Болезни Военный билет Призыв

Как рассчитать показатель адиабаты. Определение показателя адиабаты. Соотношение для реальных газов

() До теплоемкости при постоянном объеме (). Иногда его еще называют фактором изоентропийного расширения и обозначают греческой буквой (гамма) или (каппа). Символ в основном используется в химических инженерных дисциплинах. В теплотехнике преимущественно используется латинский буква .

Показатели адиабаты для различных газов
Темп. Газ γ Темп. Газ γ Темп. Газ γ
-181 ? C H 2 1.597 200 ? C Сухой воздух 1.398 20 ? C NO 1.400
-76 ? C 1.453 400 ? C 1.393 20 ? C N 2 O 1.310
20 ? C 1.410 1000 ? C 1.365 -181 ? C N 2 1.470
100 ? C 1.404 2000 ? C 1.088 15 ? C 1.404
400 ? C 1.387 0 ? C CO 2 1.310 20 ? C Cl 2 1.340
1000 ? C 1.358 20 ? C 1.300 -115 ? C CH 4 1.410
2000 ? C 1.318 100 ? C 1.281 -74 ? C 1.350
20 ? C He 1.660 400 ? C 1.235 20 ? C 1.320
20 ? C H 2 O 1.330 1000 ? C 1.195 15 ? C NH 3 1.310
100 ? C 1.324 20 ? C CO 1.400 19 ? C Ne 1.640
200 ? C 1.310 -181 ? C O 2 1.450 19 ? C Xe 1.660
-180 ? C Ar 1.760 -76 ? C 1.415 19 ? C Kr 1.680
20 ? C 1.670 20 ? C 1.400 15 ? C SO 2 1.290
0 ? C Сухой воздух 1.403 100 ? C 1.399 360 ? C Hg 1.670
20 ? C 1.400 200 ? C 1.397 15 ? C C 2 H 6 1.220
100 ? C 1.401 400 ? C 1.394 16 ? C C 3 H 8 1.130
- Это теплоемкость газа; - удельная теплоемкость (отношение теплоемкости к единице массы) газа.

Индексы и обозначают условие постоянства давления или объема соответственно.

Для понимания этого соотношения можно рассмотреть следующий эксперимент:

Закрытый цилиндр с закрепленным неподвижно поршнем содержит воздуха. Давление внутри равно давлению извне. Этот цилиндр нагревается до определенной, необходимой температуры. Пока поршень не двигается, объем воздуха в цилиндре остается постоянным, в то время как температура и давление возрастают. Когда необходимая температура будет достигнута, нагрев прекращается. В этот момент поршень "освобождается" и, благодаря этому, он начинает двигаться без теплообмена с окружающей средой (воздух расширяется адиабатически). Осуществляя работу, воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздуха до состояния, когда его температура вновь достигнет упомянутого выше требуемого значения (при "освобожденном" поршни) воздуха необходимо дополнительно нагреть. Для этого нагрев извне необходимо подвести примерно на 40% (для двухатомного газа - воздух) большее количество теплоты, чем были подведены при предварительном нагреве (с закрепленным поршнем). В этом примере количество теплоты, подведена к цилиндру с закрепленным поршнем, пропорциональна , Тогда как общее количество подведенной теплоты пропорциональна . Таким образом, показатель адиабаты в этом примере составит 1,4.

Другой подход для понимания разницы между и заключается в том, что применяется тогда, когда работа осуществляется над системой, принуждают к изменению своего объема (т.е. путем движения поршня, сжимающего содержание цилиндра), или если работа осуществляется системой с изменением ее температуры (т.е. нагревом газа в цилиндре, что заставляет поршень двигаться) . применяется только если выполнено газом работа равна нулю (). Отметим различие между подводом тепла при закрепленном поршни и подводом тепла при освобожденном поршни. Во втором случае давление газа в цилиндре остается постоянным, и газ будет расширяться, совершая работу как по перемещению поршня, так и увеличивая свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, частично идет на изменение внутренней энергии газа, тогда как остальные тепла уходит на выполнение газом работы.


1. Соотношение для идеального газа

1.1. Соотношение использованием универсальной газовой постоянной

Для идеального газа теплоемкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена ​​как . Таким образом, можно сказать, что показатель адиабаты - это отношение энтальпии к внутренней энергии:

С другой стороны, теплоемкости могут быть выражены также через показатель адиабаты () И универсальную газовую постоянную ():

Может оказаться, что трудно будет найти информацию о табличные значения , В то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :


1.2. Соотношение использованием числа степеней свободы

Показатель адиабаты () Для идеального газа может быть выражен через число степеней свободы () Молекул газа:

Таким образом, для одноатомного идеального газа (три степени свободы) показатель адиабаты равен:

,

в то время как для двухатомного идеального газа (пять степеней свободы) (при комнатной температуре):

.

Воздуха на земле представляет собой в основном смесь двухатомных газов (~ 78% азот а (N 2) и ~ 21% кислород а (O 2)), и при нормальных условиях его можно рассматривать как идеальный. Двухатомный газ имеет пять степеней (три поступательных и два вращательных степени свободы). Как следствие, показатель адиабаты для воздуха имеет величину:

.

Это хорошо согласуется с экспериментальными измерениями показателя адиабаты воздуха, примерно дают значения 1,403 (приведенное выше в таблице).


2. Соотношение для реальных газов

По мере того, как температура растет, високоенергетичниши вращательные и колебательные состояния становятся доступными для молекулярных газов, и таким образом, количество степеней свободы растет, а показатель адиабаты уменьшается.

Расчет давления во фронте воздушной ударной волны при разрушении емкости проводится по формулам (3.12), (3.45), в последней из которых величина aMQ v н заменяется на Е, значение коэффициента b 1 = 0,3.

Серьезную опасность представляет разлет осколков, образующихся при разрушении емкости. Движение осколка с известной начальной скоростью можно описать системой уравнений вида

\s\up15(x" = -\f((0C1S1 \b (x" -\f((0C2S2 \b (x"2 + y"2 (3.45)

где m - масса осколка, кг;C 1 ,C 2 - коэффициенты лобового сопротивления и подъемной силы осколка соответственно;S 1 ,S 2 - площадь лобовой и боковой поверхности осколка, м 2 ;r 0 - плотность воздуха, кг/м 3 ;a - угол вылета осколка;x, y - координатные оси.

Решение этой системы уравнений приведено на рис. 3.7.

В приближенных расчетах для оценки дальности разлета осколков допускается использовать соотношение

где L m - максимальная дальность разлета осколков, м;V 0 - начальная скорость полета осколков,м/с;g = 9,81 м/с 2 - ускорение свободного падения.

Соотношение (3.46) получено для случая полета осколков в безвоздушном пространстве. При больших величинах V 0 оно дает завышение значения L m . Дальность L m , определенную таким образом, следует ограничить сверху величиной L *

L m £ L * = 238 3.47,

где Е - энергия рассматриваемого взрыва, Дж;Q v тр - теплота взрыва тротила (табл.2), Дж/кг.Значения L * получены при взрывах тротиловых зарядов в металлической оболочке (бомб, снарядов).

При взрыве емкости со сжатым горючим газом энергия взрыва Е, Дж, находится по соотношению

E = + MQ v п 3.48,

где M = awM 0 - масса газа, участвующего во взрыве, кг;Q v п - теплота взрыва горючего газа, Дж/кг;a, w - коэффициенты, определяемые согласно (3.32), (3.45);

Масса газа в емкости до взрыва M 0 = Vr 0 , где величины P 0 , P г, V имеют то же значение, что и в формуле (3.46), а величина r 0 - плотность газа при атмосферном давлении.



Как отмечалось в разделе 3.4, показатель адиабаты продуктов взрыва ГВС g » 1,25. Более точные значения показателя адиабаты некоторых газов, используемые для расчета последствий взрыва, приведены в табл.3.8.

Таблица 3.8

В рассматриваемом случае также имеет место соотношение Е »E ув + Е оск + Е т, где Е - энергия взрыва, Е ув = b 1 Е - энергия, расходуемая на формирование воздушной ударной волны, Е оск = b 2 Е - кинетическая энергия осколков, Е т = b 0 Е - энергия, идущая на тепловое излучение. Согласно данным здесь коэффициенты b 1 = 0,2, b 2 = 0,5, b 3 = 0,3.

Расчет давления во фронте воздушной ударной волны и дальности разлета осколков при известных значениях энергии взрыва Е и коэффициентов b 1 , b 2 , b 3 приводится по аналогии с рассмотренным случаем взрыва емкости с инертным газом.

Необходимо отметить различие событий, происходящих при разгерметизации сосудов, содержащих газ под давлением, и сосудов, содержащих сжиженные газы. Если в первом случае основным поражающим фактором являются осколки оболочки, то во втором - осколки могут не образоваться, так как при нарушении герметичности баллонов с сжиженными газами их внутреннее давление практически одновременно с разгерметизацией становится равным внешнему и далее вступают в действие процессы истечения сжиженного газа из разрушенного баллона в окружающую среду и его испарения. При этом в случае взрыва основными поражающими факторами являются ударная волна и тепловое излучение.

См. также «Физический портал»

Показатель адиабаты (иногда называемый коэффициентом Пуассона ) - отношение теплоёмкости при постоянном давлении () к теплоёмкости при постоянном объёме (). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой (гамма) или (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква .

Уравнение:

, - теплоёмкость газа, - удельная теплоёмкость (отношение теплоёмкости к единице массы) газа, индексы и обозначают условие постоянства давления или постоянства объёма, соответственно.

Для понимания этого соотношения можно рассмотреть следующий эксперимент:

Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. Пока поршень не может двигаться, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает двигаться наружу без теплообмена с окружающей средой (воздух расширяется адиабатически). Совершая работу , воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа - воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру с закреплённом поршне, пропорционально , тогда как общее количество подведённой теплоты пропорционально . Таким образом, показатель адиабаты в этом примере равен 1.4.

Другой путь для понимания разницы между и состоит в том, что применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). применяется только если - а это выражение обозначает совершённую газом работу - равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.

Показатели адиабаты для различных газов
Темп. Газ γ Темп. Газ γ Темп. Газ γ
−181 °C H 2 1.597 200 °C Сухой воздух 1.398 20 °C NO 1.400
−76 °C 1.453 400 °C 1.393 20 °C N 2 O 1.310
20 °C 1.410 1000 °C 1.365 −181 °C N 2 1.470
100 °C 1.404 2000 °C 1.088 15 °C 1.404
400 °C 1.387 0°C CO 2 1.310 20 °C Cl 2 1.340
1000 °C 1.358 20 °C 1.300 −115 °C CH 4 1.410
2000 °C 1.318 100 °C 1.281 −74 °C 1.350
20 °C He 1.660 400 °C 1.235 20 °C 1.320
20 °C H 2 O 1.330 1000 °C 1.195 15 °C NH 3 1.310
100 °C 1.324 20 °C CO 1.400 19 °C Ne 1.640
200 °C 1.310 −181 °C O 2 1.450 19 °C Xe 1.660
−180 °C Ar 1.760 −76 °C 1.415 19 °C Kr 1.680
20 °C 1.670 20 °C 1.400 15 °C SO 2 1.290
0°C Сухой воздух 1.403 100 °C 1.399 360 °C Hg 1.670
20 °C 1.400 200 °C 1.397 15 °C C 2 H 6 1.220
100 °C 1.401 400 °C 1.394 16 °C C 3 H 8 1.130

Соотношения для идеального газа

Для идеального газа теплоёмкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена как . Таким образом, можно также сказать, что показатель адиабаты - это отношение энтальпии к внутренней энергии:

С другой стороны, теплоёмкости могут быть выражены также через показатель адиабаты () и универсальную газовую постоянную ():

Может оказаться достаточно трудным найти информацию о табличных значениях , в то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :

где - количество вещества в молях.

Соотношения с использованием количества степеней свободы

Показатель адиабаты () для идеального газа может быть выражен через количество степеней свободы () молекул газа:

или

Термодинамические выражения

Значения, полученные с помощью приближённых соотношений (в частности, ), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких, как расчёты расходов через трубопроводы и клапаны. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения может быть вычислено путём определения из свойств, выраженных как:

Значения не составляет труда измерить, в то время как значения для необходимо определять из формул, подобных этой. См. здесь (англ. ) для получения более подробной информации о соотношениях между теплоёмкостями.

Адиабатический процесс

где - это давление и - объём газа.

Экспериментальное определение величины показателя адиабаты

Поскольку процессы, происходящие в небольших объёмах газа при прохождении звуковой волны, близки к адиабатическим , показатель адиабаты можно определить, измерив скорость звука в газе. В этом случае показатель адиабаты и скорость звука в газе будут связаны следующим выражением:

где - показатель адиабаты; - постоянная Больцмана ; - универсальная газовая постоянная ; - абсолютная температура в кельвинах ; - молекулярная масса ; - молярная масса .

Другим способом экспериментального определения величины показателя адиабаты является метод Клемана - Дезорма, который часто используется в учебных целях при выполнении лабораторных работ. Метод основан на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами: адиабатическим и изохорическим.

Лабораторная установка включает стеклянный баллон, соединенный с манометром, краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.

Пусть первоначально в баллоне было атмосферное давление и комнатная температура. Процесс выполнения работы можно условно разбить на два этапа, каждый из которых включает в себя адиабатный и изохорный процесс.

1-й этап:
При закрытом кране накачиваем в баллон небольшое количество воздуха и зажимаем шланг зажимом. При этом давление и температура в баллоне повысятся. Это адиабатный процесс. Со временем давление в баллоне начнет уменьшаться вследствие того, что газ в баллоне начнёт охлаждаться за счет теплообмена через стенки баллона. При этом давление будет уменьшаться при построянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, запишем показания манометра .

2-ой этап:
Теперь откроем кран 3 на 1-2 секунды. Воздух в баллоне будет адиабатно расширяться до атмосферного давления. При этом температура в баллоне понизится. Затем кран закроем. Со временем давление в баллоне начнет увеличиваться вследствие того, что газ в баллоне начнет нагреваться за счет теплообмена через стенки баллона. При этом снова будет увеличиваться давление при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, запишем показание манометра . Для каждой ветви 2-х этапов можно написать соответствующие уравнения адиабаты и изохоры. Получится система уравнений, которые включают в себя показатель адиабаты. Их приближённое решение приводит к следующей расчетной формуле для искомой величины.

Министерство образования РФ

Камский государственный политехнический институт

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ

Методические указания к лабораторной

работе по дисциплине “Теплотехника” для очной формы обучения.

г. Набережные Челны

УДК 621.1:536 (076)

Печатается по решению научно-методического совета Камского государственного политехнического института от ___________________2003 г.

Определение показателя адиабаты: Методические указания к лабораторной работе./ Составили: В.М. Гуреев, И.М. Безбородова, А.Т. Галиакбаров – Набережные Челны: КамПИ, 2003 г., 14 с.

Методические указания к лабораторной работе составлены для студентов машиностроительных специальностей.

Ил.2, список лит. 3 назв.

Рецензент к.т.н. доцент. Тазмеев Х. К.

Камский государственный политехнический институт, 2003

Цель работы : Экспериментальное определение величины отношения изобарной теплоемкости воздуха и его изохорной теплоемкости.

Задание:

Теоретические основы работы

Отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме, обозначаемое буквой К, часто используется в различных термодинамических расчетах. Показатель К называют показателе адиабаты.

Значение К можно выразить через отношения массовых, объемных или мольных теплоемкостей:

(1)

В молекулярно-кинетической теории газов для определения показателя адиабаты приводится следующая формула:

(2)

гдеп – число степеней свободы движения молекулы газа.

Для одноатомного газап = 3,К = 1,667, для двухатомных газовп = 5,К = 1,4 и для трехатомных газовп = 6,К = 1,33.

Теплоемкости С р и зависят от температуры, следовательно, и показатель адиабаты“К” должен зависеть от температуры. Установим эту зависимость следующим образцом:

Используя уравнение Майера,

. (3)

Запишем выражение, (1) в виде

. (4)

Для 1 моля газа получается

. (5)

Обычно зависимость показателя адиабаты от температуры выражается формулой вида:

, (6)

гдеК 0 –значение показателя “К ”при 0 0 С;

- коэффициент.

Для двухатомныхгазов при температурах до 2000 0 С эмпирически получена следующая зависимость:

Изменение состояния термодинамической системы, происходящее без теплообмена с окружающей средой(
) называется адиабатным процессом. Обратимый адиабатныйпроцесс (
и
) называется изоэнтропным процессом, т.е. процессом, в котором
,
- диссилативные потери.

Из первого начала термодинамики следует, что для1 кг закрытой термохимической гомогенной (однородной) системы, совершающей обратимый процесс, внешняя теплота.

или используя известные выражения:

;
;

получим выражение:

(9),

Но так как для атмосферного воздуха допустимы равенства

,
;
,

совершенно точные лишь для идеального газа, то

Так как в обратимых адиабатных термодинамических процессах

и
, то:

(11)

где
- введенный ранее показатель адиабаты.

Разделив переменные и исключив P и V , при помощи равенства ,являющегося дифференциальной формой уравнения Клайперона,получим три уравнения адиабаты:

;

(12)

В интегральной форме при (
) они принимают вид:

;
;

Следовательно, показатель адиабатного процесса может быть выражен также и равенствами

;
(13)

В идеальном изотермическом процессе
,

и
или
(14)

Поэтому, если через определенную точку с параметрами
в
и
- осях (рис.1) процессы
и
, то в состоянииI отношении
или
, входящее в уравнение(13) и (14), будет одно и то же.

Тогда величина:

Т
аким образом, для определения истинного показателя адиабаты необходимы аналитически или экспериментально установленные значения калорических (,)или же термических параметров (P , V , T ) , а также их частных дифференциалов и производных.

Но если в уравнение (15) подставить малые конечные приращения, то при средний показатель адиабаты

а при Р = Рб, т.е. равном барометрическому давлению.

При уменьшении избыточного давления Р и1 средний показатель адиабаты
будет приближаться к истинному К, присущему атмосферному воздуху.

Определив средний показатель адиабаты и используя равенство:

(17)

можно вычислить,
и
, а затем известныхи
найти
,
,
и
, т.е. определить средние изохорные и изобарные весовые, мольные и объемные теплоемкости воздуха.

Описание экспериментальной установки

Лаборатория-установка (рис.2) имеет металлический бак 5, водяной U - образный манометр 1, 2, 3, компрессор 6, зажим 7, манометр 4.

Бак термически не изолирован, поэтому воздух, который находится в этом баке, вследствие теплообмена с окружающей средой принимает ее температуру. Большое проходное сечение крана позволяет очень быстро выпускать часть воздуха из бака. При этом процесс расширения воздуха, остающегося внутри бака, происходит настолько быстро, что его можно считать адиабатным.

Порядок проведения опытов

1. Определить давлениеР б и температуру t воздуха в лаборатории Полученные результаты внести в таблицу 1.

Р б = … мм. р т . с т ; Р б = … кг с /см 2 …Н/м 2 ; t = 0 С, Т= …К

Р u1

Р и3

    Опустить зажим и при закрытом кране, вращая маховик компрессора, накачать немного воздуха в бак. Начальное давление должно быть возможно меньшим.

    Создав небольшое избыточное давление в системе, закрыть зажим.

    После установления термического равновесия между воздухом в баке и окружающей средой, что будет видно по стационарному показанию манометра, записать значение.

    Открыть и немедленно закрыть кран, т.е. выпустив часть газа из бака, снизить давление в нем до атмосферного. В результате адиабатного расширения воздуха, находящегося внутри бака, температура там понизится. Вследствие этого начнется изохорной процесс нагрева воздуха, оставшегося в баке, за счет подвода тепла от окружающей среды. В баке вновь возникает избыточное давление, которое растет до Р.

    Опыт повторяется п -раз.

Обработка результатов измерений.

1. Определить вероятное значение показателя адиабаты воздуха.

2. Вычислить изохорные и изобарные весовые (С V , С р ) мольные (
,
) и объемные
теплоемкости воздуха, используя выражение (17) и вытекающие из него равенства:


(19)


(20)

(21)

(22)


(23)


(24)

где
- объем одного кмоля, т.е. и
) атмосферного воздуха при нормальных условиях.

3. Все полученные результаты сравнить с табличными значениями и найти допущенную абсолютную ошибку
и относительную.

4.
, где
- табличное значение показателя адиабаты.

5. Для каждого опыта вычислить значения
воздуха в точке 1, 2, 3 (рис.1). При этом использовать уравнения
,Клайперона иМайера
и равенства

;

;
,
, а при нормальных условиях
. Тогда:

По конечным результатам построить в масштабе
и
- диаграммы процессов 1-2, 2-3, 3-1.

Указания по охране труда

Запрещается стоять рядом со студентом, вращающим ручку поршневого компрессора.

Требование к отчету по работе.

Отчет по лабораторной работе должен содержать материалы:

    Наименование и цель работы.

    Схема установки и ее описание.

    Методика проведения экспериментов и обработки результатов экспериментов.

    Таблицы результатов измерений и расчетов.

    Процессы, изображенные в Р-V, Т-S координатах.

    Выводы о работе, содержащие сведения о величинах показателя адиабаты, полученные в результате эксперимента, и их сравнение с табличными значениями.

Контроль ные вопросы.

    Ввести понятия показателя адиабаты.

    Записать уравнение адиабатного термодинамического процесса в интегральной форме.

    Записать уравнения Клайперона и Майера.

    Записать 1-й и 2-й законы термодинамики.

Список литературы.

    Сб. под ред. Н. К. Арсланова. Практикум по технической термодинамике. – Казань, 1973.

    Н. М. Беляев. Термодинамика. – Киев: Вища школа, 1987.

    А. П. Баскаков. Теплотехника. – М.: Энергоиздат, 1982.

) - отношение теплоёмкости при постоянном давлении (C_P) к теплоёмкости при постоянном объёме (C_V). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой \gamma (гамма) или \kappa (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква k .

Уравнение:

\gamma = \frac{C_P}{C_V} = \frac{c_P}{c_V},

Соотношения с использованием количества степеней свободы

Показатель адиабаты (\gamma) для идеального газа может быть выражен через количество степеней свободы (i) молекул газа:

\gamma = \frac{i+2}{i}\qquad или \qquad i = \frac{2}{\gamma - 1}.

Термодинамические выражения

Значения, полученные с помощью приближённых соотношений (в частности, C_p - C_v = R), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких, как расчёты расходов через трубопроводы и клапаны. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения \frac{C_p}{C_v} может быть вычислено путём определения C_v из свойств, выраженных как:

C_p - C_v \ = \ -T \frac{{\left({\frac{\part V}{\part T}} \right)_P^2 }} {\left(\frac{\part V}{\part P}\right)_T} \ = \ -T \frac{{ \left({\frac{\part P}{\part T}} \right) }^2} {\frac{\part P}{\part V}}

Значения C_p не составляет труда измерить, в то время как значения для C_v необходимо определять из формул, подобных этой. (англ. ) для получения более подробной информации о соотношениях между теплоёмкостями.

Адиабатический процесс

PV^\gamma = \text{constant}

где P - это давление и V - объём газа.

Экспериментальное определение величины показателя адиабаты

Поскольку процессы, происходящие в небольших объёмах газа при прохождении звуковой волны, близки к адиабатическим , показатель адиабаты можно определить, измерив скорость звука в газе. В этом случае показатель адиабаты и скорость звука в газе будут связаны следующим выражением:

c = \sqrt{\frac{\gamma kT}{m}} = \sqrt{\frac{\gamma RT}{M}}

где \gamma - показатель адиабаты; k - постоянная Больцмана ; R - универсальная газовая постоянная ; T - абсолютная температура в кельвинах ; m - молекулярная масса ; M - молярная масса .

Другим способом экспериментального определения величины показателя адиабаты является метод Клемана - Дезорма , который часто используется в учебных целях при выполнении лабораторных работ. Метод основан на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами: адиабатическим и изохорическим.

Лабораторная установка включает стеклянный баллон, соединенный с манометром, краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.

Пусть первоначально в баллоне было атмосферное давление и комнатная температура. Процесс выполнения работы можно условно разбить на два этапа, каждый из которых включает в себя адиабатный и изохорный процесс.

1-й этап:
При закрытом кране накачиваем в баллон небольшое количество воздуха и зажимаем шланг зажимом. При этом давление и температура в баллоне повысятся. Это адиабатный процесс. Со временем давление в баллоне начнет уменьшаться вследствие того, что газ в баллоне начнёт охлаждаться за счет теплообмена через стенки баллона. При этом давление будет уменьшаться при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, запишем показания манометра h_1.

2-й этап:
Теперь откроем кран 3 на 1-2 секунды. Воздух в баллоне будет адиабатно расширяться до атмосферного давления. При этом температура в баллоне понизится. Затем кран закроем. Со временем давление в баллоне начнет увеличиваться вследствие того, что газ в баллоне начнет нагреваться за счет теплообмена через стенки баллона. При этом снова будет увеличиваться давление при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, запишем показание манометра h_2. Для каждой ветви 2-х этапов можно написать соответствующие уравнения адиабаты и изохоры. Получится система уравнений, которые включают в себя показатель адиабаты. Их приближённое решение приводит к следующей расчетной формуле для искомой величины:

\gamma = {h_1 \over {h_1 - h_2}}

Недостатком данного метода является то, что процессы быстрого расширения газа в ходе лабораторной работы не являются чисто адиабатическими ввиду теплообмена через стенку сосудов, а рассматриваемый газ заведомо не является идеальным. И хотя полученная в ходе лабораторной работы величина будет заведомо содержать методическую погрешность, всё же существуют различные способы её устранения, например, за счет учета времени расширения и количества подведенного за это время тепла.

См. также

  • Термодинамические уравнения (англ. )

Напишите отзыв о статье "Показатель адиабаты"

Примечания

Отрывок, характеризующий Показатель адиабаты

Соня утерла слезы и подошла к Наташе, опять вглядываясь в ее лицо.
– Наташа! – сказала она чуть слышно.
Наташа проснулась и увидала Соню.
– А, вернулась?
И с решительностью и нежностью, которая бывает в минуты пробуждения, она обняла подругу, но заметив смущение на лице Сони, лицо Наташи выразило смущение и подозрительность.
– Соня, ты прочла письмо? – сказала она.
– Да, – тихо сказала Соня.
Наташа восторженно улыбнулась.
– Нет, Соня, я не могу больше! – сказала она. – Я не могу больше скрывать от тебя. Ты знаешь, мы любим друг друга!… Соня, голубчик, он пишет… Соня…
Соня, как бы не веря своим ушам, смотрела во все глаза на Наташу.
– А Болконский? – сказала она.
– Ах, Соня, ах коли бы ты могла знать, как я счастлива! – сказала Наташа. – Ты не знаешь, что такое любовь…
– Но, Наташа, неужели то всё кончено?
Наташа большими, открытыми глазами смотрела на Соню, как будто не понимая ее вопроса.
– Что ж, ты отказываешь князю Андрею? – сказала Соня.
– Ах, ты ничего не понимаешь, ты не говори глупости, ты слушай, – с мгновенной досадой сказала Наташа.
– Нет, я не могу этому верить, – повторила Соня. – Я не понимаю. Как же ты год целый любила одного человека и вдруг… Ведь ты только три раза видела его. Наташа, я тебе не верю, ты шалишь. В три дня забыть всё и так…
– Три дня, – сказала Наташа. – Мне кажется, я сто лет люблю его. Мне кажется, что я никого никогда не любила прежде его. Ты этого не можешь понять. Соня, постой, садись тут. – Наташа обняла и поцеловала ее.
– Мне говорили, что это бывает и ты верно слышала, но я теперь только испытала эту любовь. Это не то, что прежде. Как только я увидала его, я почувствовала, что он мой властелин, и я раба его, и что я не могу не любить его. Да, раба! Что он мне велит, то я и сделаю. Ты не понимаешь этого. Что ж мне делать? Что ж мне делать, Соня? – говорила Наташа с счастливым и испуганным лицом.
– Но ты подумай, что ты делаешь, – говорила Соня, – я не могу этого так оставить. Эти тайные письма… Как ты могла его допустить до этого? – говорила она с ужасом и с отвращением, которое она с трудом скрывала.
– Я тебе говорила, – отвечала Наташа, – что у меня нет воли, как ты не понимаешь этого: я его люблю!
– Так я не допущу до этого, я расскажу, – с прорвавшимися слезами вскрикнула Соня.
– Что ты, ради Бога… Ежели ты расскажешь, ты мой враг, – заговорила Наташа. – Ты хочешь моего несчастия, ты хочешь, чтоб нас разлучили…
Увидав этот страх Наташи, Соня заплакала слезами стыда и жалости за свою подругу.
– Но что было между вами? – спросила она. – Что он говорил тебе? Зачем он не ездит в дом?
Наташа не отвечала на ее вопрос.
– Ради Бога, Соня, никому не говори, не мучай меня, – упрашивала Наташа. – Ты помни, что нельзя вмешиваться в такие дела. Я тебе открыла…
– Но зачем эти тайны! Отчего же он не ездит в дом? – спрашивала Соня. – Отчего он прямо не ищет твоей руки? Ведь князь Андрей дал тебе полную свободу, ежели уж так; но я не верю этому. Наташа, ты подумала, какие могут быть тайные причины?
Наташа удивленными глазами смотрела на Соню. Видно, ей самой в первый раз представлялся этот вопрос и она не знала, что отвечать на него.
– Какие причины, не знаю. Но стало быть есть причины!
Соня вздохнула и недоверчиво покачала головой.
– Ежели бы были причины… – начала она. Но Наташа угадывая ее сомнение, испуганно перебила ее.
– Соня, нельзя сомневаться в нем, нельзя, нельзя, ты понимаешь ли? – прокричала она.
– Любит ли он тебя?
– Любит ли? – повторила Наташа с улыбкой сожаления о непонятливости своей подруги. – Ведь ты прочла письмо, ты видела его?
– Но если он неблагородный человек?
– Он!… неблагородный человек? Коли бы ты знала! – говорила Наташа.
– Если он благородный человек, то он или должен объявить свое намерение, или перестать видеться с тобой; и ежели ты не хочешь этого сделать, то я сделаю это, я напишу ему, я скажу папа, – решительно сказала Соня.
– Да я жить не могу без него! – закричала Наташа.
– Наташа, я не понимаю тебя. И что ты говоришь! Вспомни об отце, о Nicolas.
– Мне никого не нужно, я никого не люблю, кроме его. Как ты смеешь говорить, что он неблагороден? Ты разве не знаешь, что я его люблю? – кричала Наташа. – Соня, уйди, я не хочу с тобой ссориться, уйди, ради Бога уйди: ты видишь, как я мучаюсь, – злобно кричала Наташа сдержанно раздраженным и отчаянным голосом. Соня разрыдалась и выбежала из комнаты.
Наташа подошла к столу и, не думав ни минуты, написала тот ответ княжне Марье, который она не могла написать целое утро. В письме этом она коротко писала княжне Марье, что все недоразуменья их кончены, что, пользуясь великодушием князя Андрея, который уезжая дал ей свободу, она просит ее забыть всё и простить ее ежели она перед нею виновата, но что она не может быть его женой. Всё это ей казалось так легко, просто и ясно в эту минуту.

В пятницу Ростовы должны были ехать в деревню, а граф в среду поехал с покупщиком в свою подмосковную.
В день отъезда графа, Соня с Наташей были званы на большой обед к Карагиным, и Марья Дмитриевна повезла их. На обеде этом Наташа опять встретилась с Анатолем, и Соня заметила, что Наташа говорила с ним что то, желая не быть услышанной, и всё время обеда была еще более взволнована, чем прежде. Когда они вернулись домой, Наташа начала первая с Соней то объяснение, которого ждала ее подруга.
– Вот ты, Соня, говорила разные глупости про него, – начала Наташа кротким голосом, тем голосом, которым говорят дети, когда хотят, чтобы их похвалили. – Мы объяснились с ним нынче.
– Ну, что же, что? Ну что ж он сказал? Наташа, как я рада, что ты не сердишься на меня. Говори мне всё, всю правду. Что же он сказал?
Наташа задумалась.
– Ах Соня, если бы ты знала его так, как я! Он сказал… Он спрашивал меня о том, как я обещала Болконскому. Он обрадовался, что от меня зависит отказать ему.
Соня грустно вздохнула.
– Но ведь ты не отказала Болконскому, – сказала она.
– А может быть я и отказала! Может быть с Болконским всё кончено. Почему ты думаешь про меня так дурно?
– Я ничего не думаю, я только не понимаю этого…
– Подожди, Соня, ты всё поймешь. Увидишь, какой он человек. Ты не думай дурное ни про меня, ни про него.
– Я ни про кого не думаю дурное: я всех люблю и всех жалею. Но что же мне делать?
Соня не сдавалась на нежный тон, с которым к ней обращалась Наташа. Чем размягченнее и искательнее было выражение лица Наташи, тем серьезнее и строже было лицо Сони.
– Наташа, – сказала она, – ты просила меня не говорить с тобой, я и не говорила, теперь ты сама начала. Наташа, я не верю ему. Зачем эта тайна?
– Опять, опять! – перебила Наташа.
– Наташа, я боюсь за тебя.
– Чего бояться?
– Я боюсь, что ты погубишь себя, – решительно сказала Соня, сама испугавшись того что она сказала.
Лицо Наташи опять выразило злобу.
– И погублю, погублю, как можно скорее погублю себя. Не ваше дело. Не вам, а мне дурно будет. Оставь, оставь меня. Я ненавижу тебя.
– Наташа! – испуганно взывала Соня.
– Ненавижу, ненавижу! И ты мой враг навсегда!
Наташа выбежала из комнаты.
Наташа не говорила больше с Соней и избегала ее. С тем же выражением взволнованного удивления и преступности она ходила по комнатам, принимаясь то за то, то за другое занятие и тотчас же бросая их.
Как это ни тяжело было для Сони, но она, не спуская глаз, следила за своей подругой.
Накануне того дня, в который должен был вернуться граф, Соня заметила, что Наташа сидела всё утро у окна гостиной, как будто ожидая чего то и что она сделала какой то знак проехавшему военному, которого Соня приняла за Анатоля.
Соня стала еще внимательнее наблюдать свою подругу и заметила, что Наташа была всё время обеда и вечер в странном и неестественном состоянии (отвечала невпопад на делаемые ей вопросы, начинала и не доканчивала фразы, всему смеялась).
После чая Соня увидала робеющую горничную девушку, выжидавшую ее у двери Наташи. Она пропустила ее и, подслушав у двери, узнала, что опять было передано письмо. И вдруг Соне стало ясно, что у Наташи был какой нибудь страшный план на нынешний вечер. Соня постучалась к ней. Наташа не пустила ее.
«Она убежит с ним! думала Соня. Она на всё способна. Нынче в лице ее было что то особенно жалкое и решительное. Она заплакала, прощаясь с дяденькой, вспоминала Соня. Да это верно, она бежит с ним, – но что мне делать?» думала Соня, припоминая теперь те признаки, которые ясно доказывали, почему у Наташи было какое то страшное намерение. «Графа нет. Что мне делать, написать к Курагину, требуя от него объяснения? Но кто велит ему ответить? Писать Пьеру, как просил князь Андрей в случае несчастия?… Но может быть, в самом деле она уже отказала Болконскому (она вчера отослала письмо княжне Марье). Дяденьки нет!» Сказать Марье Дмитриевне, которая так верила в Наташу, Соне казалось ужасно. «Но так или иначе, думала Соня, стоя в темном коридоре: теперь или никогда пришло время доказать, что я помню благодеяния их семейства и люблю Nicolas. Нет, я хоть три ночи не буду спать, а не выйду из этого коридора и силой не пущу ее, и не дам позору обрушиться на их семейство», думала она.

Анатоль последнее время переселился к Долохову. План похищения Ростовой уже несколько дней был обдуман и приготовлен Долоховым, и в тот день, когда Соня, подслушав у двери Наташу, решилась оберегать ее, план этот должен был быть приведен в исполнение. Наташа в десять часов вечера обещала выйти к Курагину на заднее крыльцо. Курагин должен был посадить ее в приготовленную тройку и везти за 60 верст от Москвы в село Каменку, где был приготовлен расстриженный поп, который должен был обвенчать их. В Каменке и была готова подстава, которая должна была вывезти их на Варшавскую дорогу и там на почтовых они должны были скакать за границу.
У Анатоля были и паспорт, и подорожная, и десять тысяч денег, взятые у сестры, и десять тысяч, занятые через посредство Долохова.
Два свидетеля – Хвостиков, бывший приказный, которого употреблял для игры Долохов и Макарин, отставной гусар, добродушный и слабый человек, питавший беспредельную любовь к Курагину – сидели в первой комнате за чаем.
В большом кабинете Долохова, убранном от стен до потолка персидскими коврами, медвежьими шкурами и оружием, сидел Долохов в дорожном бешмете и сапогах перед раскрытым бюро, на котором лежали счеты и пачки денег. Анатоль в расстегнутом мундире ходил из той комнаты, где сидели свидетели, через кабинет в заднюю комнату, где его лакей француз с другими укладывал последние вещи. Долохов считал деньги и записывал.
– Ну, – сказал он, – Хвостикову надо дать две тысячи.
– Ну и дай, – сказал Анатоль.
– Макарка (они так звали Макарина), этот бескорыстно за тебя в огонь и в воду. Ну вот и кончены счеты, – сказал Долохов, показывая ему записку. – Так?
– Да, разумеется, так, – сказал Анатоль, видимо не слушавший Долохова и с улыбкой, не сходившей у него с лица, смотревший вперед себя.
Долохов захлопнул бюро и обратился к Анатолю с насмешливой улыбкой.
– А знаешь что – брось всё это: еще время есть! – сказал он.
– Дурак! – сказал Анатоль. – Перестань говорить глупости. Ежели бы ты знал… Это чорт знает, что такое!
– Право брось, – сказал Долохов. – Я тебе дело говорю. Разве это шутка, что ты затеял?
– Ну, опять, опять дразнить? Пошел к чорту! А?… – сморщившись сказал Анатоль. – Право не до твоих дурацких шуток. – И он ушел из комнаты.
Долохов презрительно и снисходительно улыбался, когда Анатоль вышел.
– Ты постой, – сказал он вслед Анатолю, – я не шучу, я дело говорю, поди, поди сюда.
Анатоль опять вошел в комнату и, стараясь сосредоточить внимание, смотрел на Долохова, очевидно невольно покоряясь ему.
– Ты меня слушай, я тебе последний раз говорю. Что мне с тобой шутить? Разве я тебе перечил? Кто тебе всё устроил, кто попа нашел, кто паспорт взял, кто денег достал? Всё я.
– Ну и спасибо тебе. Ты думаешь я тебе не благодарен? – Анатоль вздохнул и обнял Долохова.
– Я тебе помогал, но всё же я тебе должен правду сказать: дело опасное и, если разобрать, глупое. Ну, ты ее увезешь, хорошо. Разве это так оставят? Узнается дело, что ты женат. Ведь тебя под уголовный суд подведут…
– Ах! глупости, глупости! – опять сморщившись заговорил Анатоль. – Ведь я тебе толковал. А? – И Анатоль с тем особенным пристрастием (которое бывает у людей тупых) к умозаключению, до которого они дойдут своим умом, повторил то рассуждение, которое он раз сто повторял Долохову. – Ведь я тебе толковал, я решил: ежели этот брак будет недействителен, – cказал он, загибая палец, – значит я не отвечаю; ну а ежели действителен, всё равно: за границей никто этого не будет знать, ну ведь так? И не говори, не говори, не говори!