Болезни Военный билет Призыв

Строение синапса. Что такое Синапс? Химические медиаторы и их виды

Тоже результат активности маленьких нервных клеток. Но это необыкновенно нужная и сложная работа была бы невозможна без синапсов, которые обеспечивают взаимодействие нейронов и связывают их в единые нейронные сети.

Если перевести слово «синапс» с греческого, то получится «связь». Это и есть место связи, соединения двух нейронов. Казалось бы, что тут такого особенного в обычном соединении? Но именно синапсы делают возможным прохождение импульса по цепи нервных клеток и играют важную роль во всех .

Место синапсов в нервной системе

Одна из главных задач нейронов – сохранение и обработка, поступающей из внешнего мира информации. От органов чувств, мышц, связок и т. д. слабые электрические сигналы по нервным волокнам попадают в головной мозг, там они распространяются по нейронным цепям, создавая очаги возбуждения и связи между отдельными нейронами, центрами и отделами головного мозга. Так вкратце происходят все процессы в нашей психике: от простейших безусловных рефлексов, до сложнейшей мыслительной деятельности.

Распространение нервных импульсов происходит благодаря имеющимся у нейронов отросткам. Короткие и сильно разветвленные дендриты специализируются на приеме сигналов от других нейронов. У одной нервной клетки может быть до 1500 дендритов. А вот передающее нервное волокно – аксон – одно, но оно длинное и может достигать 1,5 метров. Соединяясь с отростками дендритов, аксон передает сигнал от одного нейрона к другому.

Но проблема в том, что напрямую импульс чаще всего пройти не может, так как между «ветвями» дендрита одной нервной клетки и аксоном другой есть щель – пространство, заполненное межклеточным веществом.

Происходит следующее: в процессе движения импульса в месте соединения нервных волокон возникает биохимическая реакция, образуется белковая молекула – нейротрансмиттер или медиатор (посредник) – и закупоривает щель, создавая своеобразный мостик для прохождения сигнала.

Так возникает то, что еще в 1897 году английский физиолог Ч. Шеррингтон назвал синапсом.

Структура синапса

Если учесть, что размер нервной клетки редко превышает 100 мкм, то место соединения передающего и принимающего волокон двух нейронов вообще микроскопическое. И тем не менее, синапс имеет сложное строение, включающее в себя три основных отдела:

  • Нервное окончание «ветвей» дендрита, которое представляет собой микроскопическое утолщение, называемое пресинаптической мембраной. Это очень важная часть синапса, отвечающая за синтез белковых молекул.
  • Аналогичное утолщение на отростках аксона. Оно имеет специальные рецепторы, позволяющие принимать сигналы от медиаторов. Это постсинаптическая мембрана.
  • Синаптическая щель, в которой образуется медиатор – проводящая импульс белковая молекула. Эта часть синапса одновременно и препятствует прохождению сигнала, и является причиной возникновения молекул белков, которые не только играют роль «мостиков», но и участвуют в работе нервной системы и организма в целом.

Функции этих белковых соединений разнообразны, так как нейроны вырабатывают разные виды медиаторов, и их химический состав оказывает различное влияние на процессы в нервной системе. Причем влияние это настолько сильное, что оно во многом управляет психическими реакциями, а недостаток даже одного из белков может привести к серьезным заболеваниям, таким как болезнь Паркинсона или Альцгеймера.

Сейчас обнаружено и изучено более 60 видов нейротрансмиттеров с разными свойствами. Вот примеры некоторых из них:

  • Норадреналин – гормон . Он обладает возбуждающим действием, повышает активность всех систем организма и добавляет чувство ярости в наше эмоциональное состояние.
  • Серотонин. Его функции многообразны: от обеспечения процесса пищеварения до влияния на уровень сексуального влечения.
  • Глутамат необходим для запоминания и сохранения информации, но его переизбыток токсичен и может вызвать гибель нервных клеток.
  • Дофамин – гормон счастья, источник позитивных , дарующий состояние блаженства. И одновременно этот белок, как и многие другие, обеспечивает эффективность познавательных процессов. А его недостаток может вызвать состояние и привести к слабоумию.

Это далеко не все белки, которые вырабатывают нейроны, но даже такой пример позволяет оценить значение нейротрансмиттеров и роль синапсов в организации нормальной деятельности головного . Разрушение нервных связей в результате болезни или травмы может привести и к серьезным нарушениям психических функций.

Виды синапсов

Синапсы обеспечивают связи не только между нейронами головного мозга, но и с нервными клетками органов чувств, рецепторами, расположенными во внутренних органах, мышцах и связках. Поэтому существует большое разнообразие синапсов в зависимости от специализации нейронов, от характера их воздействия, от того белкового соединения, которое вырабатывается при прохождении импульса.

В нашей нервной системе существует два основных процесса, определяющих ее деятельность. Это возбуждение и торможение. В соответствии с ними и синапсы делятся на два вида:

  • возбуждающие проводят сигналы, которые распространяют реакцию возбуждения нервных клеток;
  • тормозящие обеспечивают прохождение нервного импульса, который передает нейронам «команду» торможения.

По месту расположения синапсы различаются:

  • на центральные, расположенные в головном мозге;
  • периферические, обеспечивающие связи нейронов за пределами мозга – в периферической нервной системе.

Передача импульсов через синаптическую щель тоже может проводиться разными способами, в соответствии с этим выделяют три вида синапсов:

  • Химические синапсы расположены в коре головного мозга. Они проводят сигнал с помощью нейротрасмиттеров, которые образуются в результате биохимической реакции.
  • Электрические – та часть синапсов, которые способны передавать электрический сигнал без посредников-медиаторов. Например, это касается нейронов, расположенных в зрительном рецепторе. В этом случае химическая реакция не происходит, и обмен сигналами осуществляется быстрее.
  • Электрохимические синапсы сочетают в себе особенности обеих этих групп.

Также существует классификация синапсов по видам трансмиттеров. Например, если производится норадреналин, но синапсы эти называются адренергические, а если ацетилхолин, то – холинергические. Учитывая, что белков, вырабатываемых нейронами, несколько десятков видов, мы имеем очень объемную классификацию, которая здесь вряд ли уместна.

Синапсы и нейронные сети

Синапсы, устанавливая связи между проводящими нервными волокнами, обеспечивают возникновение и поддержание в рабочем состоянии нейронных цепей. Соединяясь и переплетаясь, они образуют сложные нейронные сети, по которым с огромной скоростью проносятся электрические импульсы.

По последним научным данным, только в коре головного мозга функционирует около 100 млрд нейронов. Каждый из них способен иметь до 10 000 синапсов, то есть связей с другими нервными клетками. И они могут обмениваться сигналами со скоростью 100 м/сек. Представляете, какой объем информации циркулирует в нашей нервной системе?

Результаты недавних исследований американских нейрофизиологов позволяют утверждать, что потенциальный объем памяти головного мозга человека измеряется петабайтами. 1 петабайт – 10 15 байт или 1 миллион гигабайт. И это сопоставимо с объемом информации, циркулирующей во всемирном интернет-пространстве. Поэтому когда не слишком радивый студент говорит, что у него распухла голова от полученных знаний и ничего больше туда впихнуть он не может, то стоит в этом усомниться.

Синапс (synapse, от греч. synapsys - связь): специализированные межклеточные контакты, посредством которых клетки нервной системы (нейроны) передают друг другу или не нейрональным клеткам сигнал (нервный импульс). Информация в виде потенциалов действия поступает от первой клетки, называемой пресинаптической, ко второй, называемой постсинаптической ( рис. 129 , рис. 130). Как правило, под синапсом понимают химический синапс , в котором сигналы передаются с помощью нейротрансмиттеров .

В синапсах происходит преобразование электрических сигналов в химические и обратно - химических в электрические. Таким образом, синапс - это место функционального контакта между нейронами , в котором происходит передача информации от одной клетки к другой. Различают аксодендритные синапсы и аксосоматические синапсы .

Типичные синапсы - это образования, сформированные терминалями аксона одного нейрона и дендритами другого (аксодендритные синапсы). Но есть и другие типы: аксосоматические, аксоаксональные и дендродендритные. Синапс между аксоном мотонейрона и волокном скелетной мышцы называется двигательной концевой пластинкой, или нервно-мышечным соединением .

В нервной системе существуют два вида синапсов: возбуждающие и тормозные синапсы . В возбуждающих синапсах одна клетка вызывает активизацию другой. При этом возбуждающий медиатор вызывает деполяризацию - поток ионов Na+ устремляется в клетку. В тормозящих синапсах одна клетка тормозит активизацию другой. Это связано с тем, что тормозящий медиатор вызывает устремление потока отрицательно заряженных ионов в клетки, поэтому деполяризации не происходит.

Нервный импульс поступает в синапс по пресинаптическому окончанию, которое ограничено пресинаптической мембраной (пресинаптической частью) и воспринимается постсинаптической мембраной (постсинаптической частью). Между мембранами расположена синаптическая щель. В пресинаптическом окончании имеется множество митохондрий и пресинаптических пузырьков, содержащих медиатор. Нервный импульс, поступающий в пресинапти-ческое окончание, вызывает освобождение в синаптичес-кую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, меняя ее проницаемость для определенных -ионов, что приводит к возникновению потенциала действия (см. рис. 130). Наряду с химическими имеются электротонические синапсы, в которых передача импульсов происходит непосредственно биоэлектрическим путем между контактирующими клетками.

В зависимости от природы проходящих через синапсы сигналов, синапсы делятся на

Синапс- место контакта одного нейрона с другим, на который воздействуют иннервируемым органом.

Виды синапсов:

· По месту контактов (нейрональные, аксодендричекий, дендродендрический,аксомальный, аксосамальный, дендросомальный, нервно-мышечный, нейросекреторный)

· Возбуждаюшие и тормозные

· Химические(проводят импульс в одном напралении) и электрические(проводят нервный импуьс в любом направлении, более узкая синаптическая щель, быстрая скорость проведения, имеются у беспозвоночный и нисших позвоночных животных).

Строение.

1. Педсинаптический отдел

2. Синаптическая щель

3. Постсинаптический отдел

4. Визикулы- пузырьки с медиатором

5. Медиаор – химическое вещество, которое либо проводит возбуждение, либо блокирует его

В постсинаптической мембране находятся рецепторы, чувствительные к данному типу медиатора.У большинства синапсов постсинаптическая мембрана складчатая, для увеличения площади поверхности.

Роль в проведении.

Возбуждение через синапсы передается химическим путем с помощью особого вещества – посредника, или медиатора, находящегося в синаптических пузырьках, расположенных в пресинаптической терминали. В разных синапсах вырабатываются разные медиаторы. Чаще всего это ацетилхолин, адреналин или норадреналин.

Выделяют также электрические синапсы. Они отличаются узкой синаптической щелью и наличием поперечных каналов, пересекающих обе мембраны, т. е. между цитоплазмами обоих клеток есть прямая связь. Каналы образованы белковыми молекулами каждой из мембран, соединенных комплементарно. Схема передачи возбуждения в таком синапсе подобна схеме передачи потенциала действия в гомогенном нервном проводнике.

В химических синапсах механизм передачи импульса следующий. Приход нервного импульса в пресинаптическое окончание сопровождается синхронным выбросом в синаптическую щель медиатора из синаптических пузырьков, расположенных в непосредственной близости от нее. Обычно в пресинаптическое окончание приходит серия импульсов, частота их возрастает при увеличении силы раздражителя, приводя к увеличению выделения медиатора в синаптическую щель. Размеры синаптической щели очень малы, и медиатор, быстро достигая постсинаптической мембраны, взаимодействует с ее веществом. В результате этого взаимодействия структура постсинаптической мембраны временно изменяется, проницаемость ее для ионов натрия повышается, что приводит к перемещению ионов и, как следствие, возникновению возбуждающего постсинаптического потенциала. Когда этот потенциал достигает определенной величины, возникает распространяющееся возбуждение – потенциал действия. Через несколько миллисекунд медиатор разрушается специальными ферментами.



Выделяют также особые синапсы тормозного действия. Полагают, что в специализированных тормозящих нейронах, в нервных окончаниях аксонов вырабатывается особый медиатор, оказывающий тормозящее воздействие на последующий нейрон. В коре больших полушарий головного мозга таким медиатором считают гамма-аминомасляную кислоту. Структура и механизм работы синапсов тормозного действия аналогичны таковым у синапсов возбуждающего действия, только результатом их действия является гиперполяризация. Это ведет к возникновению тормозного постсинаптического потенциала, в результате чего наступает торможение

Медиаторы синапса

Медиатор (от латинского Media - передатчик, посредник или середина). Такие медиаторы синапса очень важны в процессе передачи нервного импульса.

Морфологическое различие тормозного и возбуждающего синапса заключается в том, что они не имеют механизм освобождения медиатора. Медиатор в тормозном синапсе, мотонейроне и другом тормозном синапсе считается аминокислотой глицином. Но тормозной или возбуждающий характер синапса определяется не их медиаторами, а свойством постсинаптической мембраны. К примеру, ацетилхолин дает возбуждающее действие в нервно-мышечном синапсе терминалей (блуждающих нервов в миокарде).

Ацетилхолин служит возбуждающим медиатором в холинэргических синапсах (пресинаптическую мембрану в нем играет окончание спинного мозга мотонейрона), в синапсе на клетках Рэншоу, в пресинаптическом терминале потовых желез, мозгового вещества надпочеников, в синапсе кишечника и в ганглиях симпатической нервной системы. Ацетилхоли-нестеразу и ацетилхолин нашли также во фракции разных отделов мозга, иногда в большом количестве, но кроме холинэргического синапса на клетках Рэншоу пока не смогли идентифицировать остальные холинэргические синапсы. По словам ученых, медиаторная возбуждающая функция ацетилхолина в ЦНС весьма вероятна.



Кателхомины (дофамин, норадреналин и адреналин) считаются адренэргическими медиаторами. Адреналин и норадреналин синтезируются в окончании симпатического нерва, в клетке головного вещества надпочечника, спинного и головного мозга. Аминокислоты (тирозин и L-фенилаланин) считаются исходным веществом, а адреналин заключительным продуктом синтеза. Промежуточное вещество, в которое входят норадреналин и дофамин, тоже выполняют функцию медиаторов в синапсе, созданных в окончаниях симпатических нервов. Эта функция может быть либо тормозной (секреторные железы кишечника, несколько сфинктеров и гладкая мышца бронхов и кишечника), либо возбуждающей (гладкие мышцы определенных сфинктеров и кровеносных сосудов, в синапсе миокарда - норадреналин, в подкровных ядрах головного мозга - дофамин).

Когда завершают свою функцию медиаторы синапса, катехоламин поглощается пресинаптическим нервным окончанием, при этом включается трансмембранный транспорт. Во время поглощения медиаторов синапсы находятся под защитой от преждевременного истощения запаса на протяжении долгой и ритмичной работы.


Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Рязанский государственный университет имени С.А. Есенина»

Институт психологии, педагогики и социальной работа

Контрольная работа по дисциплине «Нейрофизиология и основы ВНД»

по теме: «Понятие о синапсе, строение синапса.

Передача возбуждения в синапсе»

Выполнил студент 13Л группы

1курса ОЗО(3) А.И. Шарова

Проверил:

профессор медицинских наук

О.А. Белова

Рязань 2010

1. Введение……………………………………………………………..3

2. Структура и функции синапса……………………………………...6

3. Передача возбуждения в синапсе………………………………….8

4. Химический синапс…………………………………………………9

5. Выделение медиатора……………………………………………...10

6. Химические медиаторы и их виды………………………………..12

7. Заключение……………………………………………………………15

8. Список литературы………………………………………………....17

Введение .

Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения. Переход (передача) возбуждения с нервного волокна на иннервируемую им клетку (нервную, мышечную, секреторную) осуществляется через специализированное образование, которое получило название синапс.

Структура и функции синапса.

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапсы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс - представляет собой сложное структурное образование, состоящее из

    пресинаптической мембраны - электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке (чаще всего это концевое разветвление аксона)

    постсинаптической мембраны - электрогенная мембрана иннервируемой клетки, на которой образован синапс (чаще всего это участок мембраны тела или дендрита другого нейрона)

    синаптической щели - пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови

Синапсы могут быть между двумя нейронами (межнейронные) , между нейроном и мышечным волокном (нервно-мышечные) , между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные) , между отростками нейрона и другими клетками (железистыми) .

Существует несколько классификаций синапсов.

1. По локализации :

1) центральные синапсы;

2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы.

Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

а) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;

б) аксодендритный, образованный аксоном одного нейрона и дендритом другого;

в) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

г) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов :

а) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

б) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов :

1) возбуждающие синапсы;

2) тормозящие синапсы.

Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

Синапс тормозной - А. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше; Б. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

3. По механизмам передачи возбуждения в синапсах :

1) химические;

2) электрические;

3) смешанные

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов. Отличается большей специализированностью, чем электрический синапс.

Различают несколько видов химических синапсов , в зависимости от природы медиатора:

а) холинэргические.

б) адренэргические.

в) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

г) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

д) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Синапс адренергический - синапс, медиатором в котором является норадреналин. В нем происходит передача возбуждения при помощи трех катехоламинов; различают a1-, b1-, и b2 - адренергический синапсы. Они образуют нейроорганные синапсы симпатической нервной системы и синапсы ЦНС. Возбуждение a- адренореактивных синапсов вызывает сужение сосудов, сокращение матки; b1- адренореактивных синапсов - усиление работы сердца; b2 - адренореактивных - расширение бронхов.

Синапс холинергический - медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

В м-холинергическом синапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны. В электрическом синапсе медиатор не вырабатывается, синаптическая щель мала (2 - 4 нм) и в ней имеются белковые мостики-каналы, шириной 1 - 2 нм, по которым движутся ионы и небольшие молекулы. Это способствует низкому сопротивлению постсинаптической мембраны. Этот вид синапсов встречается значительно реже, чем химические и отличаются от них большей скоростью передачи возбуждения, высокой надежностью, возможностью двухстороннего проведения возбуждения.

Синапсы имеют ряд физиологических свойств :

1) клапанное свойство синапсов , т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки , связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100–150 имульсов в секунду).

Передача возбуждения в синапсе.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциал нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.

Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

Синапс- специализированные структуры, которые обеспечивают передачу возбуждения с одной возбудимой клетки на другую. Понятие СИНАПС введено в физиологию Ч.Шеррингтоном (соединение, контакт). Синапс обеспечивает функциональную связь между отдельными клетками. Подразделяются на нервно-нервные, нервно-мышечные и синапсы нервных клеток с секреторными клетками (нервно-железистые). В нейроне выделяется три функциональных отдела: сома, дендрит, аксон. Поэтому между нейронами существуют все возможные комбинации контактов. Например, аксо-аксональный, аксо-соматический и аксо-дендритный.

Классификация.

1)по местоположению и принадлежности соответствующим структурам:

- периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

- центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2)механизму действия- возбуждающие и тормозящие;

3)способу передачи сигналов- химические, электрические, смешанные.

4)химические классифицируют по медиатору, с помощью которого осуществляется передача- холинергические, адренергические, серотонинергические, глицинергически. и т.д.

Строение синапса.

Синапс состоит из следующих основных элементов:

Пресинаптической мембраны (в нервно-мышечном синапсе - это концевая пластинка):

Постсинаптической мембраны;

Синаптической щели. Синаптическая щель заполнена олигосахаридсодержащей соединительной тканью, которая играет роль поддерживающей структуры для обеих контактирующих клеток.

Систему синтеза и освобождения медиатора.

Систему его инактивации.

В нервно-мышечном синапсе пресиниптическая мембрана-часть мембраны нервного окончания в области контакта его с мышечным волокном, постсинаптическая мембрана- часть мембраны мышечного волокна.

Строение нервно-мышечного синапса.

1 -миелинизированное нервное волокно;

2 -нервное окончание с пузырьками медиатора;

3 -субсинаптическая мембрана мышечного волокна;

4 -синаптическая щель;

5-постсинаптическая мембрана мышечного волокна;

6 -миофибриллы;

7 -саркоплазма;

8 -потенциал действия нервного волокна;

9 -потенциал концевой пластинки (ВПСП):

10 -потенциал действия мышечного волокна.

Часть постсинаптической мембраны, которая расположена напротив пресинаптической, называется субсинаптической мембраной. Особенностью субсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору и наличие хемозависимых каналов. В постсинаптической мембране, за пределами субсинаптической, имеются потенциалозависимые каналы.

Механизм передачи возбуждения в химических возбуждающих синапсах . В 1936 году Дейл доказал, что при раздражении двигательного нерва в его окончаниях в скелетной мышце выделяется ацетилхолин. В синапсах с химической передачей возбуждение передается с помощью медиаторов (посредников) .Медиаторы – химическкие вещества, которые обеспечивают передачу возбуждения в синапсах. Медиатором в нервно-мышечном синапсе является ацетилхолин, в возбуждающих и тормозных нервно-нервных синапсах - ацетилхолин, катехоламины - адреналин, норадреналин, дофамин; серотонин; нейтральные аминокислоты - глутаминовая, аспарагиновая; кислые аминокислоты - глицин, гамма-аминомасляная кислота; полипептиды: вещество Р, энкефалин, соматостатин; другие вещества: АТФ, гистамин, простагландины.

Медиаторы в зависимости от их природы делятся на несколько групп:

Моноамины (ацетилхолин, дофамин, норадреналин,серотонин.);

Аминокислоты (гамма-аминомасляная кислота - ГАМК, глутаминовая кислота, глицин и др.);

Нейропептиды (вещество Р, эндорфины, нейротензин, АКТГ,ангиотензин, вазопрессин, соматостатин и др.) .

Накопление медиатора в пресинаптическом образовании происходит за счет его транспорта из околоядерной области нейрона с помощью быстрого акстока; синтеза медиатора, протекающего в синаптических терминалях из продуктов его расщепления; обратного захвата медиатора из синаптическои щели.

Пресинаптическое нервное окончание содержит структуры для синтеза нейромедиатора. После синтеза нейромедиатор упаковывается в везикулы. При возбуждении эти синаптические везикулы сливаются с пресинаптической мембраной и нейромедиатор высвобождается в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором. В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов и деполяризуется. Это приводит к возникновению возбуждающего постсинаптического потенциала и затем потенциала действия. Медиатор синтезируется в пресинаптической терминали из материала, поступающего сюда аксональным транспортом. Медиатор "инактивируется", т.е. либо расщепляется, либо удаляется из синаптической щели посредством механизма обратного транспорта в пресинаптическую терминаль.

Значение ионов кальция в секреции медиатора .

Секреция медиатора невозможна без участия в этом процессе ионов кальция. При деполяризации пресинаптической мембраны кальций входит в пресинаптическую терминаль через специфические потенциалозависимые кальциевые каналы в этой мембране. Концентрация кальция в аксоплазме 110 -7 М, при вхождении кальция и повышения его концентрации до 110 - 4 М происходит секреция медиатора. Концентрация кальция в аксоплазме после окончания возбуждения снижается работой систем: активного транспорта из терминали, поглощением митохондриями, связыванием внутриклеточными буферными системами. В состоянии покоя происходит нерегулярное опорожнение везикул, при этом происходит выход не только единичных молекул медиатора, но и выброс порций, квантов медиатора. Квант ацетилхолина включает примерно 10000 молекул.