i x 2 + b i x + c i , проходящей через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) . Поэтому метод и имеет такое название.

Данные действия выполняются для того, чтобы интеграл ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x взять в качестве приближенного значения ∫ x 2 i - 2 x 2 i f (x) d x . Можем вычислить при помощи формулы Ньютона-Лейбница. Это и есть суть метода парабол.Рассмотрим рисунок, приведенный ниже.

Графическая иллюстрация метода парабол (Симпсона)

При помощи красной линии изображается график функции y = f (x) , синей – приближение графика y = f (x) при помощи квадратичных парабол.

Исходя из пятого свойства определенного интеграла получаем ∫ a b f (x) d x = ∑ i = 1 n ∫ x 2 i - 2 x 2 i f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Для того чтобы получить формулу методом парабол, необходимо произвести вычисление:

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Пусть x 2 i - 2 = 0 . Рассмотрим рисунок, приведенный ниже.

Изобразим, что через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить одна квадратичная парабола вида y = a i x 2 + b i x + c i . Иначе говоря, необходимо доказать, что коэффициенты могут определяться только единственным способом.

Имеем, что x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) являются точками параболы, тогда каждое из представленных уравнений является справедливым. Получаем, что

a i (x 2 i - 2) 2 + b i · x 2 i - 2 + c i = f (x 2 i - 2) a i (x 2 i - 1) 2 + b i · x 2 i - 1 + c i = f (x 2 i - 1) a i (x 2 i) 2 + b i · x 2 i + c i = f (x 2 i)

Полученная система разрешается относительно a i , b i , c i , где необходимо искать определитель матрицы по Вандермонду. Получаем, что

(x 2 i - 2) 2 x 2 i - 2 1 x 2 i - 1) 2 x 2 i - 1 1 (x 2 i) 2 x 2 i 1 , причем он считается отличным от нуля и не совпадает с точками x 2 i - 2 , x 2 i - 1 , x 2 i . Это признак того, что уравнение имеет только одно решение, тогда и выбранные коэффициенты a i ; b i ; c i могут определяться только единственным образом, тогда через точки x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить только одна парабола.

Можно переходить к нахождению интеграла ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x .

Видно, что

f (x 2 i - 2) = f (0) = a i · 0 2 + b i · 0 + c i = c i f (x 2 i - 1) = f (h) = a i · h 2 + b i · h + c i f (x 2 i) = f (0) = 4 a i · h 2 + 2 b i · h + c i

Для осуществления последнего перехода необходимо использовать неравенство вида

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x = ∫ 0 2 h (a i x 2 + b i x + c i) d x = = a i x 3 3 + b i x 2 2 + c i x 0 2 h = 8 a i h 3 3 + 2 b i h 2 + 2 c i h = = h 3 8 a i h 2 + 6 b i h + 6 c i = h 3 f x 2 i - 2 + 4 f 2 2 i - 1 + f x 2 i

Значит, получаем формулу, используя метод парабол:

∫ a b f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x = = ∑ i = 1 n h 3 (f (x 2 i - 2) + 4 f (x 2 i - 1) + f (x 2 i)) = = h 3 f (x 0) + 4 f (x 1) + f (x 2) + f (x 2) + 4 f (x 3) + f (x 4) + . . . + + f (x 2 n - 2) + 4 f (x 2 n - 1) + f (x 2 n) = = h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Определение 1

Формула метода Симпсона имеет вид ∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) .

Формула оценки абсолютной погрешности имеет вид δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 .

Примеры приближенного вычисления определенных интегралов методом парабол

Метод Симпсона предполагает приближенное вычисление определенных интегралов. Чаще всего имеются два типа задач, для которых применим данный метод:

  • при приближенном вычислении определенного интеграла;
  • при нахождении приближенного значения с точностью δ n .

На точность вычисления влияет значение n , чем выше n , тем точнее промежуточные значения.

Пример 1

Вычислить определенный интеграл ∫ 0 5 x d x x 4 + 4 при помощи метода Симпсона, разбивая отрезок интегрирования на 5 частей.

Решение

По условию известно, что a = 0 ; b = 5 ; n = 5 , f (x) = x x 4 + 4 .

Тогда запишем формулу Симпсона в виде

∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Чтобы применить ее в полной мере, необходимо рассчитать шаг по формуле h = b - a 2 n , определить точки x i = a + i · h , i = 0 , 1 , . . . , 2 n и найти значения подынтегральной функции f (x i) , i = 0 , 1 , . . . , 2 n .

Промежуточные вычисления необходимо округлять до 5 знаков. Подставим значения и получим

h = b - a 2 n = 5 - 0 2 · 5 = 0 . 5

Найдем значение функции в точках

i = 0: x i = x 0 = a + i · h = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 0 0 4 + 4 = 0 i = 1: x i = x 1 = a + i · h = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 0 . 5 0 . 5 4 + 4 ≈ 0 . 12308 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 5 5 4 + 4 ≈ 0 . 00795

Наглядность и удобство оформляется в таблице, приведенной ниже

i 0 1 2 3 4 5
x i 0 0 . 5 1 1 . 5 2 2 . 5
f x i 0 0 . 12308 0 . 2 0 . 16552 0 . 1 0 . 05806
i 6 7 8 9 10
x i 3 3 . 5 4 4 . 5 5
f x i 0 . 03529 0 . 02272 0 . 01538 0 . 01087 0 . 00795

Необходимо подставить результаты в формулу метода парабол:

∫ 0 5 x d x x 4 + 4 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = 0 . 5 3 0 + 4 · 0 . 12308 + 0 . 16552 + 0 . 05806 + + 0 . 02272 + 0 . 01087 + 2 · 0 . 2 + 0 . 1 + + 0 . 03529 + 0 . 01538 + 0 . 00795 ≈ ≈ 0 . 37171

Для вычисления мы выбрали определенный интеграл, который можно вычислить по Ньютону-Лейбницу. Получим:

∫ 0 5 x d x x 4 + 4 = 1 2 ∫ 0 5 d (x 2) x 2 2 + 4 = 1 4 a r c t g x 2 2 0 5 = 1 4 a r c t g 25 2 ≈ 0 . 37274

Ответ: Результаты совпадают до сотых.

Пример 2

Вычислить неопределенный интеграл ∫ 0 π sin 3 x 2 + 1 2 d x при помощи метода Симпсона с точностью до 0 , 001 .

Решение

По условию имеем, что а = 0 , b = π , f (x) = sin 3 x 2 + 1 2 , δ n ≤ 0 . 001 . Необходимо определить значение n . Для этого используется формула оценки абсолютной погрешности метода Симпсона вида δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001

Когда найдем значение n , то неравенство m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001 будет выполняться. Тогда, применив метод парабол, погрешность при вычислении не превысит 0 . 001 . Последнее неравенство примет вид

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88

Теперь необходимо выяснить, какое наибольшее значение может принимать модуль четвертой производной.

f " (x) = sin 3 x 2 + 1 2 " = 3 2 cos 3 x 2 ⇒ f "" (x) = 3 2 cos 3 x 2 " = - 9 4 sin 3 x 2 ⇒ f " " " (x) = - 9 4 sin 3 x 2 " = - 27 8 cos 3 x 2 ⇒ f (4) (x) = - 27 8 cos 3 x 2 " = 81 16 sin 3 x 2

Область определения f (4) (x) = 81 16 sin 3 x 2 принадлежит интервалу - 81 16 ; 81 16 , а сам отрезок интегрирования [ 0 ; π) имеет точку экстремума, из этого следует, что m a x [ 0 ; π ] f (4) (x) = 81 16 .

Производим подстановку:

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88 ⇔ n 4 ≥ 81 16 · π - 0 5 2 . 88 ⇔ ⇔ n 4 > 537 . 9252 ⇔ n > 4 . 8159

Получили, что n – натуральное число, тогда его значение может быть равным n = 5 , 6 , 7 … для начала необходимо взять значение n = 5 .

Действия производить аналогично предыдущему примеру. Необходимо вычислить шаг. Для этого

h = b - a 2 n = π - 0 2 · 5 = π 10

Найдем узлы x i = a + i · h , i = 0 , 1 , . . . , 2 n , тогда значение подынтегральной функции будет иметь вид

i = 0: x i = x 0 = a + i · h = 0 + 0 · π 10 = 0 ⇒ f (x 0) = f (0) = sin 3 · 0 2 + 1 2 = 0 . 5 i = 1: x i = x 1 = a + i · h = 0 + 1 · π 10 = π 10 ⇒ f (x 1) = f (π 10) = sin 3 · π 10 2 + 1 2 ≈ 0 . 953990 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · π 10 = π ⇒ f (x 10) = f (π) = sin 3 · π 2 + 1 2 ≈ - 0 . 5 7 π 10

4 π 5 9 π 10 π f (x i) 1 . 207107 0 . 809017 0 . 343566 - 0 . 087785 - 0 . 391007 - 0 . 5

Осталось подставить значения в формулу решения методом парабол и получим

∫ 0 π sin 3 x 2 + 1 2 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = π 30 · 0 , 5 + 4 · 0 . 953990 + 1 . 487688 + 1 . 207107 + + 0 . 343566 - 0 . 391007 + 2 · 1 . 309017 + 1 . 451056 + + 0 . 809017 - 0 . 87785 - 0 . 5 = = 2 . 237650

Метод Симпсона позволяет нам получать приближенное значение определенного интеграла ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237 с точностью до 0 , 001 .

При вычислении формулой Ньютона-Лейбница получим в результате

∫ 0 π sin 3 x 2 + 1 2 d x = - 2 3 cos 3 x 2 + 1 2 x 0 π = = - 3 2 cos 3 π 2 + π 2 - - 2 3 cos 0 + 1 2 · 0 = π 2 + 2 3 ≈ 2 . 237463

Ответ: ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237

Замечание

В большинстве случаях нахождение m a x [ a ; b ] f (4) (x) проблематично. Поэтому применяется альтернатива – метод парабол. Его принцип подробно разъясняется в разделе метода трапеций. Метод парабол считается предпочтительным способом для разрешения интеграла. Вычислительная погрешность влияет на результат n . Чем меньше его значение, тем точнее приближенное искомое число.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :

Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем

-

Рис. 3.3. Иллюстрация к методу Симпсона

Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

(3.35)

Полученное соотношение называется формулой Симпсона или формулой парабол .

Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).

Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид

(3.36)

Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.

Пример . Вычислить по методу Симпсона интеграл

Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим

Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).

Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .

Рис. 3.4. Алгоритм метода Симпсона

Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.

Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.

Навигация по странице.

Метод парабол (Симпсона) - суть метода, формула, оценка погрешности, иллюстрация.

Пусть функция y = f(x) непрерывна на отрезке и нам требуется вычислить определенный интеграл .

Разобьем отрезок на n элементарных отрезков длины точками . Пусть точки являются серединами отрезков соответственно. В этом случае все "узлы" определяются из равенства .

Суть метода парабол.

На каждом интервале подынтегральная функция приближается квадратичной параболой , проходящей через точки . Отсюда и название метода - метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла взять , который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключается суть метода парабол .

Геометрически это выглядит так:


Графическая иллюстрация метода парабол (Симпсона).

Красной линией изображен график функции y=f(x) , синей линией показано приближение графика функции y=f(x) квадратичными параболами на каждом элементарном отрезке разбиения.

Вывод формулы метода Симпсона (парабол).

В силу пятого свойства определенного интеграла имеем .

Для получения формулы метода парабол (Симпсона) нам осталось вычислить .

Пусть (мы всегда можем к этому прийти, проведя соответствующее геометрическое преобразования сдвига для любого i = 1, 2, ..., n ).

Сделаем чертеж.

Покажем, что через точки проходит только одна квадратичная парабола . Другими словами, докажем, что коэффициенты определяются единственным образом.

Так как - точки параболы, то справедливо каждое из уравнений системы

Записанная система уравнений есть система линейных алгебраических уравнений относительно неизвестных переменных . Определителем основной матрицы этой системы уравнений является определитель Вандермонда , а он отличен от нуля для несовпадающих точек . Это указывает на то, что система уравнений имеет единственное решение (об этом говорится в статье ), то есть, коэффициенты определяются единственным образом, и через точки проходит единственная квадратичная парабола.

Перейдем к нахождению интеграла .

Очевидно:

Используем эти равенства, чтобы осуществить последний переход в следующей цепочке равенств:

Таким образом, можно получить формулу метода парабол:

Формула метода Симпсона (парабол) имеет вид
.

Оценка абсолютной погрешности метода Симпсона.

Абсолютная погрешность метода Симпсона оценивается как .

Примеры приближенного вычисления определенных интегралов методом Симпсона (парабол).

Разберем применение метода Симпсона (парабол) при приближенном вычислении определенных интегралов.

Обычно встречается два типа заданий:

Возникает логичный вопрос: "С какой степенью точности проводить промежуточные вычисления"?

Ответ прост - точность промежуточных вычислений должна быть достаточной. Промежуточные вычисления следует проводить с точностью на 3-4 порядка выше, чем порядок . Также точность промежуточных вычислений зависит от числа n - чем больше n , тем точнее следует проводить промежуточные вычисления.

Пример.

Вычислите определенный интеграл методом Симпсона, разбив отрезок интегрирования на 5 частей.

Решение.

Из условия мы знаем, что a = 0; b = 5; n = 5 ; .

Формула метода Симпсона (парабол) имеет вид . Для ее применения нам требуется вычислить шаг , определить узлы и вычислить соответствующие значения подынтегральной функции .

Промежуточные вычисления будем проводить с точностью до четырех знаков (округлять на пятом знаке).

Итак, вычисляем шаг .

Переходим к узлам и значениям функции в них:

Для наглядности и удобства результаты сведем в таблицу:

Подставляем полученные результаты в формулу метода парабол:

Мы специально взяли определенный интеграл, который можно вычислить по формуле Ньютона-Лейбница, чтобы сравнить результаты.

Результаты совпадают с точностью до сотых.

Пример.

Вычислите определенный интеграл методом Симпсона с точностью до 0.001 .

Решение.

В нашем примере a = 0 , .

Первым делом нам нужно определить n . Для этого обратимся к неравенству для оценки абсолютной погрешности метода Симпсона . Можно сказать, что если мы найдем n , для которого будет выполняться неравенство , то при использовании метода парабол для вычисления исходного определенного интеграла абсолютная погрешность не превысит 0.001 . Последнее неравенство можно переписать в виде .

Выясним, какое наибольшее значение принимает модуль четвертой производной подынтегральной функции на отрезке интегрирования.

есть интервал , а отрезок интегрирования содержит точки экстремума, поэтому .

Подставляем найденное значение в неравенство и решим его:

Так как n является натуральным числом (это же количество отрезков, на которые разбивается отрезок интегрирования), то можно брать n = 5, 6, 7, … Чтобы не делать лишних вычислений, возьмем n = 5 .

Теперь действуем как в предыдущем примере. В промежуточных вычислениях округление будем проводить на шестом порядке.

Вычисляем шаг .

Находим узлы и значения подынтегральной функции в них:

Результаты вычислений объединяем в таблицу:

Подставляем значения в формулу метода парабол:

Таким образом, по методу Симпсона получено приближенное значение определенного интеграла с точностью до 0.001 .

Действительно, вычислив исходный интеграл по формуле Ньютона-Лейбница, получаем

Замечание.

Нахождение во многих случаях затруднительно. Можно обойтись без этого, применив альтернативный подход к использованию метода парабол. Его принцип описан в разделе метод трапеций , так что не будем повторяться.

Какой же метод применять при численном интегрировании?

Точность метода Симпсона (парабол) выше точности метода прямоугольников и трапеций для заданного n (это видно из оценки абсолютной погрешности), так что его использование предпочтительнее.

Следует помнить о влиянии вычислительной погрешности на результат при больших n , что может отдалить приближенное значение от точного.