Болезни Военный билет Призыв

Имеются 3 одинаковые урны в первой. Формула полной вероятности и формула байеса. Задачи для самостоятельного решения

Полезная страница? Сохрани или расскажи друзьям

Общая постановка задачи примерно* следующая:

В урне находится $K$ белых и $N-K$ чёрных шаров (всего $N$ шаров). Из нее наудачу и без возвращения вынимают $n$ шаров. Найти вероятность того, что будет выбрано ровно $k$ белых и $n-k$ чёрных шаров.

По классическому определению вероятности, искомая вероятность находится по формуле гипергеометрической вероятности (см. пояснения ):

$$ P=\frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}. \qquad (1) $$

*Поясню, что значит "примерно": шары могут выниматься не из урны, а из корзины, или быть не черными и белыми, а красными и зелеными, большими и маленькими и так далее. Главное, чтобы они были ДВУХ типов, тогда один тип вы считаете условно "белыми шарами", второй - "черными шарами" и смело используете формулу для решения (поправив в нужных местах текст конечно:)).

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач про шары в схеме гипергеометрической вероятности, узнайте, как использовать Excel для решения типовых задач.

Расчетный файл Эксель из видео можно бесплатно скачать и использовать для решения своих задач.

Примеры решений задач о выборе шаров

Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.

Подставляем в формулу (1) значения: $K=10$, $N-K=8$, итого $N=10+8=18$, выбираем $n=5$ шаров, из них должно быть $k=2$ белых и соответственно, $n-k=5-2=3$ черных. Получаем:

$$ P=\frac{C_{10}^2 \cdot C_{8}^{3}}{C_{18}^5} = \frac{45 \cdot 56}{8568} = \frac{5}{17} = 0.294. $$

Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?

Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.

Подставляем в формулу (1) значения: $K=5$ (белых шаров), $N-K=5$ (красных шаров), итого $N=5+5=10$ (всего шаров в урне), выбираем $n=2$ шара, из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ красных. Получаем:

$$ P=\frac{C_{5}^2 \cdot C_{5}^{0}}{C_{10}^2} = \frac{10 \cdot 1}{45} = \frac{2}{9} = 0.222. $$

Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?

Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
$A = $ (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: $A=A_1+A_2$, где
$A_1 = $ (Выбраны 2 белых шара),
$A_2 = $ (Выбраны 2 черных шара).

Выпишем значения параметров: $K=4$ (белых шаров), $N-K=2$ (черных шаров), итого $N=4+2=6$ (всего шаров в корзине). Выбираем $n=2$ шара.

Для события $A_1$ из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ черных. Получаем:

$$ P(A_1)=\frac{C_{4}^2 \cdot C_{2}^{0}}{C_{6}^2} = \frac{6 \cdot 1}{15} = \frac{2}{5} = 0.4. $$

Для события $A_2$ из выбранных шаров должно оказаться $k=0$ белых и $n-k=2$ черных. Получаем:

$$ P(A_2)=\frac{C_{4}^0 \cdot C_{2}^{2}}{C_{6}^2} = \frac{1 \cdot 1}{15} = \frac{1}{15}. $$

Тогда вероятность искомого события (вынутые шары одного цвета) есть сумма вероятностей этих событий:

$$ P(A)=P(A_1)+P(A_2)=\frac{2}{5} + \frac{1}{15} =\frac{7}{15} = 0.467. $$

Если событие А может произойти только совместно с одним из событий ,, …,, образующих полную группу несовместных событий (эти события называют гипотезами), то вероятность появления события А вычисляют по формулеполной вероятности :

. (4.1)

Пусть в описанной выше схеме событие А произошло и требуется выяснить вероятность того, что оно произошло вместе с одной из гипотез . Такую вероятностьвычисляют поформулам Байеса :

, . (4.2)

Образцы решения задач

Пример 1 ‑ Имеется три одинаковые на вид урны; в первой 2 белых и 3 черных шара, во второй – 4 белых и 1 черный шар, в третьей – 3 белых шара. Наугад выбирается одна из урн и из нее вынимается один шар. Найти вероятность того, что этот шар будет белым.

Решение

Опыт предполагает три гипотезы:

‑выбор первой урны, ;

‑выбор второй урны, ;

‑выбор третьей урны, .

Рассмотрим интересующее событие А – вынутый шар белый. Данное событие может произойти только совместно с одной из гипотез:

По формуле полной вероятности (4.1) получаем

Ответ: .

Пример 2 Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60 % деталей отличного качества, а второй – 84 %. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.

Решение

Можно сделать два предположения (гипотезы): ‑ деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй);‑ деталь произведена вторым автоматом, причем .

Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом, , если произведена вторым автоматом.

Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности (4.1) равна:

Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Байеса равна:

.

Ответ: .

Задачи для самостоятельного решения

1 В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника – 0,9, для велосипедиста – 0,8 и для бегуна – 0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.

2 Из урны, содержащей 5 белых и 3 черных шара, извлекается наудачу один шар и перекладывается в другую урну, которая до этого содержала 2 белых и 7 черных шаров. Цвет перекладываемого шара не фиксируется. Из второй урны наудачу извлекается один шар. Какова вероятность, что этот шар окажется белым?

3 В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки с обычным прицелом эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.

4 В условиях предыдущей задачи стрелок попал в мишень. Определить вероятность того, что он стрелял: из винтовки с оптическим прицелом; из винтовки с обычным прицелом.

5 Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса 4 студента, из второй – 6, из третьей – 5. Вероятности того, что студент первой, второй и третьей групп попадает в сборную института, соответственно равны 0,9; 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную. К какой из групп вероятнее всего принадлежал этот студент?

6 В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.

7 В группе из 10 студентов, пришедших на экзамен, 3 подготовлены на отлично, 4 – хорошо, 2 – посредственно, 1 – плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент знает все 20 вопросов, хорошо подготовленный – 16, посредственно подготовленный – 10 и двоечник – 5. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: отлично; плохо.

8 В каждой из трех урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.

9 По объекту производится три одиночных независимых выстрела. Вероятность попадания при первом выстреле равна 0,4; при втором – 0,5; при третьем – 0,7. Для вывода объекта из строя заведомо достаточно трех попаданий, при двух попаданиях он выходит из строя с вероятностью 0,6; при одном – с вероятностью 0,2. Найти вероятность того, что в результате трех выстрелов объект будет выведен из строя.

10 Три стрелка произвели залп, причем две пули поразили мишень. Найти вероятность того, что третий стрелок поразил мишень, если вероятности попадания в мишень первым, вторым и третьим стрелками соответственно равны 0,6; 0,5 и 0,4.

Домашнее задание.

1 Повторение испытаний. Формулы Бернулли и Пуассона. Локальная и интегральная теоремы Лапласа.

2 Решить задачи.

Задача 1 . Имеются две урны. В первой урне два белых и три черных шара, во второй – три белых и пять черных. Из первой и второй урн, не глядя, берут по одному шару и кладут их в третью урну. Шары в третьей урне перемешивают и берут из нее наугад один шар. Найти вероятность того, что этот шар белый.

Задача 2 . Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго – 0,5, для третьего – 0,8. Найти вероятность того, что выстрел произведен вторым стрелком.

Задача 3 . С первого автомата на сборку поступает 40 %, со второго – 35 %, с третьего – 25 % деталей. Среди деталей первого автомата 0,2 % бракованных, второго – 0,3 %, третьего – 0,5 %. Найти вероятность того, что:

а) поступившая на сборку деталь бракованная;

б) деталь, оказавшаяся бракованной, изготовлена на втором автомате.

Задача 4 . В группе из 20 стрелков пять отличных, девять хороших и шесть посредственных. При одном выстреле отличный стрелок попадает в мишень с вероятностью 0,9, хороший – с вероятностью 0,8 и посредственный – с вероятностью 0,7. Наугад выбранный стрелок выстрелил дважды; отмечено одно попадание и один промах. Каким, вероятнее всего, был этот стрелок: отличным, хорошим или посредственным?

Рассмотрим зависимое событие , которое может произойти лишь в результате осуществления одной из несовместных гипотез , которые образуют полную группу . Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:

Эта формула получила название формулы полной вероятности . В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий , (произошло событие и или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ) . Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг) :

Задача 1

Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?

Решение : рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти в результате осуществления одной из следующих гипотез:
– будет выбрана 1-ая урна;
– будет выбрана 2-ая урна;
– будет выбрана 3-я урна.

Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен , следовательно:

Обратите внимание, что перечисленные гипотезы образуют полную группу событий , то есть по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку:
, ОК, едем дальше:

В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению :
– вероятность извлечения чёрного шара при условии , что будет выбрана 1-ая урна.

Во второй урне только белые шары, поэтому в случае её выбора появления чёрного шара становится невозможным : .

И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно) .

По формуле полной вероятности:

– вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.

Ответ :

Задача 2

В тире имеются 5 различных по точности боя винтовок. Вероятности попада­ния в мишень для данного стрелка соответственно равны и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из слу­чайно выбранной винтовки?

Задача 3

В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.


Решение : в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
– стрелок выберет винтовку с оптическим прицелом;
– стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности : .
Контроль:

Задача 4

Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?

Пусть рассматривается полная группа событий (попарно несовместные, которые называются гипотезами), и если событие может наступить только при появлении одной их этих гипотез, то вероятность события вычисляется по формуле полной вероятности:

,

где – вероятность гипотезы . .

– условная вероятность события при этой гипотезе. Если до опыта вероятности гипотез были , а в результате опыта появилось событие , то с учетом этого события «новые», т. е. условные, вероятности гипотез вычисляются по формуле Байеса:

.

Формула Байеса дает возможность переоценить вероятности гипотез с учетом уже известного результата опыта.

Пример 1.

Имеется три одинаковые урны. В первой белых шаров и черных; во второй – белых и черных; в третьей только белые шары. Некто подходит наугад к одной из урн и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Решение.

Пусть событие – появление белого шара. Формулируем гипотезы: – выбор первой урны;

– выбор второй урны;

– выбор третьей урны;

,

, , ;

по формуле полной вероятности

Пример 2.

Имеются две урны: в первой белых шаров и черных, во второй – и черных. Из первой урны во вторую перекладывается один шара шар; шары перемешиваются и затем из второй урны в первую перекладывается один шар. После этого из первой урны берут наугад один шар. Найти вероятность того, что он был белым.

Решение.

Гипотезы: – состав шаров в первой урне не изменился;

– в первой урне один черный шар заменен на белый;

– в первой урне один белый шар заменен черным;

;

Полученное решение говорит о том, что вероятность вынуть белый шар не изменится, если доли белых шаров и черных шаров в обеих урнах одинаковы .

Ответ: .

Пример 3.

Прибор состоит из двух узлов, работа каждого узла безусловно необходима для работы прибора в целом. Надежность (вероятность безотказной работы в течение времени ) первого узла равна , второго . Прибор испытывается в течение времени , в результате чего обнаружено, что он вышел из строя (отказал). Найти вероятность того, что отказал только первый узел, а второй исправен.

Решение.

До опыта возможны четыре гипотезы:

– оба узла исправны;

– первый узел отказал, второй исправен;

– первый исправен, второй отказал;

– оба узла отказали;

Вероятности гипотез:

Наблюдалось событие – прибор отказал:

По формуле Байеса:

Повторение опытов

Если производится независимых опытов в одинаковых условиях, причем в каждом из них с вероятностно появляется событие , то вероятность того, что событие произойдет в этих опытах ровно раз, выражается формулой:

,

Вероятность хотя бы одного появления события при независимых опытах в одинаковых условиях равна:

.

Вероятность того, что событие наступит а) менее раз; б) более раз; в) не менее раз; г) не более раз находим соответственно но формулам:

Общая теорема о повторении опытов

Если производится независимых опытов в различных условиях, причем вероятность события в -м опыте равна , то вероятностьтого, что событие появится в этих опытах ровно раз, равна коэффициенту при в разложении по степеням производящей функции

, где .

Пример 1.

Прибор состоит г из 10 узлов. Надежность (вероятность безотказной работы в течение времени ) для каждого узла . Узлы выходят из строя независимо один от другого. Найти вероятность того, что за время :

а) откажет хотя бы один узел;

б) откажет ровно один узел;

в) откажут ровно два узла;

г) откажет не менее двух узлов.

Решение.

Пример 2.

В урне 30 белых и 15 черных шаров. Вынули подряд 5 шаров, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Какова вероятность того, что из 5 вынутых шаров окажется 3 белых.

Решение.

Вероятность извлечения белого шара , можно посчитать одной и той же во всех 5 испытаниях: тогда вероятность непоявления белого шара. Используя формулу Бернулли получаем:

Пример 3.

Монету подбрасывают восемь раз. Какова вероятность того, что шесть раз она упадет гербом вверх?

Решение.

Имеем схемуиспытаний Бернулли. Вероятность появления Ге в одном испытании , тогда

Ответ: 0,107.

Пример 4.

Производится четыре независимых выстрела, причем – вероятность попадания в мишень есть средняя из вероятностей

Найти вероятности: .

Решение.

По формуле Бернулли имеем

Пример 5.

Имеется пять станций, с которыми поддерживается связь. Время от времени связь прерывается из-за атмосферных помех. Вследствие удаленности станций друг от друга перерыв связи с каждой из них происходит независимо от остальных с вероятностью 0,2. Найти вероятность того, что в данный момент времени будет поддерживаться связь не более чем с двумя станциями.

Решение.

Событие – имеется связь не более чем с двумя станциями.

Ответ: 0,72.

Пример 6.

Система радиолокационных станций ведет наблюдение за группой объектов, состоящей из десяти единиц. Каждый из объектов может быть (независимо от других) потерян с вероятностью 0,1. Найти вероятность того, что хотя бы один из объектов будет потерян.

Решение.

Вероятность потери хотя бы одного объекта можно найти по формуле:

но проще воспользоваться вероятностью противоположного события – ни один объект не потерян – и вычесть ее из единицы

Ответ: 0,65.

Варианты заданий для контрольной работы № 5

Вариант 1

1. Подброшены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 7.

2. Пусть – три произвольные события. Записать выражение для событий, состоящих в том, что из этих трёх событий произошло, по крайней мере два события.

3. Монету бросают 5 раз. Найти вероятность того, что «герб» выпадет: а) не менее двух раз, б) менее двух раз.

4. Имеются 2 одинаковые урны. В первой урне находятся 3 белых и 5 чёрных шаров, во второй – 3 белых и 7 чёрных шаров. Из одной наугад выбранной урны извлекается шар. Определить вероятность того, что шар
чёрный.

5. В чемпионате страны по футболу участвуют 18 команд, Каждые две команды встречаются на футбольных полях 2 раза. Сколько матчей играется в сезоне?

Вариант 2

1. Набирая номер телефона, абонент забыл последние 3 цифры, и помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что, набраны нужные цифры.

2. Верно ли .

3. Найти вероятность того, что событие произойдёт не менее 2 раз в 4 независимых испытаниях, если вероятность наступления события в одном испытании равна 0,6.

4. Электрические приборы поставляются в магазин тремя заводами. Первый поставляет 50 %, второй – 20 %, третий – 30 % всей продукции. Вероятности изготовления прибора высшего качества каждым заводом, соответственно равны: . Определить вероятность того, что купленный в магазине прибор будет высшего качества.

5. Буквы азбуки Морзе образуются как последовательность точек и
тире. Сколько различных букв можно образовать, если использовать 5
символов?

Вариант 3

1. В ящике 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превышает 10.

2. Верно ли равенство ?

3. Вероятность наступления события хотя бы 1 раз при трёх испытаниях равна 0,936. Найти вероятность наступления события при одном испытании.

4. Имеются три одинаковые урны. В первой урне находятся 5 белых и 5 чёрных шаров, во второй – 3 белых и 2 чёрных шара, в третьей – 7 белых и 3 чёрных. Из одной наугад выбранной урны извлекается шар. Определить вероятность того, что шар будет белый.

5. Сколькими способами можно разместить 12 человек за столом, на котором поставлено 12 приборов.

Вариант 4

1. В цехе работает 6 мужчин и 4 женщины. По табельным номерам наудачу выбраны 7 человек. Найти вероятность того, что среди отобранных лиц окажется 3 женщины.

2. Доказать, что .

3. Пусть вероятность того, что наудачу взятая деталь нестандартная, равна 0,1. Найти вероятность того, что среди взятых наудачу 5 деталей не более двух нестандартных.

4. Имеются три одинаковые урны. В первой урне находятся 3 белых и 3 чёрных шаров, во второй – 2 белых и 6 чёрных шаров, в третьей – 5 белых и 2 чёрных. Из одной наугад выбранной урны извлекается шар. Определить вероятность того, что шар будет чёрный.

5. Требуется составить расписание отправления поездов на различные дни недели. При этом необходимо, чтобы: 3 дня отправлялись 2 поезда в день, 2 дня – по 1 поезду в день, 2 дня – по 3 поезда в день. Сколько можно составить различных расписаний?

Вариант 5

1. Куб, все грани которого окрашены, распилен на 64 кубика одинакового размера, которые затем перемешаны. Найти вероятность того, что случайно извлечённый кубик имеет две окрашенные грани.

2. Доказать, что .

3. Пусть вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна 0,2. Найти вероятность того, что в течение гарантийного срока из 6 телевизоров: а) не более 1 потребует ремонта, б) хотя бы 1 не потребует ремонта.

4. На трёх автоматических линиях изготавливаются однотипные детали. Вследствие разладки станков возможен выпуск бракованной продукции: первой линией с вероятностью 0,02; второй – с вероятностью 0,01; третьей – с вероятностью 0,05. Первая линия даёт 70 %, вторая – 20 %, третья – 10 % всей продукции. Определить вероятность получения брака.

5. В урне белых и чёрных шаров. Сколькими способами можно выбрать из урны шаров, из которых белых будет штук. (Шары каждого цвета пронумерованы.)

Вариант 6

1. В урне 12 шаров: 3 белых, 4 чёрных и 5 красных шаров. Какова вероятность вынуть из урны красный шар.

2. Доказать, что .

3. Вероятность выиграть по лотерейному билету равна . Найти вероятность выиграть не менее чем по 2 билетам из 6.

4. В двух ящиках лежат однотипные детали: в первом ящике 8 исправных и 2 бракованные, во втором 6 исправных и 4 бракованные. Из первого ящика наугад взяты две детали, а из второго одна деталь. Детали, перемешав, поместили в третий ящик, откуда наугад взяли одну деталь. Определить вероятность того, что эта деталь исправна.

5. Сколькими способами из колоды в 36 карт можно выбрать 2 карты пик?

Вариант 7

1. В урне 15 шаров с номерами от 1 до 15. Какова вероятность вынуть шар с номером 18?

2. Доказать, что .

3. Вероятность попадания при каждом выстреле равна 0,4. Найти вероятность разрушения объекта, если для этого необходимо не менее 3 попаданий, а сделано 15 выстрелов.

4. В двух одинаковых урнах имеется по белых и чёрных шаров. Из первой урны во вторую перекладывают один шар. Во второй урне шары перемешиваются, и один шар перекладывается в первую урну. Затем из первой урны извлекают один шар. Найти вероятность того, что шар белый.

5. Из множества последовательно без возвращения выбирают два числа. Сколько всего таких наборов, в которых второе число больше первого?

Вариант 8

1. Внутри эллипса расположен круг . Найти вероятность попадания точки в кольцо, ограниченного эллипсом и кругом.

2. Пусть – три произвольных события. Найти выражения для событий, состоящих в том, что: а) события и произошли, а событие не произошло; б) произошло ровно 2 события.

3. Найти вероятность того, что в семье, имеющей 6 детей, не менее
2 девочек. (Вероятности рождения мальчика и девочки считать одинаковые.)

4. Имеются две урны. В первой урне находятся 3 белых и 5 чёрных шаров, во второй – 4 белых и 6 чёрных шара. Из первой урны во вторую, не глядя, перекладывают два шара. Шары во второй урне тщательно перемешивают и из неё берётся один шар. Найти вероятность того, что шар будет
белый.

5. Сколькими способами можно обозначить вершины данного треугольника, используя буквы ?

Вариант 9

1. Из пяти букв разрезной азбуки, составлено слово «книга». Ребёнок, не умеющий читать, рассыпал эти буквы, а затем собрал в произвольном порядке. Найти вероятность того, что у него снова получилось слово «книга».

2. Найти все события , такие что , где и – некоторые события.

3. Из 15 лотерейных билетов, выигрышными являются 4. Какова вероятность того, что среди 6 взятых наугад билетов будет два выигрышных?

4. Имеются три одинаковые урны. В первой урне находятся 4 белых и 2 чёрных шара, во второй – 3 белых и 3 чёрных шара, в третьей – 1 белых и 5 чёрных шаров. Из второй и третьей урн, не глядя, перекладывают по два шара в первую урну. Шары в первой урне перемешивают и из неё наугад извлекают два шара. Найти вероятность того, что они будут белые.

5. Из пяти шахматистов для участия в турнире нужно послать двух. Сколькими способами можно это сделать?

Вариант 10

1. Из колоды в 52 карты наудачу вынимают три. Найти вероятность того, что это будет тройка, семёрка и туз.

2. Даны два дублирующих блока и . Запишите событие, состоящее в том, что система исправна.

3. Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна 0,95 для первого 0,9 – для второго. Найти вероятность того, что при аварии сработает только один сигнализатор.

4. На трёх автоматических линиях изготавливаются одноимённые детали. Первая линия даёт 70 %, вторая – 20 %, третья – 10 % всей продукции. Вероятности получения бракованной продукции на каждой линии, соответственно, равны: 0,02; 0,01; 0,05. Взятая на удачу деталь оказалась бракованной. Определить вероятность того, что деталь была изготовлена на первой линии.

5. На окружности выбрано 10 точек. Сколько можно провести хорд с концами в этих точках.

Вариант 11

1. В урне белых, чёрных и красных шаров. Наудачу вынимаются три шара. Какова вероятность того, что они будут разного цвета.

2. Верно ли равенство ?

3. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно равна 0,9. Найти вероятность того, что из двух проверенных изделий только одно стандартное.

4. Три стрелка независимо один от другого стреляют по мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,4 для второго – 0,6 и для третьего – 0,7. После стрельбы в мишени обнаружены два попадания. Определить вероятность того, что они принадлежат первому и третьему стрелкам.

5. Сколькими способами можно расположить в 1 ряд 5 красных, 4 чёрных и 5 белых мячей так, чтобы мячи, лежащие на краях, были одного цвета?

Вариант 12

1. Собрание, на котором присутствует 25 человек, в том числе 5 женщин, выбирает делегацию из 3 человек. Считая, что каждый из присутствующих с одинаковой вероятностью может быть избран. Найти вероятность того, что в делегацию войдут 2 женщины и один мужчина.

3. Найти вероятность по данным вероятностям , .

4. По каналу связи может быть передан код 1111 с вероятностью 0,2, код 0000 с вероятностью 0,3 и код 1001 с вероятностью 0,5. Вследствие влияния помех вероятность правильного приёма каждой цифры (0 или 1) кода равна 0,9, причём цифры искажаются независимо друг от друга. Найти вероятность того, что передан код 1111, если на приёмном устройстве принят код 1011.

5. Сколько различных маршрутов может избрать пешеход, решивший пройти 9 кварталов, 5 из них – на запад, 4 – на север.

Вариант 13

1. Группа из 10 мужчин и 10 женщин делится случайным образом на две равные части. Найти вероятность того, что в каждой части мужчин и женщин одинаково.

2. и – некоторые события. Верно ли равенство ?

3. Найти вероятность по данным вероятностям , , .

4. По линии связи возможна передача кода 1234 с вероятностью 0,6 и кода 4321 с вероятностью 0,4. Код высвечивается на табло, которое может исказить цифры. Вероятность принять 1 за 1 равна 0,8, а 1 за 4 равна 0,2. Вероятность принять 4 за 4 равна 0,9, а 4 за 1 равна 0,1. Вероятность принять 2 за 2 и 3 за 3 равна 0,7. Вероятность принятия 2 за 3 и 3 за 2 равна 0,3. Оператор принял код 4231. Определить вероятность того, что был принят код:
а) 1234; б) 4321.

5. Между тремя лицами – нужно разделить 15 различных предметов, причём должен получить 2 предмета, – 3, а – 10. Сколькими способами можно выполнить это распределение.

Вариант 14

1. В партии из 10 изделий имеется 4 бракованных. Наугад выбирают
5 изделий. Определить вероятность того, что среди этих 5 изделий окажется три бракованных.

2. Доказать, что , , образуют полную группу событий.

3. Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент ответит на 2 вопроса, предложеных ему экзаменатором.

4. Имеется 4 партии деталей. В первой партии 3 % брака, во второй –4 %, в третьей и четвёртой партиях брака нет. Какова вероятность взять бракованную деталь, если из выбранной наугад партии берётся одна деталь? Какова вероятность того, что взятая деталь принадлежит первой партии, если она оказалась бракованной?

5. Студенту необходимо сдать 4 экзамена в течение 10 дней. Сколькими способами можно составить ему расписание?

Вариант 15

1. В зале 50 мест. Найти вероятность того, что из 10 человек 5 займут определённые места, если места занимаются ими случайным образом.

2. Доказать, что .

3. Три стрелка независимо друг от друга стреляют по цели. Вероятность попадания в цель для первого стрелка – 0,75, для второго – 0,8, для третьего – 0,9. Найти вероятность того, что все три стрелка попадут в цель.

4. Из урны, в которой имелось 4 чёрных 6 белых шаров, потерян шар неизвестного цвета. Для того чтобы определить состав шаров в урне, из неё наудачу извлекли два шара. Они оказались белыми. Найти вероятность того, что был утерян белый шар.

5. Сколькими способами можно расставить на полке 7 книг, если две определённые книги всегда должны стоять рядом.

4. Вероятность попадания в цель при одном выстреле равна 0,7. Определить вероятность того, что в результате шести независимых выстрелов будет пять попаданий.

5. В автомобиле 7 мест. Сколькими способами 7 человек могут усесться в эту машину, если занять место водителя могут только трое из них.

Вариант 18

1. Для производственной практики на 30 студентов предоставлено 15 мест в Москве, 8 – в Тайге и 7 – в Новосибирске. Какова вероятность того, что два определённых студента попадут на практику в один город?

2. Пусть – три произвольных события. Найти выражения для событий, состоящих в том, что из произошло: а) только ; б) только одно событие.

3. В ящике 6 белых и 8 чёрных шаров. Из ящика вынули два шара (не возвращая вынутый шар в ящик). Найти вероятность того, что оба шара белые.

3. В первом ящике 2 белых и 10 чёрных шаров, во втором 8 белых и
4 чёрных шара. Из каждого ящика вынули по шару. Какова вероятность, что оба шара белые?

4. Испытываются 25 двигателей. Вероятность безотказной работы каждого двигателя одинакова и равна 0,95. Определить наиболее вероятное число отказавших двигателей.

5. У Тани есть 20 марок, у Наташи – 30. Сколькими способами можно обменять одну Танину марку на одну Наташину?

Вариант 20

1. Бросают 4 игральные кости. Найти вероятность того, что на всех выпадает одинаковое число очков.

2. Обязаны ли совпадать события и , если ?

3. Три стрелка независимо друг от друга стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,75, для второго – 0,8. для третьего – 0,9. Определить вероятность того, что в цель попадёт хотя бы один стрелок.

4. Испытанию подвергается партия транзисторов. Вероятность безотказной работы каждого транзистора равна 0,92. Определить, какое число транзисторов следует испытать, чтобы с вероятностью не менее 0,95 можно было зафиксировать хотя бы один отказ.

5. Сколько пятизначных чисел можно составить из цифр 1, 2, 4, 6, 7, 8, если каждую цифру в любом числе использовать не более 1 раза?

4) Имеются три одинаковые с виду урны: в первой 5 белых и 10 черных шаров; во второй 9 белых и 6 черных шаров; в третьей только черные шары. Из наугад выбранной урны достают один шар. Какова вероятность того, что этот шар черный.

Решение

Событие A – достали черный шар. Событие A

H

H

H

Так как урны с виду одинаковы, то:

A для каждой гипотезы.

Черный шар достали из первой урны:

Аналогично:

Ответ:

5) Имеются две урны: в первой 5 белых и 10 черных шаров; во второй урне 9 белых и 6 черных шаров. Из первой урны во вторую перекладывают, не глядя, один шар. После этого из второй урны достают один шар. Найти вероятность того, что этот шар будет черным.

Решение

Событие A – из второй урны достали черный шар. Событие A может произойти с одним из несовместных событий (гипотез):

H 1 – из первой урны во вторую переложили белый шар;

H 2 – из первой урны во вторую переложили черный шар.

Вероятности гипотез:

Найдем условные вероятности события A . Если из первой урны во вторую переложили белый шар, то во второй урне стало 10 белых и 6 черных шаров. Значит, вероятность достать из нее черный шар равна:

Аналогично:

По формуле полной вероятности:

Ответ:

6) Имеются три урны: в первой 5 белых и 10 черных шаров; во второй 9 белых и 6 черных шаров; в третьей урне 15 черных шаров (белых шаров нет). Из наугад выбранной урны достали один шар. Этот шар оказался черным. Найти вероятность того, что шар достали из второй урны.

Решение

Событие A – из наугад выбранной урны достали один шар.

Событие A может произойти с одним из несовместных событий (гипотез):

H 1 – шар достали из первой урны;

H 2 – шар достали из второй урны;

H 3 – шар достали из третьей урны.

Априорные вероятности гипотез равны:



В задаче 4 найдены условные вероятности события A и его полная вероятность:

Найдем по формуле Байеса апостериорную вероятность гипотезы H 2 .

Черный шар достали из второй урны:

Сравним и :

Таким образом, если известно, что достали черный шар, то вероятность того, что его достали из второй урны уменьшается (это соответствует условию – во второй урне меньше всего черных шаров).

Ответ: .

Формула Бернулли

7) В семье шесть детей. Вероятность рождения девочки равна 0,49. Найти вероятность того, что среди этих детей одна девочка.

Решение

Событие A – родилась девочка.

P = P (A ) = 0,49;

q = 1 – p = 1 – 0,49 = 0,51.

Формула Бернулли:

Всего шесть детей, значит n =6.

Надо найти вероятность того, что среди них точно одна девочка, значит m = 1.

Ответ:

8) Отрезок AB разделен точной C в отношении 2:1. На этот отрезок наудачу брошено 6 точек. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. Найти вероятность того, что более одной точки окажется правее точки C .

Решение

Событие A – случайная точка попала на отрезок CB (правее точки C ).

Так как C делит AB в отношении 2:1, то:

2CB =AC ;

2CB +CB =AC +CB ;

3CB =AB ;

Опираясь на геометрическое определение вероятности, получаем:

Формула Бернулли.