Болезни Военный билет Призыв

Квантовая неопределенность. Соотношение неопределенностей гейзенберга. О соотношения неопределенностей Шредингера

По своему принципу рентгеновские методы анализа делятся на рентгеноабсорбционные, рентгеноэмиссионные и рентгенофлуоресцентные. Первые применяют довольно редко, хотя они удобны для определения, например, тяжелых атомов в матрице из легких атомов (свинец в бензине). Вторые весьма широко используют в варианте микроанализа – электронного зонда. Но наибольшее значение в настоящее время имеют, по-видимому, рентгенофлуоресцентные методы.

Рис. 6. Схема аппаратуры для рентгено-флуоресцентного анализа.

Рентгеноэмиссионный микроанализ – важное средство изучения минералов, горных пород, металлов, сплавов и многих других твердых объектов, прежде всего многофазных. Метод позволяет проводить анализ «в точке» (диаметр – до 500 нм и глубина вплоть до 1–2 микронов) или на участке поверхности за счет сканирования. Пределы обнаружения в этом случае обычно невелики, точность анализа оставляет желать лучшего, но как прием качественного и полуколичественного исследования включений и других неоднородностей электронный зонд давно завоевал общее признание. Несколько фирм производили и производят соответствующие приборы, в том числе приборыкомбайны, обеспечивающие анализ и другими методами – ЭСХА,

оже-электронной спектроскопией, масс-спектрометрией вторичных ионов. Аппаратура эта обычно сложная и дорогая.

Рентгенофлуоресцентный метод (РФА) – массовый, повсеместно применяемый, отличающийся важными достоинствами. Это анализ без разрушения; многоэлементность в сочетании с экспрессностью, что обеспечивает высокую производительность; довольно высокая точность; возможность создания небольших и не очень дорогих приборов, в том числе упрощенных анализаторов, например для быстрого определения драгоценных металлов в изделиях. Однако применяют также универсальные и непростые спектрометры, особенно для научно-исследовательских работ. Основная рубрикация рентгенофлуоресцентных приборов, однако, иная: их делят на энергодисперсионные и с дисперсией по длинам волн.

Рентгенофлуоресцентный метод решает задачи определения основных компонентов в геологических объектах, цементах, сплавах, и в последнее время – в объектах окружающей среды. Можно определять почти все элементы, кроме элементов начала периодической системы. Пределы обнаружения не слишком низкие (обычно до 10–3 –10–4 %), но зато погрешность вполне допустима даже при определении основных компонентов.

Частицами вызванная эмиссия рентгеновского излучения – аналитический метод, основанный на флуоресценции под действием рентгеновских лучей. Строго говоря, это не ядерная, а атомная техника. Однако вакансия в электронной оболочке атома, заполнение которой сопровождается рентгеновским излучением, создаётся пучком ионов, ускоренных на ускорителе, да и для регистрации рентгена используются типичный для измерения ионизирующей радиации полупроводниковый Si(Li) –

детектор.

Рис. 7. Рентгеновский спектр дождевой воды.

Аппаратура для этого метода схематически представлена на Рис. 6 . Пучок заряженных частиц, обычно – протонов, разогнанных на ускорителе до энергий 2 – 4 МэВ, бомбардирует тонкий образец, расположенный в вакуумной камере. Протоны соударяются с электронами материала, и выбивают некоторых из них с внутренних оболочек атомов. Сосуд Фарадея собирает заряженные протоны и тем самым измеряет ток пучка. Образец обычно – анализируемый материал, отложенный тонким слоем

на подложке. Характеристические рентгеновские лучи из образца регистрируются Si(Li) детектором. Типичный спектр представлен на Рис. 7. Спектр состоит из дискретных рентгеновских пиков, наложенных на фон рассеяния. Видны линииК а иK b лёгких элементов, возникшие при заполнении вакансий наК оболочке,

и L линии тяжёлых элементов. Пики, соответствующие данному элементу, интегрируют и по площади пика рассчитывают количество элемента или по известному абсолютному сечению ионизации (1 – 104 барн), выходу флюоресценции (0,1 – 0,9), току пучка и геометрии, или путём сравнения с результатами измерений эталона. Термин выход флуоресценции отражает долю заполняемых электронных вакансий при эмиссии рентгена от испущенных Оже-электронов.

Типичные пределы регистрации различных элементов в биологических образцах представлены на Рис. 8 . Для многих элементов чувствительность составляет часть на миллион. Этот метод в основном применяется в биологии и медицине. Использование матрицы из лёгких элементов уменьшает непрерывный фон и удаётся регистрировать многие примесные и токсичные элементы. (Здесь нет «дыр» в пределах детектирования, которые имеют место в активационном анализе, т.к. все элементы какое-нибудь изучение да испускают). Сложности возникают при приготовлении тонких репрезентативных образцов. Заметим, что рассматриваемый здесь метод чувствителен к элементному, а не к изотопному составу.

Самое успешное применение рентгеновского анализа – исследование загрязнения аэрозолей воздуха. Аэрозоли собирают на фильтровальную бумагу, которая представляет собой идеально тонкий образец для анализа. Основное преимущество – возможность анализа большого количества образцов за короткий период времени. Анализ осуществляется за минуту, причём все процедуры могут быть автоматизированы.

Рис. 8. Пределы детектирования в рентгено-флуоресцентном анализе биологических образцов.

Важный вариант – локальный микроанализ. Используя пучок протонов с диаметром 0,5 мм можно определить содержание следовых элементов в небольшой части образца, представляющего интерес для медицины.

3. РЕЗЕРФОРДОВСКОЕ ОБРАТНОЕ РАССЕЯНИЕ

Одним из первых экспериментов в ядерной физике была демонстрация большого углового рассеяния α -частиц от ядер золота. Эти эксперименты доказали существование в атоме маленького ядра. Силы, действующие в этом процессе, названном резерфордовским рассеянием, - кулоновские силы отталкивания положительно заряженных ядер. Схема явления представлена наРис. 9 .

Рис. 9. Схема метода обратного резерфордовского рассеяния.

Спектроскопия резерфордовского обратного рассеяния (спектроскопия рассеяния быстрых ионов, спектроскопия ионного рассеяния) - разновидность спектроскопии ионного рассеяния, основанная на анализе энергетических спектров ионов He + или протонов с энергией ~1-3 МэВ, рассеянных в обратном направлении по отношению к исследуемому образцу.

Ядерно-физический метод исследования твёрдых тел - метод обратного резерфордовского рассеяния - основан на применении физического явления – упругого рассеяния ускоренных частиц на большие углы при их взаимодействии с атомами вещества. Этот

метод используется для определения состава мишеней путем анализа энергетических спектров обратно рассеянных частиц. Аналитические возможности резерфордовского рассеяния лёгких частиц наши применение в различных областях физики и техники, от от электронной промышленности до исследований структурных фазовых переходов в высокотемпературных соединениях.

В спектроскопии резерфордовского обратного рассеяния пучок моноэнергетичных (обычно 1-2 МэВ) коллимированных легких ионов (Н+ , Не+ ) сталкивается с мишенью, после чего частично проникает вглубь образца, а частично отражается. В ходе анализа регистрируют число и энергию частиц, рассеявшихся на уголθ >90° (Рис. 10 ) и тем самым получают информацию о составе и структурных характеристиках исследуемого материала.

Энергия обратно рассеянных частиц:

Е 1 =КЕ 0 , (9)

где Е 0 - начальная энергия частиц пучка, аК - кинематический фактор, определяющий долю энергии, переданной ионом атомам твёрдого тела.

Рис. 10. Схема экспериментальной установки резерфордовского обратного рассеяния. 1- пучок первичных ионов; 2-коллиматоры; 3- исследуемый образец; 4- обратно рассеянный пучок ионов; 5- детектор.

Рассмотрим принципиальные особенности метода обратного резерфордовского рассеяния. Возможная схема применения метода показана на Рис. 11 . Коллимированный пучок ускоренных частиц с массойМ 1 , порядковым номеромZ 1 и энергиейЕ 0 направляется на поверхность объекта исследования. В качестве объекта исследования может быть достаточно тонкая пленка, масса и порядковый номер атомов которой равны, соответственно,М 2 иZ 2 .

Рис. 11 . Схема применения метода обратного резерфордовского рассеяния

Часть ионов в пучке отражается от поверхности с энергией К М 2 Е 0 , а часть проходит вглубь, рассеиваясь затем на атомах мишени. ЗдесьК М 2 - кинематический фактор, определяемый как отношение энергии частицыК М Е после упругого рассеяния частицы на уголθ на атоме мишениМ к её значению до столкновенияЕ . Кинематический фактор - функция угла

рассеяния. Рассеянные частицы, имеющие определенную энергию, выходят из мишени в разных направлениях, в одном из которых под углом θ к направлению первоначального движения регистрируется их число и энергия. Если энергии частиц анализирующего пучка достаточно для того, чтобы достичь задней поверхности мишени, то рассеянные атомами этой поверхности частицы будут иметь энергиюЕ 1 . Общая картина рассеянных от плёнки ионов представляет собой энергетический спектр обратно рассеянных частиц. В случае присутствия на поверхности пленки примеси, масса атомов которой равнаМ 3 , на энергетических спектрах обратного рассеяния появится пик в области энергийК М 3 Е 0 . Пик будет расположен в низкоэнергетической области спектра, если М3 M 2 .

Метод обратного резерфордовского рассеяния предполагает передачу энергии при процессах упругих взаимодействий двух тел, причём энергия налетающей частицы Е 0 должна быть намного больше энергии связи атомов в твердых телах. Поскольку последняя составляет величину порядка 10 – 20 эВ, то это условие всегда выполняется, когда для анализа используются ускоренные ионы с энергией в диапазоне от нескольких сотен кэВ до 2 – 3 МэВ. Верхняя граница энергии анализирующего пучка определяется таким образом, чтобы избежать возможных резонансных ядерных реакций при взаимодействии пучка с атомами мишени и примеси.

Резерфордовское обратное рассеяние является упругим и не приводит к возбуждению ни бомбардирующей частицы, ни ядра мишени. Однако, из-за сохранения энергии и момента взаимодействия, кинетическая энергия обратно рассеянного иона, меньше, чем у начального иона. Соотношение между этими энергиями есть кинетический факторК , задаваемый выражением:

cosθ + M 2

− M 2sin 2

M 1+ M 2

где М 1 иМ 2 – массы атомов снаряда и мишени, соответственно, иθ - угол между падающим и рассеянном пучками ионов.

Относительный сдвиг в энергии при соударениях зависит только от масс ионов и угла детектора. Если измерить угол рассеяния и энергетический сдвиг, можно рассчитать массу (идентифицировать) рассеивающий атом.

Величина К определяет разрешение по массе: чем большеК , тем больше разрешение. Это реализуется для угловθ близких к 1800 и для большихМ 1 (посколькуМ 1 < М 2 ).

Из угловой зависимости кинематического фактора (1) следует, что

1) измеряя угол рассеяния и энергию рассеянных частиц, можно определить массу рассеивающих

2) для достижения хорошей чувствительности метода угол рассеяния должен быть достаточно большим, а масса налетающих частиц не слишком малой.

Поскольку энергетическое разрешение используемых детекторов обычно не менее 20 кэВ, то для наиболее оптимальных условий экспериментов выбирают угол рассеяния порядка 160о , а в качестве анализирующего пучка обычно используют ускоренные ионы гелия.

Наибольшее изменение энергии происходит для θ =180о , где

− M 1

Обычно выбирается геометрия, которая позволяет детектировать рассеяние α -частиц (или протонов) при очень больших углах.

Дифференциальное сечение рассеяния dσ /dΩ для упругих столкновений лабораторной системе

координат, описывающее процесс атомноатомного рассеяния имеет вид:

Z1 Z2 e2

(cosθ + x 2 sin2

θ ) 2

d Ω=

sin4 θ

1− x 2 sin2 θ

где х =М 1 /М 2 , е2 – квадрат заряда электрона, иЕ – энергия бомбардирующей частицы (снаряда). Вероятность рассеяния задаётся как (Z 1 Z 2 )2 и как 1/E 2 . Спектр обратного рассеяния частиц соответствует пику для каждого элемента в образце с относительной высотой (площадью)Z 2 .

Дифференциальное сечение рассеяния сильно уменьшается с увеличением угла рассеяния (~1/Sin4 θ ) и увеличивается с уменьшением энергии пучка (~1/Е 2 ). Оно квадратично растет с увеличением номеровZ 1 иZ 2 сталкивающихся атомов. Для достижения высокого разрешения по массе, необходимо, чтобы налетающая частица рассеивалась на уголθ как можно более близкий к 1800 - требование, которое сильно уменьшает величину регистрируемого сигнала и повышает требования к чувствительности канала регистрации.

F ∫

где N – число атомов мишени,D – число зарегистрированных событий,F поток бомбардирующих ионов. Формула справедлива для очень тонкой плёнки или если рассеивающие частицы отражаются от поверхности толстого образца.

E= KE0 - E=[ ε ] BS Nx

[ε ]

cosθ

cosθ

где ε in иε ou t зависящие от энергии сечения торможения на входном и выходном пути иона.

Рис. 12. Шкала энергетической глубины в обратном резерфордовском рассеянии.

На практике ситуация обычно более сложная, поскольку потеря энергии начальных ионов при проникновении в образец сопровождается непрерывным изменением вероятности рассеяния и энергии рассеянных частиц. Возникшие спектры для рассеяния от

одного элемента на различных глубинах показаны на Рис. 12 , где начальная энергия ионовE 0 , энергия ионов, рассеянных от поверхности,KE 0 , а энергия ионов, рассеянных на глубинеx естьE 1 . В этой ситуации, потеря энергии при пересечении фольги толщинойN x туда и обратно:

Рис. 13. Тандемный ускоритель ионов.

Рис. 14. Резерфордовское обратное рассеяние 2,0 МэВ 4 Не ионов на образце Si(Co). Точки – экспериментальные данные, линия – модельный спектр. Угол рассеянияΘ =170о сθ 1 =θ 2 =5о .

Для экспериментальных исследований используются различные ускорители ионов, например ускорители Ван-де- Графа. В качестве примера наРис. 13 показана установка для исследования обратного рассеяния с использованием тандемного ускорителя ионов.

Резерфордовское обратное рассеяние – важный метод определения состава и строения поверхностей и тонких плёнок. На Рис. 14 показаны результаты применения метода обратного резерфордовского рассеяния ионной4 Не с

энергией 2 МэВ на поверхности кремния, допированного кобальтом, путём диффузии вглубь материала. Легко регистрируется кобальт и его распределение по глубине исследуемого материала.

Выше мы рассмотрели возможности метода обратного резерфордовского рассеяния в элементной избирательности и чувствительности к малым количествам примесных атомов. Речь шла об атомах, локализованных на поверхности мишени. Метод, однако, может быть применён и для измерения характера распределения примеси по объёму образца – концентрационного профиля. Определение пространственного распределения примесей и дефектов основано на регистрации разницы в энергии частиц Е , рассеянных атомами, находящимися на разной глубине. Частица, попадающая в детектор, претерпев акт упругого рассеяния на некоторой глубине x, имеет меньшую энергию, чем частица, рассеянная атомами вблизи поверхности. Это связано как с потерями энергии на пути в мишень и из неё, а, так и с различиями в потерях энергии при упругом взаимодействии частицы с атомами, находящимися на поверхности и на глубинеx .

Таким образом, спектроскопия резерфордовского обратного рассеяния позволяет получать информацию о химическом составе и кристалличности образца как функции расстояния от поверхности образца (глубины), а также о структуре приповерхностного слоя монокристаллического образца.

Рис. 15. Схематическая диаграмма спектра ионов с массой m 1 и первичной энергией E 0 , рассеянных от образца, состоящего из подложки из атомов с массой m 2 и пленки из атомов с массой m 3 толщиной d . Для простоты и пленка, и подложка считаются аморфными, чтобы избежать структурных эффектов.

Химический анализ с разрешением по глубине основан на том, что лёгкий высокоэнергетический ион может проникнуть глубоко внутрь твердого тела и рассеяться обратно от глубоко лежащего атома. Энергия, потерянная ионом в этом процессе, представляет собой сумму двух вкладов. Во-первых, это непрерывные потери энергии при движении иона вперед и назад в объеме твердого тела (т.н. потери на торможение). Скорость потери энергии на торможение (тормозная

способность, dE /dx) табулирована для большинства материалов, что позволяет перейти от шкалы энергий к шкале глубин. Во-вторых, это разовая потеря энергии в акте рассеяния, величина которой определяется

массой рассеивающего атома. В качестве примера на Рис. 15 приведена схема формирования спектра от образца, представляющего собой тонкую пленку на подложке. Пленка толщинойd проявляет себя на спектре в виде плато ширинойE . Правый край плато соответствует ионам, упруго рассеянным от поверхности, левый край – ионам, рассеянным от атомов пленки на границе раздела пленка-подложка. Рассеяние от атомов подложки на границе раздела соответствует правому краю сигнала подложки.

Рассмотрим процесс рассеяния частиц на большой угол на глубине и на поверхности в соответствии с Рис. 16. Пусть на мишень падает частица с энергиейЕ 0 под угломθ 1 . Детектор, расположенный под угломθ 2 , регистрирует частицы, рассеянные на поверхности и на глубине x. Частицы, рассеянные на поверхности, попадают в детектор, имея энергиюК М 2 Е 0 . Частицы же, рассеянные на глубинеx , будут иметь энергиюЕ 1 , которая определяется соотношением:

K M 2 E −

cosθ 2

dx out

где (dE /dx )out - линейные потери энергии частицы при ее движении от точки рассеяния на глубинеx до выхода из мишени,Е - энергия, с которой частица подойдет от поверхности к точке рассеяния на глубинеx :

E = E0

cosθ 1

dx in

где (dE /dx )in - линейные потери энергии частицы при ее движении от поверхности до точки рассеяния на глубинеx . Таким образом:

E = x KM 2

E 1 =E 0 -E ,

1 dE

1 dE

cosθ 1

dx in

cosθ 2

dx out

Рис. 16. Геометриярассеяния частиц от мишени

Выражение в квадратных скобках в (19) обычно называют фактором энергетических потерь и обозначают как

S . Рассматривая для простоты геометрию эксперимента,

когда θ 1 =0, т.е. θ 2 =π -θ , получим следующее выражение для фактора энергетических потерь:

S = K

cosθ

dx in

dx out

и, соответственно,

E = S x.

Последнее соотношение

лежит в основе перевода энергетической шкалы в спектрах обратного рассеяния в шкалу глубины. При этом глубинное разрешение определяется энергетическим разрешением детектора и может составлять величину до

Для определения энергетических потерь частицы (dE /dx ) используют квантовую теорию торможения. Формула торможения для быстрых нерелятивистских частиц с массой, значительно большей электронной массы, имеет вид:

4 π e4 Z2 Z N

2 mv2

− dx

где v - скорость частицы,N - концентрация атомов мишени,e, m - заряд и масса электрона,I - средний ионизационный потенциал. Средний ионизационный потенциал, входящий в формулу (21), - подгоночный параметр, определяемый из экспериментов по торможению заряженных частиц. Для оценки среднего ионизационного потенциала используют формулу Блоха:

I= ε Ry Z2

где ε Ry =13,6 эВ - постоянная Ридберга.

A i = q Ωσ i (Nx ) i ,

Рис. 17 . Энергетический спектр ионов гелия с энергией 2 МэВ обратно рассеянных от кремниевой мишени

На Рис. 17 приведен пример энергетического спектра обратного рассеянных ионов. Стрелками отмечены положения пиков тех элементов, которые содержатся на поверхности исследуемого образца. Обнаружение той или иной примеси связано не только с энергетическим разрешением детектора, но и с количеством этой примеси в мишени, т. е. с величиной сигнала от данной примеси на энергетическом спектре. Величина сигнала от i -го элемента примеси в мишени, или площадь под пикомА i , определяется выражением:

где (Nx )i - слоевое содержание i -го элемента (1/см2 ),σ i - среднее дифференциальное сечение рассеяния анализирующих частиц на атомах в детектор с телесным угломΩ (см2 /ср),q - полное число анализирующих частиц, попавших в мишень за время измерения спектра. Из соотношения (23) следует, что стандартных условиях эксперимента (т.е. при постоянныхΩ иq ) величина сигнала пропорциональнаσ i . Для вычисления среднего дифференциального сечения можно воспользоваться формулой:

cosθ +

1−

sin2 θ

Mi 2

Z1 Zi e

σ i=

2E sin

1−

sin2

Mi 2

Из последней формулы следует, что величина сигнала в спектрах обратного рассеяния зависит от порядкового номера элемента как Z i 2 .

Рис. 18 . Схема процесса рассеяния.

Таким образом, обратно рассеянные частицы с энергией ниже той, что соответствует рассеянию с поверхности моноатомной мишени, несут информацию о глубине, на которой произошло рассеяние. Действительно, до столкновения, которое произошло на глубине х от поверхности мишени, первичная частица должна пройти расстояниех в твёрдом теле, теряя энергию как на пути вперед, так и после столкновения при выходе мишени в направлении детектора. НаРис. 18 представлены обозначения, используемые для вычисления разницы

между энергией налетающей частицы, которая рассеялась на поверхностном атоме на угол θ ,kE 0 и энергиейЕ 1 (х ) частицы, достигшей детектора после столкновения на глубинех от поверхности мишени:

1 dE

− E 1

(x )=

cosθ 1

dx in

cosθ 2

dx out

В качестве величины dE /dx в (25) берут среднее значение энергии частицы на пути до и после столкновения. Формула (25) преобразует шкалу энергий регистрируемых частиц в шкалу глубин; максимальное значение энергии соответствует рассеянию с поверхности мишени (Е 1 (0) =kE 0 , минимальная энергия соответствует наибольшей глубине рассеяния.Рис. 19 схематически иллюстрирует спектр пучка легких ионов (Не) обратно рассеянных с мишениС , в которую имплантирован As.

Рис. 19 . Типичный спектр обратного резерфордовского рассеяния гелия для углерода с поверхностно легированным и имплантированным мышьяком

Необходимо отметить следующее:

1. Конечность спектра подложки и её шкалы глубин;

2. Положение и ширину пика от имплантированного As, который смещен вниз по энергии и уширен в сравнении с положением и шириной пика от тонкого слоя As на поверхности С подложки (пунктирная кривая);

3. Высоту пика от имплантированного As (h ) по отношению к высоте спектраС вблизи поверхности (Н ).

Первое объясняется следствием энергетической зависимости сечения резерфордовского рассеяния, связанной с потерями энергии налетающих частиц в мишени. Второе отражает тот факт, что вследствие большей массы атомов имплантированного As, обратно рассеянные на As ионы будут иметь бoльшую энергию, чем ионы, рассеянные на атомах С , поэтому профиль As примеси может быть измерен независимо от наличия атомовС в объеме. Энергия, при которой появляется пик от примеси по отношению к энергии, которая наблюдалась, если бы эта примесь была на поверхности (25) даёт информацию о глубине имплантированной примеси, а ширина пика с поправкой на разрешение детектора обеспечивает информацию о диффузии и распределении имплантированной примеси. Третье иллюстрирует тот факт, что спектр обратного рассеяния дает плотность числа конкретного вида атомов на глубинех исходя из измерений

где Q - общее число частиц, попадающих в мишень,N - объемная плотность атомов мишени,σ (Ω ) - среднее дифференциальное сечение рассеяния,Ω - телесный угол, регистрируемый детектором. Отношение высотыh пика от As к высотеН спектра атомов мишениС отражает отношение между числом атомов As и С в мишени с поправкой на различное сечение рассеяния для двух элементов и на различие энергий частиц до столкновения в соответствии с глубиной имплантированного As.

Для исследования структуры монокристаллических образцов с помощью спектроскопии резерфордовского обратного рассеяния используется эффект каналирования . Эффект заключается в том, что при ориентации пучка ионов вдоль основных направлений симметрии монокристаллов те ионы, которые избежали прямого столкновения с атомами поверхности, могут проникать глубоко в кристалл на глубину до сотен нм, двигаясь по каналам, образованным рядами атомов. Сравнивая спектры, полученные при ориентации пучка ионов вдоль направлений каналирования и вдоль направлений, отличных от них, можно получить информацию о кристаллическом совершенстве исследуемого образца. Из анализа величины поверхностного пика, являющегося следствием прямого столкновения ионов с атомами поверхности, можно получить информацию о структуре поверхности, например, о наличии на ней реконструкций, релаксаций и адсорбатов.

Если направление распространения пучка ионов устанавливается почти параллельно плотно упакованным цепочкам атомов, ионы пучка будут направляться потенциальным полем цепочки атомов в кристалле, результатом этого будет волнообразное движение частиц, при котором каналированные ионы не могут близко подойти к атомам в цепочках. Поэтому вероятность обратного рассеяния ионов резко уменьшается (примерно на два порядка). Повышается и чувствительность рассеяния к незначительному содержанию примеси на поверхности. Очень важно, что происходит полное взаимодействие пучка с первыми монослоями твердого тела. Это “поверхностное взаимодействие” приводит к улучшению разрешения по глубине. На Рис. 20 представлены спектры обратного рассеяния для случаев, когда пучок ионов параллелен главной кристаллографической оси и когда пучок ионов имеет “случайное” (не параллельное кристаллографической оси) направление.

Даже когда “случайный” и “каналированный” спектры получены для идентичных ионных пучков (с одинаковым числом падающих частиц), число событий обратного рассеяния, регистрируемых детектором значительно меньше для “каналированного” спектра за счёт эффекта каналирования. Такое уменьшение выхода обратного рассеяния отражает степень совершенства кристаллической структуры мишени, для чего вводят величину “нормированный минимальный выход” χ min , который определяется как отношение числа обратно рассеянных частиц в узком энергетическом “окне” (вблизи поверхности кристалла) “каналированного” и “случайного” спектров (Рис. 20а ,c min =Н а /Н ). Для случая наибольшего сближения ионов пучка с цепочкой атомовr , концентрации атомовN и периода расположения атомов вдоль цепочки, преимущественно определяется тепловыми колебаниями атомов в кристалле.

В экспериментах по каналированию кристаллический образец закрепляется в гониометрическом устройстве, и регистрируется число близких столкновений (как например, обратное рассеяние из приповерхностной области) как функция угла наклона ψ пучка к кристаллографической оси для фиксированного числа падающих частиц. Кривая, полученная в результате углового сканирования, показана наРис. 20б . Кривая симметрична относительно минимума выхода и имеет ширину, определяемую как полуширина на половине высоты кривой. Приблизительная оценка критического значения углаψ с , больше которого пучок будет пробивать ряд атомов, может быть легко получена приравниванием поперечной энергии падающей частицыЕ 0 ψ с и поперечной энергией U(ρ ) в точке поворота:

ψ с = 1/2

Метод каналированного обратного рассеяния используется для исследования разориентированных кристаллических решеток путем измерения доли атомов, для которых каналы закрыты. Когда падающий пучок направлен вдоль направления каналирования совершенного кристалла, значительное уменьшение выхода обратного рассеяния наблюдается вследствие того, что каналированные ионы, направляемые атомными цепочками, не приближаются к атомам достаточно близко, чтобы испытать столкновение. Однако, если часть кристалла разориентирована и атомы решетки смещены так, что закрывают часть каналов, ионы, направленные вдоль номинального направления каналирования, испытывают близкие столкновения со смещенными атомами, в результате чего выход обратного рассеяния увеличивается по сравнению с ненарушенными каналами. Так как смещённые атомы имеют ту же массу, что и атомы решетки, увеличение выхода обратного рассеяния происходит при энергии, соответствующей глубине, на которой расположен смещенный атом. Увеличение выхода обратного рассеяния с данной глубины, зависит от числа смещенных атомов, а зависимость выхода от глубины (энергия обратного рассеяния Е 1 ) отражает распределение смещенных атомов по глубине.

В то время как ионы высоких энергий могут проникать в твердое тело на глубину порядка нескольких микрон, ионы средних энергий (порядка сотен килоэлектронвольт) рассеиваются почти полностью в приповерхностном слое и широко используются для исследования первых монослоев. Налетающие на мишень ионы средних энергий рассеиваются на атомах поверхности посредством бинарных столкновений и регистрируются электростатическим энерго-анализатором. Такой анализатор регистрирует только заряженные частицы, а в диапазоне энергий ~1 кэВ частицы, проникающие глубже первого монослоя, выходят наружу почти всегда в виде нейтральных атомов. Поэтому чувствительность эксперимента только к заряженным частицам повышает поверхностную чувствительность метода рассеяния ионов низких энергий. Главными причинами высокой поверхностной чувствительности этого метода является зарядовая избирательность электростатического анализатора и очень большие значения сечений рассеяния. Разрешение по массе определяется энергетическим разрешением электростатического энергоанализатора.

Однако форма спектра отличается от той, которая характерна для высоких энергий. Теперь спектр состоит из серии пиков, соответствующих атомным массам элементов поверхностного слоя. Количественный

анализ в этом диапазоне сложен по двум причинам: 1) вследствие неопределенности сечений рассеяния и 2) из-за отсутствия достоверных данных о вероятности нейтрализации ионов, рассеянных на поверхности. Влияние второго фактора можно свести к минимуму, используя пучки с малой вероятностью нейтрализации

и применяя методы детектирования, не чувствительные к зарядовому состоянию рассеянного иона.

В заключение, упомянем ещё одно любопытное применение метода обратного резерфордовского рассеяния – определение элементного состава лунной и марсианской поверхностей. В миссии США 1967-68

источник 242 Cm испускал α -частицы, рассеяние которых впервые обнаружило в лунном грунте повышенное содержание титана, что в последствии было подтверждено лабораторным анализом лунных минералов. Эта же методика использовалась при изучении марсианских горных пород и почвы.

Открытие Вернером Гейзенбергом принципов неопределенности, которое он сделал в 1927 году, стало одним из важнейших достижений науки, сыгравших фундаментальную роль в развитии квантовой механики, а затем и оказавшим влияние на развитие всего современного естествознания.

Традиционное исследование мироздания исходило из установки, что коль все материальные объекты, которые мы можем наблюдать, ведут себя неким определенным образом, то и все остальные, которые мы не можем познавать с помощью ощущений, тоже должны вести себя также. Если же происходит некое возмущение в этом поведении, то оно квалифицируется как парадокс и вызывает недоумение. Такой была реакция естествоиспытателей, когда они проникли в микромир и столкнулись с явлениями, не укладывающимися в традиционную модель миропонимания. Особенно ярко этот феномен проявился в области где рассматривались предметы несоизмеримые по величине с теми, с которыми ученые привыкли иметь дело до этого. Принцип по сути, дал ответ на вопрос, чем микромир отличается от мира привычного нам.

Ньютоновская физика практически игнорировала такое явление, как влияние инструмента познания на сам объект познания, путем воздействия на его В начале 1920-х годов Вернер Гейзенберг поднимает данную проблему и приходит к формуле, в которой описывается степень влияния метода измерения свойств объекта, на сам объект. В результате и был открыт принцип неопределенности Гейзенберга. Математическое отражение он получил в теории соотношения неопределенностей. Категория «неопределенность» в данной концепции обозначала то, что исследователь точно не знает местоположения исследуемой частицы. В своем практическом значении принципы неопределенности Гейзенберга утверждали, что чем точнее по характеристикам, используется прибор для измерения физических свойств предмета, тем будет достигнута меньшая неопределенность наших представлений об этих свойствах. Например, принцип неопределенности Гейзенберга при использовании в исследовании микромира позволял сделать выводы о «нулевой» неопределенности, когда воздействие инструмента на изучаемый объект была ничтожно мала.

В дальнейших исследованиях было установлено, что принцип неопределенности Гейзенберга связывает своим содержанием не только пространственные координаты и скорость. Здесь он просто более наглядно проявляется. На самом деле его влияние присутствует во всех частях системы, которую мы изучаем. Этот вывод позволяет сделать несколько замечаний в отношении действия принципа Гейзенберга. Во-первых, этот принцип предполагает, что установить одинаково точно пространственные параметры объектов невозможно. Во-вторых, это свойство - объективно и не зависит от человека, который проводит измерения.

Эти выводы стали мощным импульсом для развития теорий управления в самых разных областях человеческой деятельности, где главным как правило, выступает пресловутый «человеческий фактор». В этом проявилось общественная значимость открытия Гейзенберга.

Современные научные и околонаучные дискуссии относительно принципов неопределенности, высказывают предположение, что если мол, роль человека в познании микромира ограничена, и он не может активно влиять на нее, то не является ли это свидетельством того, что сознание человека связано неким образом с «Высшим разумом» (теория «Новой эры»). Данные выводы не представляется возможным признать серьезными потому, что в них изначально неверно трактуется сам принцип. По Гейзенбергу, главным в его открытии, является не факт присутствия человека, а именно факт влияния инструмента на предмет исследования.

Принципы Гейзенберга на сегодняшний день являются одним из самых употребляемых методологических инструментов, применяемых в различных областях знаний.

Материал из свободной русской энциклопедии «Традиция»


В квантовой механике принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) устанавливает, что существует ненулевой предел для произведения дисперсий сопряжённых пар физических величин, характеризующих состояние системы. Принцип неопределённости обнаруживается также в классической теории измерений физических величин.

Обычно принцип неопределённости иллюстрируется следующим образом. Рассмотрим ансамбль невзаимодействующих эквивалентных частиц, приготовленных в определённом состоянии, для каждой из которых измеряется либо координата q , либо импульс p . При этом результаты измерений будут случайными величинами, среднеквадратические отклонения которых от средних значений будут удовлетворять соотношению неопределённостей , где – . Поскольку любое измерение изменяет состояние каждой частицы, при одном измерении нельзя одновременно измерить значения и координаты и импульса. Для ансамбля частиц уменьшение дисперсии при измерении физической величины приводит к увеличению дисперсии сопряжённой физической величины. Считается, что принцип неопределённости связан не только с возможностями экспериментальной техники, но и показывает фундаментальное свойство природы.

Содержание

  • 1 Краткий обзор
  • 2 История
  • 3 Принцип неопределённости и эффект наблюдателя
    • 3.1 Микроскоп Гейзенберга
  • 4 Критика
    • 4.1 Щель в экране
    • 4.2 Коробка Эйнштейна
    • 4.3 Парадокс Эйнштейна - Подольского - Розена
    • 4.4 Критика Поппера
  • 5 Принцип неопределённости информационной энтропии
  • 6 Производные
    • 6.1 Физическая интерпретация
    • 6.2 Матричная механика
    • 6.3 Волновая механика
    • 6.4 Симплектическая геометрия
  • 7 Соотношение Робертсона - Шрёдингера
    • 7.1 Другие принципы неопределённости
  • 8 Энергия-время в принципе неопределённости
  • 9 Теоремы неопределённости в гармоническом анализе
    • 9.1 Теорема Бенедика
    • 9.2 Принцип неопределённости Харди
  • 10 Бесконечная вложенность материи
  • 11 Выражение конечного доступного количества информации Фишера
  • 12 Научный юмор
  • 13 Принцип неопределённости в популярной культуре
  • 14 Ссылки
  • 15 Литература
  • 16 Внешние ссылки

Краткий обзор

В квантовой механике соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Кроме этого принимается, что для частиц по крайней мере отчасти справедлив корпускулярно-волновой дуализм. В таком приближении положение частицы определяется местом концентрации соответствующей частице волны, импульс частицы связывается с длиной волны, и возникает наглядная аналогия между отношениями неопределённости и свойствами волн или сигналов. Положение является неопределённым настолько, насколько волна распределена в пространстве, а неопределённость импульса выводится из неопределённости длины волны при её измерении в разные моменты времени. Если волна находится в точечноподобной области, её положение определено с хорошей точностью, но у такой волны в виде короткого волнового цуга отсутствует определённая длина волны, характерная для бесконечной монохроматической волны.

В качестве волны, соответствующей частице, можно взять волновую функцию. В многомировой интерпретации квантовой механики считается, что при каждом измерении положения частицы происходит декогеренция . В отличие от этого в копенгагенской интерпретации квантовой механики говорят, что при каждом измерении положения частицы как будто бы происходит коллапс волновой функции до малой области, где находится частица, и за пределами этой области волновая функция близка к нулю (это описание полагается возможным приёмом для согласования поведения волновой функции как характеристики частицы, так как волновая функция лишь косвенно связана с реальными физическими величинами). Такая трактовка вытекает из того, что квадрат волновой функции показывает вероятность нахождения частицы в пространстве. Для малой области импульс частицы в каждом измерении не может быть измерен точно вследствие самой процедуры измерений импульса. При измерении положения частица будет чаще обнаруживаться там, где имеется максимум волновой функции, и в серии одинаковых измерений появится наиболее вероятное положение и определится среднеквадратическое отклонение от него:

Точно также в серии одинаковых измерений осуществляется распределение вероятностей, определяются статистическая дисперсия и среднеквадратическое отклонение от среднего импульса частицы :

Произведение данных величин связано соотношением неопределённости:

где – постоянная Дирака.

В некоторых случаях «неопределённость» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что в случае нормального распределения переменных приводит для произведения неопределённостей к большей нижней границе, становящейся равной . Согласно соотношению неопределённостей, состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x – нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» но не с произвольно высокой точностью.

Отношения неопределённости накладывают ограничения на теоретический предел точности любых измерений. Они справедливы для так называемых идеальных измерений, иногда называемых измерениями Джона фон Неймана. Они тем более справедливы для неидеальных измерений или измерений согласно Л.Д. Ландау. В повседневной жизни мы обычно не наблюдаем неопределённость потому, что значение чрезвычайно мало.

Как правило, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. Принцип неопределённости в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим. Примером является частица с определённым значением энергии, находящаяся в коробке. Такая частица является системой, которая не характеризуется ни определённым «положением» (какое-либо определённое значение расстояния от потенциальной стенки), ни определённым значением импульса (включая его направление).

Принцип неопределённости выполняется не только в опытах для множества частиц в одинаковых начальных состояниях, когда учитываются среднеквадратичные отклонения от средних значений для пары сопряжённых физических величин, измеряемых отдельно друг от друга, но и в каждых разовых измерениях, когда можно оценить значения и разброс одновременно обеих физических величин. Хотя принцип неопределённости связан с эффектом наблюдателя , он не исчерпывается им, поскольку связан ещё и со свойствами наблюдаемых квантовых объектов и их взаимодействиями между собой и с приборами.

История

Основная статья : Введение в квантовую механику

Вернер Гейзенберг сформулировал принцип неопределённости в институте Нильса Бора в Копенгагене во время работы над математическими основами квантовой механики.

В 1925 г. следуя работам Хендрика Крамерса , Гейзенберг развил матричную механику, заменившую существовавшую ранее на основе постулатов Бора версию квантовой механики. Он предположил, что квантовое движение отличается от классического, так что у электронов в атоме нет точно определённых орбит. Следовательно, для электрона уже нельзя точно сказать, где он находится в данное время и как быстро движется. Свойством матриц Гейзенберга для положения и импульса является то, что они не коммутируют между собой:

В марте 1926 г. Гейзенберг нашёл, что некоммутативность приводит к принципу неопределённости, ставшему основой того, что позже назвали копенгагенской интерпретацией квантовой механики. Гейзенберг показал связь коммутатора операторов величин и боровского принципа дополнительности. Любые две переменные, которые не коммутируют между собой, не могут быть точно измерены одновременно, так как при увеличении точности измерения одной переменной падает точность измерения другой переменной.

В качестве примера можно рассмотреть дифракцию частицы, проходящей через узкую щель в экране и отклоняющейся после прохождения на некоторый угол. Чем уже щель, тем больше получается неопределённость в направлении импульса прошедшей частицы. По закону дифракции возможное угловое отклонение Δθ приблизительно равно λ / d , где d есть ширина щели, а λ – длина волны, соответствующая частице. Если использовать формулу для в виде λ = h / p , и обозначить d Δθ = Δx , то получается соотношение Гейзенберга:

В своей статье 1927 г. Гейзенберг представил данное соотношение как минимально необходимое возмущение в величине импульса частицы, возникающее в результате измерения положения частицы , но не дал точного определения величинам Δx и Δp . Вместо этого он сделал их оценки в ряде случаев. В своей лекции в Чикаго он уточнил свой принцип так:

(1)

В современном виде соотношение неопределённостей записал Кеннард (E. H. Kennard ) в 1927 г.:

(2)

где , и σ x , σ p являются среднеквадратическими (стандартными) отклонениями положения и импульса. Сам Гейзенберг доказал соотношение (2) только для специального случая гауссовских состояний. .

Принцип неопределённости и эффект наблюдателя

Один из вариантов принципа неопределённости можно сформулировать так:

Измерение координаты частицы необходимо изменяет её импульс, и наоборот .

Это делает принцип неопределённости особым, квантовым вариантом эффекта наблюдателя , причём в роли наблюдателя может выступать и автоматизированная система измерений, использующая как принцип прямой фиксации частиц, так и метод исключения (частицы, не попавшие в детектор, прошли другим доступным путём).

Такое объяснение может быть принято и было использовано Гейзенбергом и Бором, стоявшими на философской основе логического позитивизма. Согласно логике позитивизма, для исследователя истинная природа наблюдаемой физической системы определяется результатами наиболее точных экспериментов, достижимых в принципе и ограниченных лишь самой природой. В таком случае появление неизбежных неточностей при проведении измерений становится следствием не только свойств реально используемых приборов, но и самой физической системы в целом, включая объект и систему измерения.

В настоящее время логический позитивизм не является общепринятой концепцией, поэтому объяснение принципа неопределённости на основе эффекта наблюдателя становится неполным для тех, кто придерживается другой философского подхода. Некоторые полагают, что возникающее при измерении координаты частицы значительное изменение её импульса является необходимым свойством не частицы, а лишь измерительного процесса. На самом деле частица скрытым от наблюдателя образом обладает определённым местоположением и импульсом в каждый момент времени, но их значения не определяются точно вследствие использования слишком грубых инструментов (теория скрытых параметров). Для иллюстрации можно привести пример: необходимо найти местоположение и импульс движущегося биллиардного шара, используя другой биллиардный шар. В серии экспериментов, в которых оба шара направляются приблизительно одинаково и сталкиваются, можно найти углы рассеяния шаров, их импульсы, и затем определить точки их встречи. Вследствие начальных неточностей каждое столкновение является уникальным, появляется разброс в местоположении и скоростях шаров, что для серии столкновений приводит к соответствующему соотношению неопределённости. Однако при этом мы точно знаем, что в каждом отдельном измерении шары движутся, обладая вполне конкретными импульсом в каждый момент времени. Данное знание в свою очередь возникает оттого, что за шарами можно следить с помощью отражённого света, который практически не влияет на движение массивных шаров.

Описанная ситуация иллюстрирует возникновение принципа неопределённости и зависимость результатов измерений от процедуры измерений и свойств измерительных приборов. Но в реальных экспериментах до сих пор не обнаружено способа одновременного измерения параметров элементарных частиц внешними приборами, не нарушая существенно их начального состояния. Поэтому идея о скрытых от наблюдателя параметрах частиц в стандартной квантовой механике не пользуется успехом и в ней обычно просто утверждается, что не существует состояний, в которых одновременно можно измерить координату и импульс частицы.

Существуют однако ситуации, в которых вероятно могут быть определены скрытые параметры частиц. Речь идёт о двух (или более) связанных частицах в так называемом сцепленном состоянии. Если эти частицы оказываются на достаточно большом расстоянии друг от друга и не могут влиять друг на друга, измерение параметров одной частицы даёт полезную информацию о состоянии другой частицы.

Допустим, при распаде позитрония излучаются два фотона в противоположенных направлениях. Поместим два детектора таким образом, что первый может измерить положение одного фотона, а второй детектор – импульс другого фотона. Произведя одновременные измерения, можно с помощью закона сохранения импульса достаточно точно определить как импульс и направление первого фотона, так и его местоположение при попадании в первый детектор. Изменение процедуры измерения в данном случае позволяет избежать необходимости обязательного использования принципа неопределённости как ограничительного средства при вычислении погрешностей измерения. Описанная ситуация не отменяет принцип неопределённости как таковой, поскольку координата и импульс одновременно измеряются не у одной частицы локальным образом, а у двух частиц на расстоянии друг от друга.

Микроскоп Гейзенберга

В качестве одного из примеров, иллюстрировавших принцип неопределённости, Гейзенберг приводил воображаемый микроскоп как измерительное устройство. С его помощью экспериментатор измеряет положение и импульс электрона, который рассеивает падающий на него фотон, обнаруживая тем самым своё присутствие.

Если фотон имеет малую длину волны и следовательно большой импульс, положение электрона в принципе может быть измерено достаточно точно. Но при этом фотон рассеивается случайным образом, передавая электрону достаточно большую и неопределённую долю своего импульса. Если же у фотона большая длина волны и малый импульс, он мало изменяет импульс электрона, но рассеяние будет определять положение электрона очень неточно. В результате произведение неопределённостей в координате и импульсе остаётся не меньшим, чем постоянная Планка, с точностью до числового сомножителя порядка единицы. Гейзенберг не сформулировал точное математическое выражение для принципа неопределённости, а использовал принцип как эвристическое количественное соотношение.

Критика

Копенгагенская интерпретация квантовой механики и принцип неопределенности Гейзенберга оказались двойной мишенью для тех, кто верил в реализм и детерминизм. В копенгагенской интерпретации квантовой механики не содержится фундаментальной реальности, описывающей квантовое состояние и предписывающей способ вычисления экспериментальных результатов. В ней заранее не известно, что система находится в фундаментальном состоянии таком, что при измерениях появится точно заданный результат. Физическая вселенная существует не в детерминистичной форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности), произведённая миллионами фотонов, дифрагирующими через щель, может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказан никаким известным методом. Копенгагенская интерпретация считает, что это не может быть предсказано вообще никаким методом.

Именно эту интерпретацию Эйнштейн подвергал сомнению, когда писал Максу Борну: «я уверен, что Бог не бросает кости» (Die Theorie liefert viel . Aber ich bin überzeugt , dass der Alte nicht würfelt ) . Нильс Бор, который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».

Альберт Эйнштейн считал, что случайность появляется как отражение нашего незнания фундаментальных свойств реальности, тогда как Бор верил, что распределение вероятностей является фундаментальным и неповторимым, зависящим от вида измерений. Дебаты Эйнштейна и Бора в отношении принципа неопределённости длились не один год.

Щель в экране

Первый мысленный эксперимент Эйнштейна по проверке принципа неопределённости был следующим:

Рассмотрим частицу, проходящую через щель в экране шириной d. Щель приводит к неопределённости импульса частицы порядка h/d, когда частица проходит через экран. Но импульс частицы с достаточной точностью можно определить по отдаче экрана с помощью закона сохранения импульса.

Ответ Бора был таков: так как экран подчиняется законам квантовой механики, то для измерения отдачи с точностью ΔP импульс экрана должен быть известен с такой точностью до пролёта частицы. Это приводит к неопределённости положения экрана и щели, равной h / ΔP , и если импульс экрана известен достаточно точно для измерения отдачи, положение щели оказывается определённым с точностью, не позволяющей точного измерения положения частицы.

Подобный анализ с частицами, испытывающими дифракцию на нескольких щелях, имеется у Р. Фейнмана.

Коробка Эйнштейна

Другой мысленный эксперимент Эйнштейна был задуман для проверки принципа неопределённости в отношении таких сопряжённых переменных, как время и энергия. Если в эксперименте со щелью в экране частицы двигались в заданном пространстве, то во втором случае они двигаются в течение заданного времени.

Рассмотрим коробку, наполненную световым излучением в результате радиоактивного распада. В коробке имеется затвор, открывающий её на точно известное малое время, в течение которого часть излучения покидает коробку. Для измерения унесённой с излучением энергии можно взвесить коробку после излучения, сравнить с начальным весом и применить принцип . Если коробка установлена на весах, то измерения сразу должны показать неточность принципа неопределённости.

Через день размышлений Бор определил, что если энергия самой коробки известна точно в начальный момент, то время открытия затвора не может быть известно точно. Кроме этого, весы и коробка за счёт изменения веса при излучении могут менять своё положение в гравитационном поле. Это приводит к изменению скорости течения времени за счёт движения часов и за счёт влияния гравитации на ход часов, и к дополнительной неточности времени срабатывания затвора.

Парадокс Эйнштейна - Подольского - Розена

В третий раз боровская трактовка принципа неопределённости подверглась сомнению в 1935 г., когда Альберт Эйнштейн, Борис Подольский и Натан Розен (смотри Парадокс Эйнштейна - Подольского - Розена) опубликовали свой анализ состояний удалённых на большие расстояния сцепленных частиц. Согласно Эйнштейну, измерение физической величины одной частицы в квантовой механике должно приводить к изменению вероятности распределения другой частицы, причём со скоростью, которая может превышать даже скорость света. Обдумывая это, Бор пришёл к той мысли, что неопределённость в принципе неопределённости не возникает от подобного прямого измерения.

Сам же Эйнштейн полагал, что полное описание реальности должно включать предсказание результатов экспериментов на основе "локально меняющихся детерминированных величин", приводя к увеличению информации по сравнению с той, которая ограничивается принципом неопределённости.

В 1964 г. Джон Белл показал, что предположение Эйнштейна о скрытых параметрах может быть проверено, поскольку оно приводит к определённым неравенствам между вероятностями в различных экспериментах. К настоящему времени какого-либо надёжного подтверждения существования скрытых параметров на основе неравенств Белла не получено.

Имеется также точка зрения, что на результаты экспериментов могут влиять нелокальные скрытые параметры , в частности, её придерживался Д. Бом. Здесь квантовая теория может тесно соприкасаться с другими физическими концепциями. Например, нелокальные скрытые параметры можно мыслить случайным набором данных, проявляющимся в экспериментах. Если предположить, что размер видимой вселенной ограничивает этот набор и связи между ними, то квантовый компьютер согласно Г. Хоофту вероятно будет допускать ошибки, когда будет оперировать с числами, превышающими 10000 единиц.

Критика Поппера

К.Р. Поппер критиковал принцип неопределённости в том виде, который был дан Гейзенбергом – что измерение местоположения частицы всегда влияет на результат измерения импульса, указывая, что при прохождении частицей с определённым импульсом узкой щели в отражённой волне имеется некоторая амплитуда вероятности существования импульса, равного импульсу до рассеяния. Это значит, что в ряде событий частица пройдёт щель без изменения импульса. В таком случае соотношение неопределённостей следует применять не для индивидуальных событий или опытов, а для экспериментов с множеством одинаковых частиц с одинаковыми начальными условиями, то есть для квантовых ансамблей. Критика подобного типа применима ко всем вероятностным теориям, а не только к квантовой механике, так как вероятностные утверждения требуют для своей поверки множества измерений.

С точки зрения копенгагенской интерпретации квантовой механики, приписывание частице определённого импульса до измерения эквивалентно существованию скрытого параметра. Частица должна описываться не этим импульсом, а волновой функцией, которая меняется при прохождении щели. Отсюда возникает неопределённость импульса, соответствующая принципу неопределённости.

Принцип неопределённости информационной энтропии

При формулировке многомировой интерпретации квантовой механики в 1957 г. Хью Эверетт пришёл к более строгой форме принципа неопределённости. . Если квантовые состояния имеют волновую функцию вида:

то у них будет увеличено стандартное отклонение в координате из-за суперпозиции некоторого числа взаимодействий. Будет увеличена и неопределённость в импульсе. Для уточнения неравенства в соотношении неопределённостей используется информация Шеннона для распределения величин, измеряемая числом бит, необходимых для описания случайной величины при конкретном распределении вероятностей:

Величина I интерпретируется как число бит информации, получаемой наблюдателем в момент, когда величина x достигает точности ε , равной I x + log 2 (ε) . Вторая часть есть число бит после десятичной точки, а первая даёт логарифмическое значение распределения. Для однородного распределения ширины Δx информационное содержание равно log 2 Δx . Эта величина может быть отрицательна, означая, что распределение уже одной единицы, и малые биты после десятичной точки не дают информации из-за неопределённости.

Если взять логарифм соотношения неопределённостей в так называемых естественных единицах:

то в таком виде нижняя граница равна нулю.

Эверетт и Хиршман предположили, что для всех квантовых состояний:

Это было доказано Бекнером в 1975 г. .

Производные

Когда линейные операторы A и B действуют на функцию ψ(x ) , они не всегда коммутируют. Пусть например оператор B есть умножение на x, а оператор A есть производная по x. Тогда имеет место равенство:

которое на операторном языке означает:

Это выражение очень близко к каноническому коммутатору квантовой механики, в котором оператор положения есть умножение волновой функции на x, а оператор импульса включает производную и умножение на . Это даёт:

Этот ненулевой коммутатор приводит к соотношению неопределённости.

Для любых двух операторов A и B:

что соответствует неравенству Коши - Буняковского для внутреннего произведения двух векторов и . Величина ожидания произведения AB превышает амплитуду мнимой части:

Для эрмитовых операторов это даёт соотношение Робертсона - Шрёдингера :

и принцип неопределённости как частный случай.

Физическая интерпретация

При переходе от операторов величин к неопределённостям можно записать:

где

есть среднее переменной X в состоянии ψ ,

есть среднеквадратическое отклонение переменной X в состоянии ψ.

После замены для A и для B в общем операторном неравенстве коммутатор приобретает вид:

Нормы и являются в квантовой механике стандартными отклонениями для A и B. Для координаты и импульса норма коммутатора равна .

Матричная механика

В матричной механике коммутатор матриц X и P равен не нулю, а величине , умноженной на единичную матрицу.

Коммутатор двух матриц не меняется, когда обе матрицы изменяются за счёт сдвига на постоянные матрицы x и p :

Для каждого квантового состояния ψ можно определить число x

как ожидаемое значение координаты, и

как ожидаемое значение импульса. Величины и будут ненулевыми в той степени, в которой являются неопределёнными положение и импульс, так что X и P отличаются от средних значений. Ожидаемое значение коммутатора

может быть ненулевым, если отклонение в X в состоянии , умноженное на отклонение в P , достаточно большое.

Квадрат значения типичного матричного элемента как квадрат отклонения можно оценить путём суммирования квадратов состояний энергии :

Поэтому каноническое коммутационное соотношение получается умножением отклонений в каждом состоянии, давая значение порядка :

Эта эвристическая оценка может быть уточнена с помощью неравенства Коши - Буняковского (смотри выше). Внутреннее произведение двух векторов в скобках:

ограничено произведением длин векторов:

Поэтому для каждого состояния будет:

действительная часть матрицы M есть , поэтому действительная часть произведения двух эрмитовых матриц равна:

Для мнимой части имеем:

Амплитуда больше, чем амплитуда её мнимой части:

Произведение неопределённостей ограничено снизу ожидаемым значением антикоммутатора , давая соответствующий член в соотношение неопределённостей. Этот член не важен для неопределённости положения и импульса, так как он имеет нулевое ожидаемое значение для гауссовского волнового пакета, как в основном состоянии гармонического осциллятора. В то же время член от антикоммутатора полезен для ограничения неопределённостей спиновых операторов.

Волновая механика

В уравнении Шрёдингера квантовомеханическая волновая функция содержит информацию как о положении, так и об импульсе частицы. Наиболее вероятным положением частицы является то, где концентрация волны наибольшая, а основная длина волны задаёт импульс частицы.

Длина волны локализованной волны определяется неточно. Если волна находится в объёме размером L и длина волны приблизительно равна λ , число циклов волны в этой области будет порядка L / λ . То, что число циклов известно с точностью до одного цикла, можно записать так:

Это соответствует хорошо известному результату при обработке сигналов - чем короче промежуток времени, тем менее точно определена частота. Аналогично в преобразовании Фурье, чем уже пик функции, тем шире её Фурье образ.

Если умножить равенство на h , и положить ΔP = h Δ (1 / λ) , ΔX = L , то будет:

Принцип неопределённости может быть представлен как теорема в преобразованиях Фурье: произведение стандартного отклонения квадрата абсолютного значения функции на стандартное отклонение квадрата абсолютного значения её Фурье образа не меньше, чем 1/(16π 2).

Типичным примером является (ненормализованная) гауссовская волновая функция:

Ожидаемое значение X равно нулю вследствие симметрии, поэтому вариация находится усреднением X 2 по всем положениям с весом ψ(x ) 2 и учётом нормировки:

С помощью преобразования Фурье можно перейти от ψ(x ) к волновой функции в k пространстве, где k есть волновое число и связано с импульсом соотношением де Бройля :

Последний интеграл не зависит от p, так как здесь непрерывное изменение переменных , исключающее такую зависимость, а путь интегрирования в комплексной плоскости не проходит через сингулярность. Поэтому с точностью до нормировки волновая функция снова гауссовская:

Ширина распределения k находится путём усреднения через интегрирование, как показано выше:

Тогда в данном примере

Симплектическая геометрия

В математических терминах сопряжённые переменные являются частью симплектического базиса, и принцип неопределённости соответствует симплектической форме в симплектическом пространстве.

Соотношение Робертсона - Шрёдингера

Возьмём любые два самосопряжённые эрмитовые операторы A и B , и систему в состоянии ψ. При измерении величин A и B проявится распределение вероятностей со стандартными отклонениями Δ ψ A и Δ ψ B . Тогда будет справедливо неравенство:

где [A ,B ] = AB - BA есть коммутатор A и B , {A ,B } = AB +BA есть антикоммутатор , и есть ожидаемое значение. Это неравенство называется соотношением Робертсона - Шрёдингера, включающее в себя принцип неопределённости как частный случай. Неравенство с одним коммутатором вывел в 1930 г. Говард Перси Робертсон (Howard Percy Robertson ), и несколько позже Эрвин Шрёдингер добавил член с антикоммутатором .

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ . В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Другие принципы неопределённости

Соотношение Робертсона - Шрёдингера приводит к соотношениям неопределённости для любых двух переменных, которые не коммутируют друг с другом:

  • Соотношение неопределённости между координатой и импульсом частицы:

  • между энергией и положением частицы в одномерном потенциале V(x):

  • между угловой координатой и моментом импульса частицы при малой угловой неопределённости:

  • между ортогональными компонентами полного момента импульса частицы:

где i , j , k различны и J i означает момент импульса вдоль оси x i .

  • между числом электронов в сверхпроводнике и фазой их упорядочивания в теории Гинзбурга-Ландау:

Существует также отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Энергия-время в принципе неопределённости

Энергия и время входят в соотношение неопределённостей, которое не вытекает напрямую из соотношения Робертсона - Шрёдингера.

Произведение энергии на время имеет ту же размерность, что и произведение импульса на координату, момент импульса и функция действия. Поэтому уже Бору было известно следующее соотношение:

здесь Δt есть время существования квантового состояния, а время как и пространственная координата задаёт эволюцию частицы в системе пространственно-временных координат.

Из соотношения следует, что состояние с малым временем жизни не может иметь определенного значения энергии – за это время энергия обязана измениться, тем более существенно, чем меньше время. Если энергия состояния пропорциональна частоте колебаний, то для высокой точности измерения энергии необходимо измерять частоту за такой период времени, который включает в себя достаточно много волновых циклов.

Например, в спектроскопии возбуждённые состояния имеют ограниченное время жизни. Средняя энергия испускаемых фотонов лежит вблизи теоретического значения энергии состояния, но распределение энергий имеет некоторую ширину, называемую естественная ширина линии . Чем быстрее распадается состояние, тем шире соответствующая ему ширина линии, что затрудняет точное измерение энергии. . Аналогично имеются трудности при определении массы покоя быстро распадающихся резонансов в физике элементарных частиц. Чем быстрее распадается частица, тем менее точно известна её масса-энергия.

В одной неточной формулировке принципа неопределённости утверждается, что для измерения энергии квантовой системы с точностью ΔE требуется время Δt > h / ΔE . Её неточность была показана Ахароновым (Yakir Aharonov ) и Д. Бомом в 1961 г. На самом деле время Δt есть время, когда система существует в отсутствие внешних возмущений, а не время измерения или воздействия измерительных приборов.

В 1936 г. Поль Дирак предложил точное определение и вывод энерго -временного соотношения неопределённости в релятивистской квантовой теории "событий". В этой формулировке частицы движутся в пространстве-времени и на каждой траектории имеют своё собственное внутреннее время. Многовременная формулировка квантовой механики математически эквивалентна стандартной формулировке, но более удобна для релятивистского обобщения. На её основе Синъитиро Томонага создал ковариантную теорию возмущений для квантовой электродинамики.

Более известную и используемую формулировку энерго -временного соотношения неопределённости дали в 1945 г. Л. И. Мандельштам и И . E. Тамм. Для квантовой системы в нестационарном состоянии наблюдаемая величина B представляется самосогласованным оператором , и справедлива формула:

где Δ ψ E есть стандартное отклонение оператора энергии в состоянии , Δ ψ B есть стандартное отклонение оператора и есть ожидаемая величина в этом состоянии. Второй множитель в левой части имеет размерность времени, и он отличается от времени, входящем в уравнение Шрёдингера. Этот множитель является временем жизни состояния по отношению к наблюдаемой B , по истечении которого ожидаемое значение изменяется заметно.

Теоремы неопределённости в гармоническом анализе

В гармоническом анализе принцип неопределённости подразумевает, что нельзя точно получить значения функции и её отображения Фурье; при этом выполняется следующее неравенство:

Имеются и другие соотношения между функцией ƒ и её отображением Фурье.

Теорема Бенедика

Эта теорема утверждает, что набор точек, где функция ƒ не равна нулю, и набор точек, где не равна нулю, не могут быть оба слишком малы. В частности, ƒ в L 2 (R ) и её отображение Фурье не могут поддерживаться одновременно (иметь один и тот же носитель функции) на покрытиях с ограниченной мерой Лебега. При обработке сигналов этот результат хорошо известен: функция не может одновременно быть ограниченной и во времени и в диапазоне частот.

Принцип неопределённости Харди

Математик G. H. Hardy в 1933 г. сформулировал следующий принцип: невозможно для функций ƒ и обоим быть "очень быстро возрастающими." Так, если ƒ определена в L 2 (R ), то:

кроме случая f = 0 . Здесь отображение Фурье равно , и если в интеграле заменить на для каждого a < 2π , то соответствующий интеграл будет ограниченным для ненулевой функции f 0 .

Бесконечная вложенность материи

В теории принцип неопределённости получает особое толкование. Согласно этой теории, всё множество существующих во Вселенной объектов можно расположить по уровням, в пределах которых размеры и массы принадлежащих им объектов различаются не так сильно, как между различными уровнями. При этом возникает . Оно выражается например в том, что массы и размеры тел при переходе от уровня к уровню вырастают в геометрической прогрессии и могут быть найдены с помощью соответствующих коэффициентов подобия. Существуют основные и промежуточные уровни материи. Если брать такие основные уровни материи, как уровень элементарных частиц и уровень звёзд, то в них можно найти подобные друг другу объекты – нуклоны и нейтронные звёзды. Электрон также имеет свой аналог на уровне звёзд – в виде дисков, открытых возле рентгеновских пульсаров, являющихся основными кандидатами в магнитары. . По известным свойствам элементарных частиц (масса, радиус, заряд, спин и т.д.) с помощью коэффициентов подобия можно определить соответствующие свойства подобных им объектов на уровне звёзд.

Кроме этого, в силу физические законы не меняют своей формы на разных уровнях материи. Это означает, что кроме подобия объектов и их свойств, существует подобие соответствующих явлений. Благодаря этому на каждом уровне материи можно рассматривать свой собственный принцип неопределённости. Характерной величиной кванта действия и момента импульса на уровне элементарных частиц является величина , то есть . Она непосредственно входит в принцип неопределённости. Для нейтронных звёзд характерной величиной кванта действия является ħ’ s = ħ ∙ Ф’ ∙ S’ ∙ Р’ = 5,5∙10 41 Дж∙с , где Ф’, S’, Р’ – коэффициенты подобия по массе, скоростям процессов и размерам соответственно. Следовательно, если производить измерения местоположения, импульса или других величин у отдельных нейтронных звёзд с помощью звёздных или ещё более массивных объектов, то при их взаимодействии произойдёт обмен импульсом и моментом импульса, с характерным значением звёздного кванта действия порядка ħ’ s . При этом измерение координаты будет влиять на точность измерения импульса и наоборот, приводя к принципу неопределённости.

Из изложенного следует, что сущность принципа неопределённости вытекает из самой процедуры измерений. Так, элементарные частицы не могут быть исследованы иначе, как с помощью самих элементарных частиц или их композитных состояний (в виде ядер, атомов, молекул и т.д.), которые неизбежно влияют на результаты измерений. Взаимодействие частиц друг с другом или с приборами в таком случае приводит к необходимости введения статистических методов в квантовую механику и лишь вероятностных предсказаний результатов любых опытов. Так как процедура измерений стирает часть информации, имеющейся у частиц до измерений, то прямой детерминации событий от каких-либо скрытых параметров, предполагаемой в теории скрытых параметров, не получается. Например, если направить одну частицу на другую в точно заданном направлении, то должно получиться вполне определённое рассеяние частиц друг на друге. Но здесь возникает проблема в том, что вначале нужно ещё каким-то способом направить частицу именно в данном заданном направлении. Как видно, детерминации событий мешает не только процедура измерений, но и процедура установки точных начальных состояний исследуемых частиц.

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера - Рао в классической теории измерений. В случае, когда измеряется положение частицы, среднеквадратичный импульс частицы входит в неравенство как информация Фишера . См. также полная физическая информация .

Научный юмор

Необычная природа принципа неопределённости Гейзенберга и его запоминающееся название, сделали его источником нескольких шуток. Говорят, что популярной надписью на стенах физического факультета университетских городков является: «Здесь, возможно, был Гейзенберг».

Однажды Вернера Гейзенберга останавливает на шоссе полицейский и спрашивает: «Вы знаете, как быстро Вы ехали, сэр?». На что физик отвечает: «Нет, но я точно знаю, где я!»

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или описывается в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет. Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

Невозможно одновременно с точностью определить координаты и скорость квантовой частицы.

В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, — ни один человек никогда напрямую с ними не сталкивался. Если забыть об этом, мы неизбежно придем в состояние полного замешательства и недоумения. Для себя я сформулировал следующий подход к квантово-механическим эффектам: как только «внутренний голос» начинает твердить «такого не может быть!», нужно спросить себя: «А почему бы и нет? Откуда мне знать, как всё на самом деле устроено внутри атома? Разве я сам туда заглядывал?» Настроив себя подобным образом, вам будет проще воспринять статьи этой книги, посвященные квантовой механике.

Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку — и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь — взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности , названный теперь его именем:

неопределенность значения координаты x неопределенность скорости > h /m ,

математическое выражение которого называется соотношением неопределенностей Гейзенберга :

Δx х Δv > h /m

где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка , названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10 -34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System — навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку — в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, — и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx ), тем более неопределенной становится другая переменная (Δv ), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость — на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени — назовем его Δt . За этот промежуток времени энергия системы случайным образом меняется — происходят ее флуктуация , — и выявить ее мы не можем. Обозначим погрешность измерения энергии ΔЕ. Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для ΔЕ и неопределенности времени, которым квантовая частица этой энергией обладала:

ΔЕ Δt > h

Относительно принципа неопределенности нужно сделать еще два важных замечания:

он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;

принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.

Иногда вам могут встретиться утверждения, будто принцип неопределенности подразумевает, что у квантовых частиц отсутствуют определенные пространственные координаты и скорости, или что эти величины абсолютно непознаваемы. Не верьте: как мы только что видели, принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. И, как и во многом другом, мы вынуждены идти на компромисс. Опять же, писатели-антропософы из числа сторонников концепции «Новой эры» иногда утверждают, что, якобы, поскольку измерения подразумевают присутствие разумного наблюдателя, то, значит, на некоем фундаментальном уровне человеческое сознание связано с Вселенским разумом, и именно эта связь обусловливает принцип неопределенности. Повторим по этому поводу еще раз: ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты. А тот факт, что при этом присутствует разумный наблюдатель в лице ученого, отношения к делу не имеет; инструмент измерения в любом случае влияет на его результаты, присутствует при этом разумное существо или нет.

См. также:

Werner Karl Heisenberg, 1901-76

Немецкий физик-теоретик. Родился в Вюрцбурге. Его отец был профессором византологии Мюнхенского университета. Помимо блестящих математических способностей с детства проявлял склонность к музыке и вполне состоялся как пианист. Еще школьником был членом народной милиции, поддерживавшей порядок в Мюнхене в смутное время, наступившее после поражения Германии в I мировой войне. В 1920 году стал студентом кафедры математики Мюнхенского университета, однако, столкнувшись с отказом в посещении интересующего его семинара по актуальным в те годы вопросам высшей математики, добился перевода на кафедру теоретической физики. В те годы весь мир физиков жил под впечатлением нового взгляда на строение атома (см. Атом Бора), и все теоретики из их числа понимали, что внутри атома происходит нечто странное.

Защитив диплом в 1923 году, Гейзенберг приступил к работе в Гёттингене над проблемами строения атома. В мае 1925 года у него случился острый приступ сенной лихорадки, вынудивший молодого ученого провести несколько месяцев в полном уединении на маленьком, отрезанном от внешнего мира острове Гельголанд, и этой вынужденной изоляцией от внешнего мира он воспользовался столь же продуктивно, как Исаак Ньютон многомесячным заключением в карантинном чумном бараке в далеком 1665 году. В частности, за эти месяцы ученым была разработана теория матричной механики — новый математический аппарат зарождающейся квантовой механики . Матричная механика, как показало время, в математическом понимании эквивалентна появившейся год спустя квантово-волновой механике, заложенной в уравнении Шрёдингера , с точки зрения описания процессов квантового мира. Однако на практике использовать аппарат матричной механики оказалось труднее, и сегодня физики-теоретики, в основном, пользуются представлениями волновой механики.

В 1926 году Гейзенберг стал ассистентом Нильса Бора в Копенгагене. Именно там в 1927 году он и сформулировал свой принцип неопределенности — и можно с основанием утверждать, что это стало его самым большим вкладом в развитие науки. В том же году Гейзенберг стал профессором Лейпцигского университета — самым молодым профессором в истории Германии. Начиная с этого момента, он вплотную занялся созданием единой теории поля (см. Универсальные теории) — по большому счету, безуспешно. За ведущую роль в разработке квантово-механической теории в 1932 году Гейзенберг был удостоен Нобелевской премии по физике за создание квантовой механики.

С исторической же точки зрения личность Вернера Гейзенберга, вероятно, навсегда останется синонимом неопределенности несколько иного рода. С приходом к власти партии национал-социалистов в его биографии открылась самая труднопонимаемая страница. Во-первых, будучи физиком-теоретиком, он оказался вовлеченным в идеологическую борьбу, в которой теоретическая физика, как таковая, получила ярлык «жидовской физики», а сам Гейзенберг был публично назван новыми властями «белым евреем». Лишь после ряда личных обращений к самым высокопоставленным лицам в рядах нацистского руководства ученому удалось остановить кампанию публичной травли в свой адрес. Гораздо проблематичнее выглядит роль Гейзенберга в германской программе разработки ядерного оружия в годы второй мировой войны. В то время, когда большинство его коллег эмигрировали или вынуждены были бежать из Германии под давлением гитлеровского режима, Гейзенберг возглавил германскую национальную ядерную программу.

Под его руководством программа всецело сконцентрировалась на постройке ядерного реактора, однако у Нильса Бора при его знаменитой встрече с Гейзенбергом в 1941 году сложилось впечатление, что это лишь прикрытие, а на самом деле в рамках этой программы разрабатывается ядерное оружие. Так что же произошло на самом деле? Действительно ли Гейзенберг умышленно и по велению совести завел германскую программу разработки атомной бомбы в тупик и направил ее на мирные рельсы, как он впоследствии утверждал? Или просто он допустил какие-то просчеты в своем понимании процессов ядерного распада? Как бы то ни было, Германия атомного оружия создать не успела. Как показывает блестящая пьеса Майкла Фрэйна (Michael Frayn) «Копенгаген», эта историческая загадка, вероятно, даст достаточно материалов еще не для одного поколения беллетристов.

После войны Гейзенберг выступил активным сторонником дальнейшего развития западногерманской науки и ее воссоединения с международным научным сообществом. Его влияние послужило важным инструментом, позволившим добиться безъядерного статуса вооруженных сил Западной Германии в послевоенный период.

Соотношения неопределённости Гейзенберга

В классической механике состояние материальной точки (классической частицы определяется заданием значений координат, импульса, энергии и т.д.). Микрообъекту не могут быть приписаны перечисленные переменные. Однако, информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами представляющие собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, следовательно, приписываются и микрочастицам. Например, говорят о состоянии электрона, в котором он имеет какое-то значение энергии или импульса.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получается при измерениях точные значения. Так, например, электрон (и любая другая микрочастица) не может одновременно иметь точных значений координаты х и компоненты импульса Р х. Неопределённость значений x и Р х удовлетворяет соотношению:

Из уравнения (1) следует, что чем меньше неопределённость одной из переменных, тем больше неопределённость другой. Возможно, такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенной неопределенной (ее неопределённость равна бесконечности).

– классические в механике пары называются

канонически сопряженными

т.е.

Произведение неопределённостей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка .

Гейзенберг (1901-1976 гг.), немец, Нобелевский лауреат 1932 г., в 1927 г. сформулировал принцип неопределенности, ограничивающий применение к микрообъектам классических понятий и представлений:

– это соотношение означает, что определение энергии с точностью до E должно занять интервал времени, равный по меньшей мере

Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения через щель, Р х =0 Þ , зато координата х является совершенно неопределенной. В момент прохождения щель положение меняется. Вместо полной неопределенности х появляется неопределенность х, но это достигается ценой утраты определенности значения P х. Вследствие дифракции появляется некоторая вероятность того, что частица будет двигаться в пределах угла 2j, j – угол, соответствующий первому дифракционному min (интенсивностью высших порядков можно пренебречь).

Краю центрального дифракционного max (первому min) получающемуся от щели шириной х, соответствует угол j, для которого

Соотношение неопределённости показывает в какой мере можно пользоваться понятиями классической механики, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Подставим вместо

Мы видим, что чем больше масса частицы, тем меньше неопределённости её координаты и скорости, следовательно, c тем большей точностью применимо для неё понятие траектории.

Соотношение неопределённости является одним из фундаментальных положений квантовой механики.

В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности (доказательство от обратного).

Пример Хотя соотношение неопределённости распространяется на частицы любых масс, для макрочастиц оно принципиального значения не имеет. Например, для тела m=1 г., движущегося с =600 м/с, при определении скорости с очень высокой точностью 10 -6 %, неопределенность координаты:

Т.е. очень и очень мала.

Для электрона движущегося с (что соответствует его энергии в 1эВ).

При определении скорости с точностью до 20%

Это очень большая неопределенность, т.к. расстояние между узлами кристаллической решетки твердых тел порядка единиц ангстрем.

Таким образом, любая квантовая система не может находится в состояниях, в которых координаты ее центра инерции (для частицы – координаты частицы) и импульс одновременно принимает вполне определенные значения.

В квантовой механике теряет смысл понятие траектории, т.к. если мы точно определим значения координат, то ничего не можем сказать о направлении ее движения (т.е. импульса), и наоборот.

Вообще говоря, принцип неопределенности справедлив как для макро-, так и для микрообъектов. Однако для макрообъектов значения неопределенности, оказывается пренебрежимо малыми по отношению к значениям самих этих величин, тогда как в микромире эти неопределённости оказываются существенными.