Болезни Военный билет Призыв

Механизм действия синапса. Строение синапса. Смотреть что такое "Синапс" в других словарях


Рассмотрим строение синапса на примере аксо- соматического. Синапс состоит из трех частей: преси- наптического окончания, синаптической щели и пост- синаптической мембраны (рис. 9).
Пресинаптическое окончание (синаптическая бляшка) представляет собой расширенную часть тер- минали аксона. Синаптическая щель - это пространство между двумя контактирующими нейронами. Диаметр синаптической щели составляет 10 - 20 нм. Мембрана пресинаптического окончания, обращенная к синаптической щели, называется пресинаптической мембраной. Третья часть синапса - постсинаптичес- кая мембрана, которая расположена напротив пресинаптической мембраны.
Пресинаптическое окончание заполнено пузырьками (везикулами) и митохондриями. В везикулах находятся биологически активные вещества - медиаторы. Медиаторы синтезируются в соме и по микротрубочкам транспортируются в пресинаптическое окончание. Наиболее часто в качестве медиатора выступают адреналин, норадреналин, ацетилхолин, серотонин, гамма-аминомасляная кислота (ГАМК), глицин и другие. Обычно синапс содержит один из медиаторов в большем количестве по сравнению с другими медиаторами. По типу медиатора принято обозначать синапсы: адреноэргические, холинэргические, серото- нинэргические и др.
В состав постсинаптической мембраны входят особые белковые молекулы - рецепторы, которые могут присоединять молекулы медиаторов.
Синаптическая щель заполнена межклеточной жидкостью, в которой находятся ферменты, способствующие разрушению медиаторов.
На одном постсинаптическом нейроне может находиться до 20000 синапсов, часть которых являются возбудительными, а часть - тормозными.
Помимо химических синапсов, в которых при взаимодействии нейронов участвуют медиаторы, в нервной системе встречаются электрические синапсы. В электрических синапсах взаимодействие двух нейронов осуществляется посредством биотоков. В цент-

ПД нервного волокна (ПД - потенциал действия)

кая мембрана рецепторы

ральной нервной системе преобладают химические синапсы.
В некоторых межнейронных синапсах электрическая и химическая передача осуществляется одновременно - это смешанный тип синапсов.
Влияние возбудительных и тормозных синапсов на возбудимость постсинаптического нейрона суммируется, и эффект зависит от места расположения синапса. Чем ближе синапсы расположены к аксональному холмику, тем они эффективнее. Напротив, чем дальше расположены синапсы от аксонального холмика (например, на окончании дендритов), тем они менее эффективны. Таким образом, синапсы, расположенные на соме и аксональном холмике, оказывают влияние на возбудимость нейрона быстро и эффективно, а влияние удаленных синапсов медленно и плавно.

Ампмщ iipinl системы
Нейронные сети
Благодаря синаптическим связям нейроны объединены в функциональные единицы - нейронные сети. Нейронные сети могут быть образованы нейронами, расположенными на небольшом расстоянии. Такую нейронную сеть называют локальной. Кроме того, в сеть могут быть объединены нейроны, удаленные друг от друга, из разных областей мозга. Самый высокий уровень организации связей нейронов отражает соединение нескольких областей центральной нервной системы. Такую нервную сеть называют путем, или системой. Различают нисходящие и восходящие пути. По восходящим путям информация передается от нижележащих областей мозга к вышележащим (например, от спинного мозга к коре полушарий большого мозга). Нисходящие пути связывают кору больших полушарий мозга со спинным мозгом.
Самые сложные сети называются распределительными системами. Они образуются нейронами разных отделов мозга, управляющих поведением, в которых участвует организм как единое целое.
Некоторые нервные сети обеспечивают конвергенцию (схождение) импульсов на ограниченном количестве нейронов. Нервные сети могут быть построены также по типу дивергенции (расхождение). Такие сети обусловливают передачу информации на значительные расстояния. Кроме того, нервные сети обеспечивают интеграцию (суммирование или обобщение) различного рода информации (рис. 10).

3.6. Синапсы

Нейроны в ЦНС объединены между собой в сложнейшие нейронные цепи посредством синапсов. Синапс – область (зона) контакта нейронов или нейрона и рабочего органа. Синапсы классифицируются по нескольким признакам:

по местоположению и принадлежности соответствующим клеткам – центральные (аксосоматические, аксодендритические,

аксоаксональныеи) и периферические (нервно-мышечные, нейросекреторные)

по функциональному значению – возбуждающие и тормозящие;

по способу передачи информации – химические, электрические, смешанные.

3.6.1. Строение синапса. Проведение возбуждения через синапс

Аксон, подходя к другим нейронам или клеткам рабочего органа, теряет миелиновую оболочку, разветвляется, истончается. Каждое разветвление аксона заканчивается утолщением, которое контактирует с телами, дендритами, аксонами соседних нейронов,клетками органов (1 аксон может образовать до 10000 синапсов). В пресинаптическом отделе находится большое количество везикул (пузырьков),
в которых содержатся медиаторы – химические вещества (посредники), оказывающие возбуждающий или тормозящий эффекты в зависимости от своего химического строения. Мембрана, покрывающая пресинаптическое окончание в области контакта несколько утолщена и называется пресинаптической мембраной (рис. 8, 8.1).

Мембрана тела, аксона, дендрита, клеток рабочих органов называется постсинаптической мембраной. Она содержит рецепторы,
обладающие высокой чувствительностью и специфичностью к медиаторам (образно, медиатор – ключ, рецептор – замок). В различных синапсах находятся различные медиаторы – ацетилхолин, норадреналин, дофамин, серотонин и др.) В нервномышечных синапсах постсинаптическая мембрана имеет складчатое строение, что увеличивает ее поверхность.

Между пресинаптической и постсинаптической мембранами находится синаптическая щель (размером от 20 до 50 нанометров), заполненная внеклеточной жидкостью.

Таким образом, синапс включает в себя 3 части:

пресинаптическую мембрану

постсинаптическую мембрану

синаптическую щель

Проведение возбуждения через синапс. Проведение возбуждения через химический синапс – сложный физиологический процесс, протекающий поэтапно с участием медиаторов. Во многих центральных синапсах, нервномышечных и синапсах парасимпатической нервной системы медиатором является ацетилхолин . Потенциал действия по аксону доходит до бляшки и вызывает изменение проницаемости пресинаптической мембраны для ионов кальция, которые из синаптической щели входят внутрь бляшки, что приводит к разрыву пузырьков и выходу из них ацетилхолина в синаптическую щель. Он диффундирует к постсинаптической мембране, взаимодействует с рецепторами мембраны, что повышает ее возбудимость, изменяет проницаемость для ионов натрия, в результате на мембране возникает возбуждение, которое распространяется на другой нейрон или клетки рабочего органа. Медиатор выделяется в синаптическую щель в большем количестве, чем это необходимо для проведения нервных импульсов (проявление принципа биологической надежности). Избыток медиаторов гидролизуется ферментами, находящимися во внеклеточной жидкости синаптической щели.

Тормозные синапсы по строению и проведению возбуждения
не отличаются от возбуждающих
синапсов, отличие состоит лишь
в природе медиаторов и рецепторов постсинаптической мембраны. Медиаторами тормозных синапсов спинного мозга является глицин , головного мозга – гамма-аминомасляная кислота (ГАМК). Тормозной медиатор, взаимодействуя с рецепторами постсинаптической мембраны, вызывает снижение ее возбудимости, что приводит к блокированию нервных импульсов на постсинаптической мембране,
и возбуждение на другие нейроны не распространяется.

Электрические синапсы обнаружены в незначительных количествах в ЦНС и гладких мышцах. В этих синапсах пресинаптическая
и постсинаптическая мембраны близко прилегают друг к другу, синаптическая щель очень узкая (5 нанометров), через нее проходят поперечные (из клетки в клетку) каналы, образованные белковыми молекулами. Через этот щелевой контакт потенциал действия легко переходит с пресинаптического окончания на постсинаптическую мембрану.

Иногда встречаются смешанные синапсы : в одной части – химический, в другой – электрический механизмы передачи нервных импульсов.

Физиологические свойства синапсов

Все синапсы характеризуются рядом общих свойств:

1) одностороннее проведение возбуждения;

2) замедленное (задержка) проведение возбуждения (в электрических синапсах задержка короче);

3) низкая возбудимость и лабильность;

4) способность в суммации возбуждений;

5) склонность к утомлению.

3.6.2. Особенности функционирования синапсов у детей

Синаптическая задержка проведения нервных импульсов у детей более длительна, чем у взрослых (у новорожденных через синапс проходит около 20 импульсов в секунду, у взрослых – 100–150 имп/сек).
У детей в пресинаптическом отделе синапса содержится меньшее количество медиаторов, медленнее происходит их синтез, поэтому быстрее наступает утомление в синапсах и нервных центрах при длительном возбуждении, чем меньше возраст ребенка, тем в большей степени это выражено. В процессе роста у детей происходит образование большого количества новых синапсов, что способствует развитию мозга, процессов научения, памяти.


Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Рязанский государственный университет имени С.А. Есенина»

Институт психологии, педагогики и социальной работа

Контрольная работа по дисциплине «Нейрофизиология и основы ВНД»

по теме: «Понятие о синапсе, строение синапса.

Передача возбуждения в синапсе»

Выполнил студент 13Л группы

1курса ОЗО(3) А.И. Шарова

Проверил:

профессор медицинских наук

О.А. Белова

Рязань 2010

1. Введение……………………………………………………………..3

2. Структура и функции синапса……………………………………...6

3. Передача возбуждения в синапсе………………………………….8

4. Химический синапс…………………………………………………9

5. Выделение медиатора……………………………………………...10

6. Химические медиаторы и их виды………………………………..12

7. Заключение……………………………………………………………15

8. Список литературы………………………………………………....17

Введение .

Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения. Переход (передача) возбуждения с нервного волокна на иннервируемую им клетку (нервную, мышечную, секреторную) осуществляется через специализированное образование, которое получило название синапс.

Структура и функции синапса.

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапсы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс - представляет собой сложное структурное образование, состоящее из

    пресинаптической мембраны - электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке (чаще всего это концевое разветвление аксона)

    постсинаптической мембраны - электрогенная мембрана иннервируемой клетки, на которой образован синапс (чаще всего это участок мембраны тела или дендрита другого нейрона)

    синаптической щели - пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови

Синапсы могут быть между двумя нейронами (межнейронные) , между нейроном и мышечным волокном (нервно-мышечные) , между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные) , между отростками нейрона и другими клетками (железистыми) .

Существует несколько классификаций синапсов.

1. По локализации :

1) центральные синапсы;

2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы.

Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

а) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;

б) аксодендритный, образованный аксоном одного нейрона и дендритом другого;

в) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

г) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов :

а) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

б) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов :

1) возбуждающие синапсы;

2) тормозящие синапсы.

Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

Синапс тормозной - А. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше; Б. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

3. По механизмам передачи возбуждения в синапсах :

1) химические;

2) электрические;

3) смешанные

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществмедиаторов. Отличается большей специализированностью, чем электрический синапс.

Различают несколько видов химических синапсов , в зависимости от природы медиатора:

а) холинэргические.

б) адренэргические.

в) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

г) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

д) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Синапс адренергический - синапс, медиатором в котором является норадреналин. В нем происходит передача возбуждения при помощи трех катехоламинов; различают a1-, b1-, и b2 - адренергический синапсы. Они образуют нейроорганные синапсы симпатической нервной системы и синапсы ЦНС. Возбуждение a- адренореактивных синапсов вызывает сужение сосудов, сокращение матки; b1- адренореактивных синапсов - усиление работы сердца; b2 - адренореактивных - расширение бронхов.

Синапс холинергический - медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

В м-холинергическом синапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны. В электрическом синапсе медиатор не вырабатывается, синаптическая щель мала (2 - 4 нм) и в ней имеются белковые мостики-каналы, шириной 1 - 2 нм, по которым движутся ионы и небольшие молекулы. Это способствует низкому сопротивлению постсинаптической мембраны. Этот вид синапсов встречается значительно реже, чем химические и отличаются от них большей скоростью передачи возбуждения, высокой надежностью, возможностью двухстороннего проведения возбуждения.

Синапсы имеют ряд физиологических свойств :

1) клапанное свойство синапсов , т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки , связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100–150 имульсов в секунду).

Передача возбуждения в синапсе.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциал нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.

Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

1. По виду выделяемого медиатора выделяют химические синапсы двух видов:

а) адренергические (медиатором является адреналин).

б) холинергические (медиатором является ацетилхолин).

2. Электрические синапсы. Передают возбуждение без участия медиатора с большой скоростью и обладают двухсторонним проведением возбуждения. Структурной основой электрического синапса является нексус. Встречаются эти синапсы в железах внутренней секреции, эпителиальной ткани, ЦНС, сердце. В некоторых органах возбуждение может передаваться и через химические и через электрические синапсы.

3. По эффекту действия:

а) возбуждающие

б) тормозные

4. По месту расположения:

а) аксоаксональные

б) аксосоматические

в) аксодендрические

г) дендродендрические

д) дендросоматические.

Механизм передачи возбуждения в нервно-мышечном синапсе.

ПД достигая нервного окончания (пресинаптической мембраны) вызывает его деполяризацию. В результате этого внутрь окончания поступают ионы кальция. Увеличение концентрации кальция в нервном окончании способствует освобождению ацетилхолина, который выходит в синаптическую щель. Медиатор достигает постсинаптической мембраны и связывается там с рецепторами. В результате внутрь постсинаптической мембраны поступают ионы натрия и эта мембрана деполяризуется.

Если исходный уровень МПП составлял 85 мВ, то он может снижаться до 10 мВ, т.е. происходит частичная деполяризация, т.е. возбуждение пока еще не распространяется дальше, а находится в синапсе. В результате этих механизмов развивается синаптическая задержка, которая составляет от 0,2 до 1 мВ. частичная деполяризация постсинаптической мембраны называется возбуждающим постсинаптическим потенциалом (ВПСП).

Под влиянием ВПСП в соседнем чувствительном участке мембраны мышечного волокна возникает распространяющийся ПД, который и вызывает сокращение мышцы.

Ацетилхолин из пресинаптического окончания выделяется постоянно, но его концентрация невысока, что необходимо для поддержания тонуса мышцы в покое.

Для заблокирования передачи возбуждения через синапс применяют яд кураре, который связывается с рецепторами постсинаптической мембраны и препятствует их взаимодействию с ацетилхолином. Заблокировать проведение возбуждения через синапс может яд бутулин и другие вещества.

На наружной поверхности постсинаптической мембраны содержится фермент ацетилхолинэстераза, который расщепляет ацетилхолин и инактивирует его.

Принципы и особенности передачи возбуждения

в межнейральных синапсах.

Основной принцип передачи возбуждения в межнейральных синапсах такой же как и в нейромышечном синапсе. Однако существуют свои особенности:

1. Многие синапсы являются тормозными.

2. ВПСП при деполяризации одного синапса недостаточно для вызова распространяющегося потенциала действия, т.е. необходимо поступление импульсов к нервной клетке от многих синапсов.

Нервно-мышечный синапс

Классификация синапсов

1. По местоположению и принадлежности соответствующим структурам:

    периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

    центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2. По эффекту действия:

    возбуждающие

    тормозные

3. По способу передачи сигналов:

    Электрические,

    химические,

    смешанные.

4. По медиатору:

    холинергические,

    адренергические,

    серотонинергические,

    глицинергически. и т.д.

Тормозные медиаторы:

– гамма-аминомасляная кислота (ГАМК)

– таурин

– глицин

Возбуждающие медиаторы:

– аспартат

– глутамат

Оба эффекта:

– норадреналин

– дофамин

– серотонин

Механизм передачи возбуждения в синапсе

(на примере нервно-мышечного синапса)

    Выброс медиатора в синаптическую щель

    Диффузия АХ

    Возникновение возбуждения в мышечном волокне.

    Удаление АХ из синаптической щели

Последнее обновление: 29/09/2013

Синапс – определение, структура, роль синапса в строении нервной системы

Синапс в структуре нервной системы – это небольшой участок в окончании нейона, отвечающий за передачу информации между нервными клетками. В его формировании участвуют две клетки – передающая и воспринимающая.

Определение понятия

Синапс является небольшим отделом в окончании нейрона. С его помощью ведется передача информации от одного нейрона к другому. Синапсы располагаются в тех участках нервных клеток, где они контактируют друг с другом. Кроме того, синапсы имеются в местах, где нервные клетки вступают в соединение с различными мышцами или железами организма.

Строение синапса

Структура синапса состоит из трех частей, каждая из которых несет свои функции в процессе передачи информации. В его строении задействованы обе клетки, и передающая, и воспринимающая.

На конце аксона передающей клетки располагается начальная часть синапса – пресинаптическое окончание. Оно способно вызывать в клетке запуск (термин имеет несколько названий – «нейромедиаторы», «посредники», «медиаторы») – специальных химических веществ, благодаря которым реализовывается передача электрического сигнала между двумя нейронами.

Средняя часть синапса является синаптической щелью – пространством между двумя вступающими во взаимодействие нервными клетками. Именно через эту щель и идет электрический импульс от передающей клетки.

Заключительная часть синапса является частью клетки воспринимающей и называется постсинаптическим окончанием – контактирующем фрагментом клетки со множеством чувствительных рецепторов в своей структуре.

Механизм работы синапса

Из пресинаптического окончания вниз по аксону нейрона проходит электрический заряд от передающей клетки к воспринимающей. Он запускает выброс в синаптическую щель нейротрансмиттеров. Данные медиаторы двигаются через синаптическую щель до постсинаптического окончания следующей клетки, где вступают во взаимодействие с многочисленными ее рецепторами. Данный процесс вызывает цепь биохимических реакций и, как следствие, провоцирует запуск электрического импульса с кратким изменением своего потенциала на участке клетки. Данное явление известно как потенциал действия (или волна возбуждения при прохождении нервного сигнала).