Болезни Военный билет Призыв

Формула плотности хи квадрат распределения. Распределение Пирсона (распределение хи-квадрат). Оценка параметров распределения

Количественное изучение биологических явлений обязательно требует создания гипотез, с по­мощью которых можно объяснить эти явления. Чтобы проверить ту или иную гипотезу ставят се­рию специальных опытов и полученные фактические данные сопоставляют с теоретически ожи­даемыми согласно данной гипотезе. Если есть совпадениеэто может быть достаточным ос­но­ванием для принятия гипотезы. Если же опытные данные плохо согласуются с теоретически ожи­даемыми, возникает большое сомнение в правильности предложенной гипотезы.

Степень соответствия фактических данных ожидаемым (гипотетическим) измеряется критерием со­от­ветствия хи-квадрат:

 фактически наблюдаемое значение признака вi- той;теоретически ожидаемое число или признак (показатель) для данной группы,k число групп данных.

Критерий был предложен К.Пирсоном в 1900 г. и иногда его называют критерием Пирсона.

Задача. Среди 164 детей, наследовавших от одного из родителей фактор, а от другогофактор, оказалось 46 детей с фактором, 50с фактором, 68с тем и другим,. Рассчитать ожидаемые частоты при отношении 1:2:1 между группами и определить степень соответствия эмпирических данных с помощью критерия Пирсона.

Решение: Отношение наблюдаемых частот 46:68:50, теоретически ожидаемых 41:82:41.

Зададимся уровнем значимости равным 0,05. Табличное значение критерия Пирсона для этого уровня значимости при числе степеней свободы, равном оказалось равным 5,99. Следовательно гипотезу о соответствии экспериментальных данных теоретическим можно принять, так как, .

Отметим, что при вычислении критерия хи-квадрат мы уже не ставим условия о непременной нор­маль­ности распределения. Критерий хи-квадрат может использоваться для любых распределений, ко­­то­рые мы вольны сами выбирать в своих предположениях. В этом есть некоторая уни­вер­саль­ность этого критерия.

Еще одно приложение критерия Пирсона это сравнение эмпирического распределения с нор­мальным распределением Гаусса. При этом он может быть отнесен к группе критериев про­вер­ки нормальности распределения. Единственным ограничением является тот факт, что общее число зна­чений (вариант) при пользовании этим критерием должно быть достаточно велико (не менее 40), и число значений в отдельных классах (интервалах) должно быть не менее 5. В противном случае следует объединять соседние интервалы. Число степенй свободы при проверке нор­маль­нос­ти распределения должно вычисляться как:.

    1. Критерий Фишера.

Этот параметрический критерий служит для проверки нулевой гипотезы о равенстве дис­пер­сий нормально распределенных генеральных совокупностей.

Или.

При малых объемах выборок применение критерия Стьюдента может быть корректным только при условии равенства дисперсий. Поэтому прежде чем проводить проверку равенства выборочных средних значений, необходимо убедиться в правомочности использования критерия Стьюдента.

где N 1 , N 2 объемы выборок, 1 , 2 числа степеней свободы для этих выборок.

При пользовании таблицами следует обратить внимание, что число степеней свободы для выборки с большей по величине дисперсией выбирается как номер столбца таблицы, а для меньшей по величине дисперсии как номер строки таблицы.

Для уровня значимости по таблицам математической статистики находим табличное значение. Если, то гипотеза о равенстве дисперсий отклоняется для выбранного уровня значимости.

Пример. Изучали влияние кобальта на массу тела кроликов. Опыт проводился на двух группах животных: опытной и контрольной. Опытные получали добавку к рациону в виде водного раствора хлористого кобальта. За время опыта прибавки в весе составили в граммах:

Контроль

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию города Иркутска

Байкальский государственный университет экономики и права

Кафедра Информатики и Кибернетики

Распределение "хи-квадрат" и его применение

Колмыкова Анна Андреевна

студентка 2 курса

группы ИС-09-1

Иркутск 2010

Введение

1. Распределение "хи-квадрат"

Приложение

Заключение

Список используемой литературы

Введение

Как подходы, идеи и результаты теории вероятностей используются в нашей жизни?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются, прежде всего, для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду, как нежелательные возможности (риски), так и привлекательные ("счастливый случай"). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя.

Вероятностная модель явления или процесса является фундаментом математической статистики. Используются два параллельных ряда понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, "находятся в головах исследователей", относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин "генеральная совокупность" используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют "анализ данных". По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

Распределение "хи-квадрат"

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. Это распределения Пирсона ("хи – квадрат"), Стьюдента и Фишера.

Мы остановимся на распределении

("хи – квадрат"). Впервые это распределение было исследовано астрономом Ф.Хельмертом в 1876 году. В связи с гауссовской теорией ошибок он исследовал суммы квадратов n независимых стандартно нормально распределенных случайных величин. Позднее Карл Пирсон (Karl Pearson) дал имя данной функции распределения "хи – квадрат". И сейчас распределение носит его имя.

Благодаря тесной связи с нормальным распределением, χ2-распределение играет важную роль в теории вероятностей и математической статистике. χ2-распределение, и многие другие распределения, которые определяются посредством χ2-распределения (например - распределение Стьюдента), описывают выборочные распределения различных функций от нормально распределенных результатов наблюдений и используются для построения доверительных интервалов и статистических критериев.

Распределение Пирсона

(хи - квадрат) – распределение случайной величиныгде X1, X2,…, Xn - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице.

Сумма квадратов


распределена по закону

("хи – квадрат").

При этом число слагаемых, т.е. n, называется "числом степеней свободы" распределения хи – квадрат. C увеличением числа степеней свободы распределение медленно приближается к нормальному.

Плотность этого распределения


Итак, распределение χ2 зависит от одного параметра n – числа степеней свободы.

Функция распределения χ2 имеет вид:


если χ2≥0. (2.7.)

На Рисунок 1 изображен график плотности вероятности и функции χ2 – распределения для разных степеней свободы.

Рисунок 1 Зависимость плотности вероятности φ (x) в распределении χ2 (хи – квадрат) при разном числе степеней свободы.

Моменты распределения "хи-квадрат":

Распределение "хи-квадрат" используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных.

2. "Хи-квадрат" в задачах статистического анализа данных

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Современный этап развития статистических методов можно отсчитывать с 1900 г., когда англичанин К. Пирсон основал журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Распределение "хи-квадрат" является одним из наиболее широко используемых в статистике для проверки статистических гипотез. На основе распределения "хи-квадрат" построен один из наиболее мощных критериев согласия – критерий "хи-квадрата" Пирсона.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Критерий χ2 ("хи-квадрат") используется для проверки гипотезы различных распределений. В этом заключается его достоинство.

Расчетная формула критерия равна

где m и m’ - соответственно эмпирические и теоретические частоты

рассматриваемого распределения;

n - число степеней свободы.

Для проверки нам необходимо сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты.

При полном совпадении эмпирических частот с частотами, вычисленными или ожидаемыми S (Э – Т) = 0 и критерий χ2 тоже будет равен нулю. Если же S (Э – Т) не равно нулю это укажет на несоответствие вычисленных частот эмпирическим частотам ряда. В таких случаях необходимо оценить значимость критерия χ2, который теоретически может изменяться от нуля до бесконечности. Это производится путем сравнения фактически полученной величины χ2ф с его критическим значением (χ2st).Нулевая гипотеза, т. е. предположение, что расхождение между эмпирическими и теоретическими или ожидаемыми частотами носит случайный характер, опровергается, если χ2ф больше или равно χ2st для принятого уровня значимости (a) и числа степеней свободы (n).

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

1. Рассчитываем ожидаемые значения для каждой ячейки:

2. Находим значение критерия хи-квадрат Пирсона:

χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.

4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

Также критерий хи-квадрат Пирсона вычисляется по формуле

Но для таблицы 2х2 более точные результаты дает критерий с поправкой Йетса

Если то Н(0) принимается,

В случае принимается Н(1)

Когда число наблюдений невелико и в клетках таблицы встречается частота меньше 5, критерий хи-квадрат неприменим и для проверки гипотез используется точный критерий Фишера . Процедура вычисления этого критерия достаточно трудоемка и в этом случае лучше воспользоваться компьютерными программами статанализа.

По таблице сопряженности можно вычислить меру связи между двумя качественными признаками – ею является коэффициент ассоциации Юла Q (аналог коэффициента корреляции)

Q лежит в пределах от 0 до 1. Близкий к единице коэффициент свидетельствует о сильной связи между признаками. При равенстве его нулю – связь отсутствует.

Аналогично используется коэффициент фи-квадрат (φ 2)

ЗАДАЧА-ЭТАЛОН

В таблице описывается связь между частотой мутации у групп дрозофил с подкормкой и без подкормки



Анализ таблицы сопряженности

Для анализа таблицы сопряженности выдвигается Н 0 - гипотеза.т.е.отсуствие влияния изучаемого признака на результат исследования.Для этого рассчитывается ожидаемая частота,и строится таблица ожидания.

Таблица ожидания

группы Чило культур Всего
Давшие мутации Не давшие мутации
Фактическая частота Ожидаемая частота Фактическая частота Ожидаемая частота
С подкормкой
Без подкормкой
всего

Метод №1

Определяем частоту ожидания:

2756 – Х ;

2. 3561 – 3124

Если число наблюдении в группах мало, при применении Х 2, в случае сопоставления фактических и ожидаемых частот при дискретных распределениях сопряжено с некоторой неточностью.Для уменьшения неточности применяют поправку Йейтса.

Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F (x ) и эмпирическим распределением F * п (x ) , которая приближенно подчиняется закону распределения χ 2 . Гипотеза Н 0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда.

Итак, пусть выборка представлена статистическим рядом с количеством разрядов M . Наблюдаемая частота попаданий в i - й разряд n i . В соответствии с теоретическим законом распределения ожидаемая частота попаданий в i -й разряд составляет F i . Разность между наблюдаемой и ожидаемой частотой составит величину (n i F i ). Для нахождения общей степени расхождения между F (x ) и F * п (x ) необходимо подсчитать взвешенную сумму квадратов разностей по всем разрядам статистического ряда

Величина χ 2 при неограниченном увеличении n имеет χ 2 -распределение (асимптотически распределена как χ 2). Это распределение зависит от числа степеней свободы k , т.е. количества независимых значений слагаемых в выражении (3.7). Число степеней свободы равно числу y минус число линейных связей, наложенных на выборку. Одна связь существует в силу того, что любая частота может быть вычислена по совокупности частот в оставшихся M –1 разрядах. Кроме того, если параметры распределения неизвестны заранее, то имеется еще одно ограничение, обусловленное подгонкой распределения к выборке. Если по выборке определяются S параметров распределения, то число степеней свободы составит k = M S –1.

Область принятия гипотезы Н 0 определяется условием χ 2 < χ 2 (k ; a ) , где χ 2 (k ; a ) критическая точка χ2-распределения с уровнем значимости a . Вероятность ошибки первого рода равна a , вероятность ошибки второго рода четко определить нельзя, потому что существует бесконечно большое множество различных способов несовпадения распределений. Мощность критерия зависит от количества разрядов и объема выборки. Критерий рекомендуется применять при n >200, допускается применение при n >40, именно при таких условиях критерий состоятелен (как правило, отвергает неверную нулевую гипотезу).

Алгоритм проверки по критерию

1. Построить гистограмму равновероятностным способом.

2. По виду гистограммы выдвинуть гипотезу

H 0: f (x ) = f 0 (x ),

H 1: f (x ) ¹ f 0 (x ),

где f 0 (x ) - плотность вероятности гипотетического закона распределения (например, равномерного, экспоненциального, нормального).

Замечание . Гипотезу об экспоненциальном законе распределения можно выдвигать в том случае, если все числа в выборке положительные.

3. Вычислить значение критерия по формуле

,

где
частота попадания вi -тый интервал;

p i - теоретическая вероятность попадания случайной величины вi - тый интервал при условии, что гипотезаH 0 верна.

Формулы для расчета p i в случае экспоненциального, равномерного и нормального законов соответственно равны.

Экспоненциальный закон

. (3.8)

При этом A 1 = 0, B m = +¥.

Равномерный закон

Нормальный закон

. (3.10)

При этом A 1 = -¥, B M = +¥.

Замечания . После вычисления всех вероятностей p i проверить, выполня­ется ли контрольное соотношение

Функция Ф(х )- нечетная. Ф(+¥) = 1.

4. Из таблицы " Хи-квадрат" Приложения выбирается значение
, гдеa - заданный уровень значимости (a = 0,05 или a = 0,01), а k - число степеней свободы, определяемое по формуле

k = M - 1 - S .

Здесь S - число параметров, от которых зависит выбранный гипотезой H 0 закон распределения. Значения S для равномерного закона равно 2, для экспоненциального - 1, для нормального - 2.

5. Если
, то гипотезаH 0 отклоняется. В противном случае нет оснований ее отклонить: с вероятностью 1 - b она верна, а с вероятностью - b неверна, но величина b неизвестна.

Пример3 . 1. С помощью критерия c 2 выдвинуть и проверить гипотезу о законе распределения случайной величины X , вариационный ряд, интерваль­ные таблицы и гистограммы распределения которой приведены в примере 1.2. Уровень значимости a равен 0,05.

Решение . По виду гистограмм выдви­гаем гипотезу о том, что случайная величина X распределена по нормальному закону:

H 0: f (x ) = N (m , s);

H 1: f (x ) ¹ N (m , s).

Значение критерия вычисляем по формуле:

(3.11)

Как отмечалось выше, при проверке гипотезы предпочтительнее использовать равновероятностную гистограмму. В этом случае

Теоретические вероятности p i рассчитываем по формуле (3.10). При этом полагаем, что

p 1 = 0,5(Ф((-4,5245+1,7)/1,98)-Ф((-¥+1,7)/1,98)) = 0,5(Ф(-1,427)-Ф(-¥)) =

0,5(-0,845+1) = 0,078.

p 2 = 0,5(Ф((-3,8865+1,7)/1,98)-Ф((-4,5245+1,7)/1,98)) =

0,5(Ф(-1,104)+0,845) = 0,5(-0,729+0,845) = 0,058.

p 3 = 0,094; p 4 = 0,135; p 5 = 0,118; p 6 = 0,097; p 7 = 0,073; p 8 = 0,059; p 9 = 0,174;

p 10 = 0,5(Ф((+¥+1,7)/1,98)-Ф((0,6932+1,7)/1,98)) = 0,114.

После этого проверяем выполнение контрольного соотношения

100 × (0,0062 + 0,0304 + 0,0004 + 0,0091 + 0,0028 + 0,0001 + 0,0100 +

0,0285 + 0,0315 + 0,0017) = 100 × 0,1207 = 12,07.

После этого из таблицы "Хи - квадрат" выбираем критическое значение

.

Так как
то гипотезаH 0 принимается (нет основания ее отклонить).

Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F(x) и эмпирическим распределением F* п (x) , которая приближенно подчиняется закону распределения χ 2 . Гипотеза Н 0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда.

Итак, пусть выборка представлена статистическим рядом с количеством разрядов M . Наблюдаемая частота попаданий в i- й разряд n i . В соответствии с теоретическим законом распределения ожидаемая частота попаданий в i -й разряд составляет F i . Разность между наблюдаемой и ожидаемой частотой составит величину (n i F i ). Для нахождения общей степени расхождения между F(x ) и F* п (x ) необходимо подсчитать взвешенную сумму квадратов разностей по всем разрядам статистического ряда

Величина χ 2 при неограниченном увеличении n имеет χ 2 -распределение (асимптотически распределена как χ 2). Это распределение зависит от числа степеней свободы k , т.е. количества независимых значений слагаемых в выражении (3.7). Число степеней свободы равно числу y минус число линейных связей, наложенных на выборку. Одна связь существует в силу того, что любая частота может быть вычислена по совокупности частот в оставшихся M –1 разрядах. Кроме того, если параметры распределения неизвестны заранее, то имеется еще одно ограничение, обусловленное подгонкой распределения к выборке. Если по выборке определяются S параметров распределения, то число степеней свободы составит k=M –S–1.

Область принятия гипотезы Н 0 определяется условием χ 2 < χ 2 (k;a) , где χ 2 (k;a) – критическая точка χ2-распределения с уровнем значимости a . Вероятность ошибки первого рода равна a , вероятность ошибки второго рода четко определить нельзя, потому что существует бесконечно большое множество различных способов несовпадения распределений. Мощность критерия зависит от количества разрядов и объема выборки. Критерий рекомендуется применять при n >200, допускается применение при n >40, именно при таких условиях критерий состоятелен (как правило, отвергает неверную нулевую гипотезу).

Алгоритм проверки по критерию

1. Построить гистограмму равновероятностным способом.

2. По виду гистограммы выдвинуть гипотезу

H 0: f (x ) = f 0(x ),

H 1: f (x ) f 0(x ),

где f 0(x ) - плотность вероятности гипотетического закона распределения (например, равномерного, экспоненциального, нормального).

Замечание . Гипотезу об экспоненциальном законе распределения можно выдвигать в том случае, если все числа в выборке положительные.


3. Вычислить значение критерия по формуле

,

где частота попадания в i -тый интервал;

pi - теоретическая вероятность попадания случайной величины в i - тый интервал при условии, что гипотеза H 0верна.

Формулы для расчета pi в случае экспоненциального, равномерного и нормального законов соответственно равны.

Экспоненциальный закон

. (3.8)

При этом A 1 = 0, Bm = +.

Равномерный закон

Нормальный закон

. (3.10)

При этом A 1 = -, B M = +.

Замечания . После вычисления всех вероятностей pi проверить, выполня­ется ли контрольное соотношение

Функция Ф(х )- нечетная. Ф(+) = 1.

4. Из таблицы " Хи-квадрат" Приложения выбирается значение , где - заданный уровень значимости (= 0,05 или = 0,01), а k - число степеней свободы, определяемое по формуле

k = M - 1 - S .

Здесь S - число параметров, от которых зависит выбранный гипотезой H 0закон распределения. Значения S для равномерного закона равно 2, для экспоненциального - 1, для нормального - 2.

5. Если , то гипотеза H 0отклоняется. В противном случае нет оснований ее отклонить: с вероятностью 1 - она верна, а с вероятностью - неверна, но величина неизвестна.

Пример3 . 1. С помощью критерия 2выдвинуть и проверить гипотезу о законе распределения случайной величины X , вариационный ряд, интерваль­ные таблицы и гистограммы распределения которой приведены в примере 1.2. Уровень значимости равен 0,05.

Решение . По виду гистограмм выдви­гаем гипотезу о том, что случайная величина X распределена по нормальному закону:

H 0: f (x ) = N (m ,);

H 1: f (x ) N (m ,).

Значение критерия вычисляем по формуле.