Болезни Военный билет Призыв

Физики ссср 20 века. Открытия в физике XX века. Фрагменты из презентации


В физике можно выделить три основных направления: исследование микромира (микрофизика), макромира (макрофизика) и мегамира (астрофизика).

Прогресс физики после ряда выдающихся открытий конца XIX - начала XX века (рентгеновские лучи, электрон, радиоактивность и др.) был задержан первой мировой войной, и все же исследования атомов продолжались. Основное в этих исследованиях:

Разработка модели атома.

Доказательство изменяемости атома.

Доказательство существования разновидностей атома у химических элементов.

Эти исследования опирались практически на совершенно новое представление о структуре материи, которое начало складываться в начале XX века. Сформулированное в XIX в. представление об атомах было подытожено Д.И. Менделеевым, который в статье «Вещество», опубликованной в 1892 г. в «Энциклопедическом словаре Брокгауза и Ефрона», перечислил основные сведения об атомах:

Химические атомы каждого элемента неизменны, и существует столько сортов атомов, сколько известно химических элементов (в то время - примерно 70).

Атомы данного элемента одинаковы.

Атомы имеют вес, причем различие атомов основано на различии их веса.

Взаимный переход атомов данного элемента в атомы другого элемента невозможен.

Доказательство существования электрона разрушило эти представления об атоме. Важнейшим направлением исследований физики становится выяснение структуры атомов. Электронные модели атома стали появляться одна за другой. Их возникновение в хронологической последовательности таково:

Модель У. Кельвина (1902 г.) - электроны распределяются определенным способом внутри положительно заряженной сферы.

Модель Ф. Ленарда (1903 г.) - атом состоит из «дуплетов» отрицательных и положительных зарядов (так называемых динамит).

Модель Г. Нагаоки (1904 г.) - атом «устроен» наподобие планеты Сатурн (вокруг положительно заряженного тела располагаются кольца, состоящие из отрицательно заряженных электронов).

Модель Дж. Томсона (1904 г.) - внутри положительно заряженной сферы вращающиеся электроны размещаются в одной плоскости по концентрическим оболочкам, вмещающим различные, но конечные числа электронов.

Эти модели были результатами теоретических (во многом - чисто математических) построений и носили формальный характер. Исключение составляла модель Дж. Томсона. Он предпринял первую в своем роде попытку объяснения периодического изменения свойств химических элементов, связав феномен периодичности с числом электронов в концентрических кольцах.

Однако оставалось неопределенным точное количество электронов в атомах. Томсон полагал, что масса носителя единичного положительного заряда значительно превосходит массу единичного отрицательного заряда, и это также оказалось соответствующим истине.

Электрон довольно скоро исчерпал свои возможности в качестве единственного «строительного материала» атомов, но эти перечисленные модели, безусловно, сыграли роль в подготовке будущей планетарной модели атома. Почти каждая из них в той или иной форме содержала элементы действительности.

Появление резерфордовской модели стало возможным благодаря подключению исследований радиоактивности, причем не столько само явление, сколько изучение действия частиц, испускаемых в ходе радиоактивного распада, на вещества. Именно анализ рассеивания частиц различными материалами позволил Э. Резерфорду в 1911 году высказать идею о существовании в атоме массивного заряженного тела - ядра (сам термин «ядро» был введен Резерфордом в 1912 году).

Применив к резерфордовской модели квантовую теорию, Н. Бор (1913 г.) устранил противоречие этой модели классической электродинамики. Поэтом именно ядерная модель Резерфорда в интерпретации Бора стала основным понятием новой атомистики.

На протяжении почти двух десятилетий господствовала протонно-электронная модель ядра. Неверная по своей сути, она, тем не менее, ни чуть не мешала широкому распространению и использованию классической атомной модели целиком. Но только после открытия Дж. Чедвиком в 1932 г. нейтрона возникли современные представления о протоно-нейтронной модели ядра.

Итак, следствием фундаментальных физических открытий конца XIX века оказалась разработка структуры атома в целом. «Бесструктурный» атом уступил место новому атому как сложной системе частиц.

После того как нейтрон был признан и нашел свое место как протон, лишенный своего положительного заряда, было обнаружено, что он представляет собой центральную фигуру в структуре ядра. Очень скоро после этого К. Андерсон открыл другую элементарную частицу - положительный электрон. Позитрон обеспечил необходимую симметрию между положительным и отрицательным во взаимоотношениях частиц. Оказалось, что взаимоотношения нейтрона и протона отнюдь не являются простыми. И если раньше полагалось, что ядро состоит из протонов и электронов, то теперь было обнаружено, что значительно правильнее будет сказать, что оно состоит из протонов и нейтронов, связанных вместе мощными силами, которые Юкава приписал в 1935 году гипотетической промежуточной частице - мезону. Здесь мы видим пример элементарной частицы, которая сначала была предсказана теоретически, а затем, в 1936 году, фактически наблюдалась К. Андерсоном и Неддермейером.

Действие нейтронов на различные ядра было изучено за короткий промежуток времени в 6 лет, с 1932 по 1938 год. То были годы, когда наука вообще и физика в особенности все больше чувствовала на себе влияние событий, приводящих ко второй мировой войне.

Решающее открытие принадлежало Жолио Кюри, который нашел, что почти все атомы, подвергнутые бомбардировке нейтронами, сами становятся радиоактивными. Логическое следствие этого открытия было огромным. Знание атомных превращений могло быть использовано для объяснения того, каким образом возникли элементы.

Этой концепцией воспользовались Гамов и Бете для выявления источника солнечной энергии. Таким источником является соединение четырех атомов водорода, в результате чего образуется один атом гелия. Было уже совершенно очевидно, что источником большей части энергии Вселенной служат ядерные процессы. В 1936 году Ферми подверг бомбардировке нейтронами тяжелые элементы и заявил, что получил ряд элементов с большим весом, чем у любых других элементов, найденных в природе.

Вплоть до 1937 года все имевшие место радиоактивные изменения заключались в том, что маленькие частицы либо присоединялись к ядру, либо выбрасывались из него. Наиболее крупным из выброшенных осколков была частица, содержащая два протона и два нейтрона. Однако в 1937 году Ган и Штрассман нашли, что некоторые из продуктов, полученных в результате облучения урана нейтронами, имели в общем массу, составляющую чуть ли не половину массы атома урана. Было ясно, что имеет место деление ядра.

Тяжелые ядра могут содержать значительно большее число нейтронов по отношению к числу протонов, чем легкие ядра. Когда атом урана расщепляется, он по необходимости освобождал несколько нейтронов. Ну а стоило только понять это (что произошло в 1938 году, главным образом благодаря работам Жолио Кюри), как возможность массовых превращений атомов стала реальностью. Здесь мы имеем цепную реакцию, или своего рода явление лавинообразного нарастания. Если дать этому процессу возможность продолжаться бесконечно, то получится взрыв; если управлять им, то результатом его явится вырабатывающий энергию ядерный реактор.

То, каким образом создавалась, испытывалась и была использована атомная бомба, составляет часть мировой истории, а не просто истории науки. Военные и политические последствия создания ядерного оружия и контролируемого производства атомной энергии огромны. Здесь достаточно отметить, что в техническом отношении производство атомной энергии представляет собой новый крупный скачок вперед в установлении господства человека над силами природы.

Ядерная энергия может получаться не только путем деления ядра атома, но и путем синтеза или, другими словами, для получения такой энергии необходимо изготавливать медленно горящие водородные бомбы. Соответствующие исследования были начаты в СССР И.В. Курчатовым и продолжены его учениками. В Институте ядерной энергии им. И.В. Курчатова под руководством Л.А. Арцимовича были разработаны установки типа токамак. Название «токамак» произошло от сокращения слов «тороидальная камера с магнитным полем». Создателям этих установок пришлось решать очень трудные задачи. Прежде всего нужно разогреть дейтерий-тритиевую плазму до температуры порядка 100 млн градусов и длительно удерживать ее в этом состоянии.

В установке токамак нагревание плазмы до столь высокой температуры достигается за счет протекания через плазму электрического тока очень большой силы - порядка сотен тысяч ампер. Вследствие электрического сопротивления плазмы образуется «джоулево» тепло, за счет которого происходит нагрев плазмы.

Еще более сложной задачей является сохранение (удержание) плазмы. Не может быть и речи, конечно, о соприкосновении плазмы со стенкой - на свете нет такого материала, который бы остался цел (не испарился) после соприкосновения. В токамаках удержание плазмы производится с помощью магнитного поля, так как плазму составляют частицы, имеющие электрический заряд, - ядра атомов и электроны.

После открытия электрона, протона, фотона и, наконец, в 1932 году нейтрона было установлено существование большого числа новых элементарных частиц. В том числе: позитрон, о котором мы уже упоминали как об античастице электрона; мезоны - нестабильные микрочастицы; различного рода гипероны - нестабильные микрочастицы с массами больше массы нейтрона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10"22-10"24 с); нейтрино - стабильная, не имеющая электрического заряда частица, обладающая почти невероятной проницаемостью; антинейтрино - античастица нейтрино, отличающаяся от нейтрино знаком лептонного заряда, и др.

В характеристике элементарных частиц существует еще одно важное представление - взаимодействие. Различают четыре вида взаимодействия.

Сильное взаимодействие (короткодействующее, радиус действия около 10~18 см) связывает между собой нуклоны (протоны и нейтроны) в ядре; именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие (дальнодействующее, радиус действия не ограничен) определяет взаимодействие между электронами и ядрами атомов или молекул; взаимодействующие частицы имеют электрические заряды; проявляется в химических связях, силах упругости, трения.

Слабое взаимодействие (короткодействующее, радиус действия меньше 10~15 см), в котором участвуют все элементарные частицы, обусловливает взаимодействие нейтрино с веществом.

Гравитационное взаимодействие - самое слабое, не учитывается в теории элементарных частиц; распространяется на все виды материи; имеет решающее значение, когда речь идет об очень больших массах.

Элементарные частицы обычно разделяют на следующие классы:

Фотоны - кванты электромагнитного поля, частицы с нулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.

Лептоны (от греч. leptos - легкий), к числу которых относятся электроны, нейтрино; все они не обладают сильным взаимодействием, но участвуют в слабом взаимодействии, а имеющие электрический заряд - также и в электромагнитном взаимодействии.

Мезоны - сильно взаимодействующие нестабильные, как уже говорилось, частицы.

Барионы (от греч. berys - тяжелый), в состав которых входят нуклоны, нестабильные частицы с массами, большими массы нейтрона, гипероны, многие из резонансов.

Сначала, особенно когда число известных элементарных частиц ограничивалось электроном, нейтроном и протоном, господствовала точка зрения, что атом состоит из этих элементарных кирпичиков. А дальнейшая задача в исследовании структуры вещества заключается в том, чтобы разыскивать новые, еще не известные «кирпичики», из которых состоит атом, и в определении того, не являются ли эти «кирпичики» (или некоторые из них) самыми сложными частицами, построенными из еще более тонких «кирпичиков».

При таком подходе к делу было логичным считать элементарными только те частицы, которые не могут быть разделены на более мелкие или которые мы пока не можем разделить. Смотря так на структуру материи, молекулу и атом нельзя было считать элементарными частицами, так как молекула состоит из атомов, а атомы - из электронов, протонов и нейтронов.

Однако действительная картина строения вещества оказалась еще более сложной, чем можно было предполагать. Оказалось, что элементарные частицы могут претерпевать взаимные превращения, в результате которых некоторые из них исчезают, а некоторые появляются. Нестабильные микрочастицы распадаются на другие, более стабильные, но это вовсе не значит, что первые состоят из вторых. Поэтому в настоящее время под элементарными частицами понимают такие «кирпичики» Вселенной, из которых можно построить все, что нам известно в природе.

Приблизительно в 1963-1964 годах появилась гипотеза о существовании кварков - частиц, из которых состоят барионы и мезоны, являющиеся сильно взаимодействующими и по этому свойству объединенными общим названием адронов. Кварки имеют весьма необычные свойства: они обладают дробными электрическими зарядами, что не характерно какой-либо микрочастице, и, по-видимому, не могут существовать в свободном, не связанном виде. Число различных кварков, отличающихся друг от друга величиной и знаком электрического заряда и некоторыми другими признаками, достигает уже нескольких десятков.

В заключение необходимо сказать о большом значении для изучения микроструктуры вещества ускорителей заряженных частиц (электронов, протонов, атомных ядер), используемых для получения частиц высоких энергий, с помощью которых удается проследить процессы, происходящие с элементарными частицами. Ускоряемые частицы движутся в вакуумной камере, а управление их движением производится чаще всего с помощью магнитного поля.

Основные положения современной атомистики могут быть сформулированы следующим образом:

Атом является сложной материальной структурой, представляет собой мельчайшую частицу химического элемента.

У каждого элемента существуют разновидности атомов (содержащиеся в природных объектах или искусственно синтезированные).

Атомы одного элемента могут превращаться в атомы другого; эти процессы осуществляются либо самопроизвольно (естественные радиоактивные превращения), либо искусственным путем (посредством различных ядерных реакций).

Перечисленные три положения современной атомистики практически охватывают основное ее содержание.

Надо отметить, что привычное понятие «атом», вообще говоря, выглядит анахронизмом, ибо представление об его «неизменности», «неделимости» уже давно опровергнуто. Делимость атома есть твердо установленный факт, и она определяется не только тем, что атом может быть «разъят» на составные части - ядро и электронное окружение, но и тем, что индивидуальность атома претерпевает изменение результатов разнообразных ядерных процессов.



МАРРИ ГЕЛЛ-МАНН (род. в 1929 г.)

Марри Гелл-Манн родился 15 сентября 1929 года в Нью-Йорке и был младшим сыном эмигрантов из Австрии Артура и Полин (Райхштайн) Гелл-Манн. В возрасте пятнадцати лет Марри поступил в Йельский университет. Он окончил его в 1948 году с дипломом бакалавра наук. Последующие годы он провел в аспирантуре Массачусетсского технологического института. Здесь в 1951 году Гелл-Манн получил докторскую степень по физике.

ЛЕВ ДАВИДОВИЧ ЛАНДАУ (1908—1968)

Лев Давидович Ландау родился 22 января 1908 года в семье Давида Любови Ландау в Баку. Его отец был известным инженером-нефтяником,! работавшим на местных нефтепромыслах, а мать — врачом. Она занималась физиологическими исследованиями. Старшая сестра Ландау стала инженером-химиком.


ИГОРЬ ВАСИЛЬЕВИЧ КУРЧАТОВ (1903—1960)

Игорь Васильевич Курчатов родился 12 января 1903 года в семье помощника лесничего в Башкирии В 1909 году семья переехала в Симбирск В 1912 году Курчатовы перебираются в Симферополь Здесь мальчик поступает в первый класс гимназии.

ПОЛЬ ДИРАК (1902—1984)

Английский физик Поль Адриен Морис Дирак родился 8 августа 1902 года в Бристоле, в семье уроженца Швеции Чарлза Адриена Ладислава Дирака, учителя французского языка в частной школе, и англичанки Флоренс Ханны (Холтен) Дирак.

ВЕРНЕР ГЕЙЗЕНБЕРГ (1901—1976)

Вернер Гейзенберг был одним из самых молодых ученых, получивших Нобелевскую премию. Целеустремленность и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки — принципа неопределенности.

ЭНРИКО ФЕРМИ (1901—1954)

«Великий итальянский физик Энрико Ферми, — писал Бруно Понтекорво, — занимает особое место среди современных ученых: в наше время, когда узкая специализация в научных исследованиях стала типичной, трудно указать столь же универсального физика, которым был Ферми. Можно даже сказать, что появление на ученой арене XX века человека, который внес такой громадный вклад в развитие теоретической физики, и экспериментальной физики, и астрономии, и технической физики, ~ явление скорее уникальное, чем редкое».

НИКОЛАЙ НИКОЛАЕВИЧ СЕМЕНОВ (1896—1986)

Николай Николаевич Семенов родился 15 апреля 1896 года в Саратове, в семье Николая Александровича и Елены Дмитриевны Семеновых. Окончив в 1913 году реальную школу в Самаре, он поступил на физико-математический факультет Санкт-Петербургского университета, где, занимаясь у известного русского физика Абрама Иоффе, проявил себя активным студентом.

ИГОРЬ ЕВГЕНЬЕВИЧ ТАММ (1895—1971)

Игорь Евгеньевич родился 8 июля 1895 года во Владивостоке в семье Ольги (урожденной Давыдовой) Тамм и Евгения Тамма, инженера-строителя. Евгений Федорович работал на строительстве Транссибирской железной дороги. Отец Игоря был не только разносторонним инженером, но и исключительно мужественным человеком. Во время еврейского погрома в Елизаветграде он один пошел на толпу черносотенцев с тростью и разогнал ее. Возвращаясь из дальних краев с трехлетним Игорем, семья совершила путешествие морем через Японию в Одессу.

ПЕТР ЛЕОНИДОВИЧ КАПИЦА (1894—1984)

Петр Леонидович Капица родился 9 июля 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Это был образованный интеллигентный человек, одаренный инженер, сыгравший важную роль в развитии русских вооруженных сил. Мать, Ольга Иеронимовна, урожденная Стебницкая, была образованной женщиной. Она занималась литературой, педагогической и общественной деятельностью, оставив след в истории русской культуры.


ЭРВИН ШРЁДИНГЕР (1887—1961)

Австрийский физик Эрвин Шредингер родился 12 августа 1887 года в Вене Его отец, Рудольф Шредингер, был владельцем фабрики по производству клеенки, увлекался живописью и питал интерес к ботанике Единственный ребенок в семье, Эрвин получил начальное образование дома Его первым учителем был отец, о котором впоследствии Шредингер отзывался как о «друге, учителе и не ведающем усталости собеседнике» В 1898 году Шредингер поступил в Академическую гимназию, где был первым учеником по греческому языку, латыни, классической литературе, математике и физике В гимназические годы у Шредингера возникла любовь к театру.

НИЛЬС БОР (1885—1962)

Эйнштейн сказал однажды: «Что удивительно привлекает в Боре как ученом-мыслителе, так это редкий сплав смелости и осторожности; мало кто обладал такой способностью интуитивно схватывать суть скрытых вещей, сочетая это с обостренным критицизмом. Он, без сомнения, является одним из величайших научных умов нашего века».

МАКС БОРН (1882—1970)

Его имя ставят в один ряд с такими именами, как Планк и Эйнштейн, Бор, Гейзенберг. Борн по праву считается одним из основателей квантовой механики. Ему принадлежат многие основополагающие работы в области теории строения атома, квантовой механики и теории относительности.

АЛЬБЕРТ ЭЙНШТЕЙН (1879—1955)

Его имя часто на слуху в самом обычном просторечии. «Эйнштейном здесь и не пахнет»; «Ничего себе Эйнштейн»; «Да, это точно не Эйнштейн!». В его век, когда доминировала как никогда ранее наука, он стоит особняком, словно некий символ интеллектуальной мощи Иной раз даже как бы возникает мысль" человечество делится на две части — Альберт Эйнштейн и весь остальной мир.

ЭРНЕСТ РЕЗЕРФОРД (1871—1937)

Эрнест Резерфорд родился 30 августа 1871 года вблизи города Нелсон (Новая Зеландия) в семье переселенца из Шотландии. Эрнест был четвертым из двенадцати детей. Мать его работала сельской учительницей. Отец будущего ученого организовал деревообрабатывающее предприятие. Под руководством отца мальчик получил хорошую подготовку для работы в мастерской, что впоследствии помогло ему при конструировании и постройке научной аппаратуры.

МАРИЯ КЮРИ-СКЛОДОВСКА (1867—1934)

Мария Склодовска родилась 7 ноября 1867 года в Варшаве Она была младшей из пяти детей в семье Владислава и Брониславы Склодовских. Мария воспитывалась в семье, где занятия наукой пользовались уважением. Ее отец преподавал физику в гимназии, а мать, пока не заболела туберкулезом, была директором гимназии. Мать Марии умерла, когда девочке было одиннадцать лет.

ПЕТР НИКОЛАЕВИЧ ЛЕБЕДЕВ (1866—1912)
Петр Николаевич Лебедев родился 8 марта 1866 года в Москве, в купеческой семье Его отец работал доверенным приказчиком и относился к своей работе с настоящим энтузиазмом В его глазах торговое дело было окружено ореолом значимости и романтики Это же отношение он прививал своему единственному сыну, и поначалу успешно В первом письме восьмилетний мальчик пишет отцу «Милый папа, здоров ли ты и хорошо ли торгуешь?»

МАКС ПЛАНК (1858—1947)

Немецкий физик Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в прусском городе Киле, в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепиано и органе, обнаруживая незаурядные музыкальные способности. В 1867 году семья переехала в Мюнхен, и там Планк поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам.

ГЕНРИХ РУДОЛЬФ ГЕРЦ (1857—1894)

В истории науки не так много открытий, с которыми приходится соприкасаться каждый день. Но без того, что сделал Генрих Герц, современную жизнь представить уже невозможно, поскольку радио и телевидение являются необходимой частью нашего быта, а он сделал открытие именно в этой области.

ДЖОЗЕФ ТОМСОН (1856—1940)

Английский физик Джозеф Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».

ГЕНДРИК ЛОРЕНЦ (1853—1928)

В историю физики Лоренц вошел как создатель электронной теории, в которой синтезировал идеи теории поля и атомистики.Гендрик Антон Лоренц родился 15 июля 1853 года в голландском городе Арнхеме. Шести лет он пошел в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.

ВИЛЬГЕЛЬМ РЕНТГЕН (1845—1923)

В январе 1896 года над Европой и Америкой прокатился тайфун газетных сообщений о сенсационном открытии профессора Вюрцбургского университета Вильгельма Конрада Рентгена. Казалось не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей, как выяснилось позже, Берте Рентген, жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности.

ЛЮДВИГ БОЛЬЦМАН (1844—1906)

Людвиг Больцман, без сомнения, был величайшим ученым и мыслителем, которого дала миру Австрия. Еще при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим ученым, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».

АЛЕКСАНДР ГРИГОРЬЕВИЧ СТОЛЕТОВ (1839—1896)

Александр Григорьевич Столетов родился 10 августа 1839 года в семье небогатого владимирского купца. Его отец, Григорий Михайлович, владел небольшой бакалейной лавкой и мастерской по выделке кож. В доме была неплохая библиотека, и Саша, научившись читать в четырехлетнем возрасте, стал рано ею пользоваться. В пять лет он уже читал совершенно свободно.

УИЛЛАРД ГИББС (1839—1903)

Загадка Гиббса заключается не в том, был ли он неправильно понятым или неоцененным гением. Загадка Гиббса состоит в другом: как случилось, что прагматическая Америка в годы царствования практицизма произвела на свет великого теоретика? До него в Америке не было ни одного теоретика. Впрочем, как почти не было теоретиков и после. Подавляющее большинство американских ученых — экспериментаторы.

ДЖЕЙМС МАКСВЕЛЛ (1831—1879)

Джеймс Максвелл родился в Эдинбурге 13 июня 1831 года. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. С этого времени «берлога в узком ущелье» прочно вошла в жизнь Максвелла. Здесь жили и умерли его родители, здесь подолгу жил и похоронен он сам.

ГЕРМАН ГЕЛЬМГОЛЬЦ (1821—1894)

Герман Гельмгольц — один из величайших ученых XIX века. Физика, физиология, анатомия, психология, математика... В каждой из этих наук он сделал блестящие открытия, которые принесли ему мировую славу.

ЭМИЛИЙ ХРИСТИАНОВИЧ ЛЕНЦ (1804—1865)

С именем Ленца связаны фундаментальные открытия в области электродинамики. Наряду с этим ученый по праву считается одним из основоположников русской географии.Эмилий Христианович Ленц родился 24 февраля 1804 года в Дерпте (ныне Тарту). В 1820 году он окончил гимназию и поступил в Дерптский университет. Самостоятельную научную деятельность Ленц начал в качестве физика в кругосветной экспедиции на шлюпе «Предприятие» (1823— 1826), в состав которой был включен по рекомендации профессоров университета. В очень короткий срок он совместно с ректором Е.И. Парротом создал уникальные приборы для глубоководных океанографических наблюдений — лебедку-глубомер и батометр. В плавании Ленц провел океанографические, метеорологические и геофизические наблюдения в Атлантическом, Тихом и Индийском океанах. В 1827 году он выполнил обработку полученных данных и проанализировал их.

МАЙКЛ ФАРАДЕЙ (1791—1867)

олько открытий, что их хватило бы доброму десятку ученых, чтобы обессмертить свое имя.Майкл Фарадей родился 22 сентября 1791 года в Лондоне, в одном из беднейших его кварталов. Его отец был кузнецом, а мать — дочерью земледельца-арендатора. Квартира, в которой появился на свет и провел первые годы своей жизни великий ученый, находилась на заднем дворе и помещалась над конюшнями.

ГЕОРГ ОМ (1787—1854)

О значении исследований Ома хорошо сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году: «Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал) единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты! только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы, Ом вырвал у природы так долго скрываемую ею тайну и передал ее в руки современников».

ГАНС ЭРСТЕД (1777—1851)

«Ученый датский физик, профессор, — писал Ампер, — своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом».

АМЕДЕО АВОГАДРО (1776—1856)

В историю физики Авогадро вошел как автор одного из важнейших законов молекулярной физики.Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето родился 9 августа 1776 года в Турине — столице итальянской провинции Пьемонт в семье служащего судебного ведомства Филиппе Авогадро. Амедео был третьим из восьми детей. Предки его с XII века состояли на службе католической церкви адвокатами и по традиции того времени их профессии и должности передавались по наследству. Когда пришла пора выбирать профессию, Амедео также занялся юриспруденцией. В этой науке он быстро преуспел и уже в двадцать лет получил ученую степень доктора церковного права.

АНДРЕ МАРИ АМПЕР (1775—1836)

Французский ученый Ампер в истории науки известен, главным образом, как основоположник электродинамики. Между тем он был универсальным ученым, имеющим заслуги и в области математики, химии, биологии и даже в лингвистике и философии. Это был блестящий ум, поражавший своими энциклопедическими знаниями всех близко знавших его людей.

ШАРЛЬ КУЛОН (1736—1806)
Для измерения сил, действующих между электрическими зарядами. Кулон использовал изобретенные им крутильные весы.Французский физик и инженер Шарль Кулон достиг блестящих научных результатов. Закономерности внешнего трения, закон кручения упругих нитей, основной закон электростатики, закон взаимодействия магнитных полюсов — все это вошло в золотой фонд науки. «Кулоновское поле», «кулоновский потенциал», наконец, название единицы электрического заряда «кулон» прочно закрепились в физической терминологии.

ИСААК НЬЮТОН (1642—1726)

Исаак Ньютон родился в день Рождественского праздника 1642 года в деревушке Вульсторп в Линкольншире Отец его умер еще до рождения сына Мать Ньютона, урожденная Айскоф, вскоре после смерти мужа преждевременно родила, и новорожденный Исаак был поразительно мал и хил Думали, что младенец не выживет Ньютон, однако, дожил до глубокой старости и всегда, за исключением кратковременных расстройств и одной серьезной болезни, отличался хорошим здоровьем.

ХРИСТИАН ГЮЙГЕНС (1629—1695)

Принцип действия анкерного спускового механизма.Ходовое колесо (1) раскручивается пружиной (на рисунке не показана}. Анкер (2), связанный с маятником (3), входит левой палетой (4) между зубьями колеса. Маятник отклоняется в другую сторону, анкер освобождает колесо. Оно успевает повернуться только на один зуб, и в зацепление входит правая полета (5). Потом все повторяется в обратной последовательности.

БЛЕЗ ПАСКАЛЬ (1623—1662)

Блез Паскаль, сын Этьена Паскаля и Антуанетты, урожденной Бегон, родился в Клермоне 19 июня 1623 года. Вся семья Паскалей отличалась выдающимися способностями. Что касается самого Блеза, он с раннего детства обнаруживал признаки необыкновенного умственного развития.В 1631 году, когда маленькому Паскалю было восемь лет, его отец переселился со всеми детьми в Париж, продав по тогдашнему обычаю свою должность и вложив значительную часть своего небольшого капитала в Отель де-Билль.

АРХИМЕД (287 — 212 до н. э.)

Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

Открытие электрона, явления радиоактивности, атомного ядра явилось результатом изучения строения вещества, достигнутым физикой в конце XIX века. Исследования электрических явлений в жидкостях и газах, оптических спектров атомов, рентгеновских лучей, фотоэффекта показали, что вещество имеет сложную структуру. Классическая физика оказалась несостоятельной в объяснении новых экспериментальных фактов. Уменьшение временных и пространствен­ных масштабов, в которых разыгрываются физические явления, привели к «новой физике», столь непохожей на привычную традици­онную классическую физику. Развитие физики в начале XX века привело к полному пересмотру классических представлений. В основе «новой физики» лежат две фундаментальные теории:

  • теория относительности
  • квантовая теория.

Теория относительности и квантовая теория являются фундаментом, на котором построено описание явлений микромира.

Создание А. Эйнштейном в 1905 году теории относительности привело к радикальному пересмотру представлений о свойствах пространства и времени, электромагнитного поля. Стало ясно, что невозможно создание механических моделей для всех физических явлений.
В основу теории относительности положены две физические концепции.

  • Согласно принципу относительности равномерное и прямолинейное движение тел не влияет на происходящие в них процессы
  • Существует предельная скорость распространения взаимодействия - скорость света в пустоте. Скорость света является фундаментальной константой современной теории. Существование предельной скорости распространения взаимодействия означает, что существует связь между пространственными и временными интервалами.

Математической основой специальной теории относительности являются преобразования Лоренца.

Инерциальная система отсчета − система отсчета, покоящаяся или движущаяся равномерно и прямолинейно. Система, отчета, движущаяся с постоянной скоростью относительно любой инерциальной системы отсчета также является инерциальной.

Принципы относительности Галилея

  1. Если законы механики справедливы в одной системе отсчета, то они справедливы и в любой другой системе отсчета, движущейся равномерно и прямолинейно относительно первой.
  2. Время одинаково во всех инерциальных системах отсчета.
  3. Нет никакого способа обнаружить равномерное прямолинейное движение.

Постулаты специальной теории относительности

  1. Законы физики одинаковы во всех инерциальных системах отсчета.
  2. Скорость света в вакууме равна постоянной величине с независимо от скорости движения источника или приемника.

Преобразования Лоренца. Координаты материальной точки массы покоя m в инерциальной системе отсчета S определяются как (t ,) = (t ,x ,y ,z ), а скорость u = ||. Координаты той же точки в другой инерциальной системе отсчета S" (t" ,x" ,y" ,z" ), движущейся относительно S с постоянной скоростью , связаны с координатами в системе S преобразованием Лоренца (рис. 1).
В случае, если координатные оси систем z и z" сонаправлены с вектором и в начальный момент времени t = t" = 0 начала координат обеих систем совпадали, то преобразования Лоренца даются соотношениями

x" = x ; y = y "; z" = γ(z βct ); ct" = γ(ct βz ),

где β = v/c , v − скорость системы отсчета в единицах с (0 ≤ β ≤ 1), γ − лоренц-фактор.


Рис. 1. Штрихованная система S" движется относительно системы S со скоростью v вдоль оси z .

Компоненты скорости частицы в системе S" u" x , u" y , u" z связаны с компонентами скорости в системе S u x , u y , u z соотношениями

Обратные преобразования Лоренца получаются взаимной заменой координат r i r" i , u i u" i и заменой v → −v .

x = x" ; y = y" ; z = γ(z" βct" ); ct = γ(ct" βz" ).

При малых скоростях v преобразования Лоренца совпадают с нерелятивистскими преобразованиями Галилея

x" = x ; y" = y ; z" = z vt" ; t = t" .

Относительность пространственных расстояний (сокращение Лоренца-Фитцджеральда): l" = l/ γ .
Относительность промежутков времени между событиями (релятивистское замедление времени): Δt" = γ Δt .
Относительность одновременности событий.
Если в системе S для событий А и В t A = t B и
x A
x B , то в системе S" t" A = t" B + γ v /c 2 (x B − x A).

Полная энергия E и импульс p частицы определяются соотношениями

E = mc 2 γ ,
(1)

где E , р и m − полная энергия, импульс и масса частицы, c = 3·10 10 см·сек -1 − скорость света в вакууме,
Полная энергия и импульс частицы зависят от системы отсчета. Масса частицы не изменяется при переходе от одной инерциальной системы отсчета к другой. Она является лоренцевым инвариантом. Полная энергия E , импульс p и масса m частицы связаны соотношением

E 2 − p 2 c 2 = m 2 c 4 , (2)

Из соотношений (1) и (2) следует, что если энергия E и импульс p измеряются в двух различных системах движущихся друг относительно друга со скоростью v , то энергия и импульс будут иметь в этих системах различные значения. Однако величина E 2 − p 2 c 2 , которая называется релятивистский инвариант , будет в этих системах одинаковой.

При нагревании твердого тела оно раскаляется и начинает излучать в непрерывной области спектра. Это излучение называется излучением абсолютно черного тела. Было сделано много попыток описать форму спектра абсолютно черного тела, основываясь на законах классической электромагнитной теории. Сравнение экспериментальных данных с расчетами Рэлея-Джинса (рис. 2.) показывает, что они согласуются только в длинноволновой области спектра. Различие в области коротких длин волн было названо ультрафиолетовой катастрофой .


Рис. 2. Распределение энергии спектра теплового излучения.
Точками показаны экспериментальные результаты.

В 1900 г. была опубликована работа М. Планка, посвященная проблеме теплового излучения тел. М. Планк моделировал вещество как совокупность гармонических осцилляторов различной частоты. Предположив, что излучение происходит не непрерывно, а порциями - квантами, он получил формулу для распределения энергии по спектру теплового излучения, которая хорошо согласовывалась с опытными данными

где h − постоянная Планка, k − постоянная Больцмана, T − температура, ν − частота излучения.

h = 6.58·10 -22 МэВ∙сек,
k = 8.62·10 -11 МэВ∙К –1 .

Часто используется величина ћ = h /2π .

Так, впервые в физике появилась новая фундаментальная константа − постоянная Планка h . Гипотеза Планка о квантовой природе теплового излучения противоречит основам классической физики и показывает границы ее применимости.
Через пять лет А. Эйнштейн, обобщив идею М. Планка, показал, что квантованность является общим свойством электромагнитного излучения. Согласно идеям А. Эйнштейна электромагнитное излучение состоит из квантов, названных позднее фотонами. Каждый фотон имеет определенную энергию E и импульс p :

E = h ν ,

где λ и ν − длина волны и частота фотона, − единичный вектор в направлении распространения волны.
Представления о квантованности электромагнитного излучения позволили объяснить закономерности фотоэффекта, исследованные экспериментально Г. Герцем и А. Столетовым. На основе квантовой теории А. Комптоном в 1922 году было объяснено явление упругого рассеяния электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны электромагнитного излучения.

где λ и λ" − длины волн падающего и рассеянного фотонов, m − масса электрона, θ − угол рассеяния фотона, h/mc = 2.4·10 -10 см = 0.024 Å − комптоновская длина волны электрона.


Рис. 3. Эффект Комптона − упругое рассеяние фотона на электроне.

Открытие двойственной природы электромагнитного излучения − корпускулярно-волнового дуализма оказало значительное влияние на развитие квантовой физики, объяснение природы материи. В 1924 г. Луи де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Согласно этой гипотезе не только фотоны, но и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами. Соотношения, связывающие корпускулярные и волновые свойства частиц те же, что были установлены ранее для фотонов

λ − длина волны, которую можно сопоставить с частицей. Волновой вектор ориентирован по направлению движения частицы. Прямыми опытами, подтверждающими идею корпускулярно-волнового дуализма, были опыты, выполненные в 1927 году К. Дэвиссоном и Л. Джермером по дифракции электронов на монокристалле никеля. Позднее наблюдалась дифракция и других микрочастиц. Метод дифракции частиц в настоящее время широко используется в изучении строения и свойств вещества.


В. Гейзенберг
(1901–1976)

Экспериментальное подтверждение идеи корпускулярно-волнового дуализма привело к пересмотру привычных представлений о движении частиц и способа описания частиц. Для классических материальных точек характерно движение по определенным траекториям, так, что их координаты и импульсы в любой момент времени точно известны. Для квантовых частиц это утверждение неприемлемо, так как для квантовой частицы импульс частицы связан с ее длиной волны, а говорить о длине волны в данной точке пространства бессмысленно. Поэтому для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса. Если частица занимает точно определенное положение в пространст­ве, то ее импульс полностью не определен и наоборот, частица с определенным импульсом имеет полностью неопределенную координату. Неопределенность в значении координаты частицы Δx и неопределенность в значении компоненты импульса частицы Δp x связаны соотношением неопределенности, установленным В. Гейзенбергом в 1927 году

Δx ·Δp x ћ .

Из соотношения неопределенности следует, что в области квантовых явлений неправомерна постановка некоторых вопросов, вполне естественных для классической физики. Так, например, не имеет смысла говорить о движении частицы по определенной траектории. Необходим принципиально новый подход к описанию физических систем. Не все физические величины, характеризующие систему, могут быть измерены одновременно. В частности, если неопределенность времени жизни некоторого квантового состояния равна Δt , то неопределенность величины энергии этого состояния ΔE не может быть меньше ћ t , т. е.

ΔE ·Δt ћ .


Э. Шредингер
(1887–1961)

К середине 20-х годов стало очевидно, что полуклассическая теория атома Н. Бора не может дать полного описания свойств атома. В 1925–1926 гг. в работах В. Гейзенберга и Э. Шредингера был разработан общий подход описания квантовых явлений − квантовая теория. Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера

Подведем теперь итоги сложного и бурного, поистине революционного" развития физики в двадцатом столетии. Накануне нового столетия у физиков было чувство некоторой самоуспокоенности. Им казалось, что физика покоится на прочных основаниях, что основные факты физического мира уже открыты и предстоит только некоторое уточнение "за пределами шестого десятичного знака". У. Томсон (Кельвин) указывал, что на этом общем благополучном фоне есть только два легких облачка: опыт Майкельсона и проблема теплового излучения. Достаточно только справиться с этими в общем незначительными затруднениями - и физика достигнет полного благополучия, картина мира будет полностью ясна и понятна. А "понимание" физики в общем совпадало с "пониманием" в обычном житейском смысле этого слова. Еще в 1909 г. О. Лодж писал: "Под физическим "объяснением" понимают ясное определение факта или закона при помощи чего-либо такого, с чем нас познакомила повседневная жизнь" (курсив мой.- П. К.).

Он продолжает: "Все мы ближе всего знакомы, с самого юного возраста, с двумя, по-видимому, простыми вещами, с движением и силой. (Разрядка Лоджа.) Для каждой из этих вещей у нас есть непосредственное чувство... Движение и сила - это первые объекты нашего опыта и сознания; и посредством их все другие, менее знакомые вещи, с которыми нам приходится сталкиваться, могут быть понятно определены и охвачены. Всякий раз, когда вещь может быть таким способом ясно и определенно установлена, про нее говорят, что она объяснена или понятна (разрядка Лоджа), и считают, что мы обладаем "динамической теорией" ее... Динамическая теория признается в одно и то же время необходимой и достаточной" (разрядка моя.- П. К.).

Итак, понимание физики XIX столетия - это механическое понимание. Оно требует принципиальной наглядности физической теории, ее совпадения с чувственными образами, создаваемыми нашим сознанием в процессе повседневного опыта.

Первый итог равития физики XX столетия состоит в том, что она покончила с этим представлением о механическом миропонимании. В том же 1909 г., когда Лодж писал эти строки, В. И. Ленин в своей книге "Материализм и эмпириокритицизм" убедительно показал, что механический материализм является для физики пройденным этапом, что она вступила в новую, высшую фазу диалектико-материалистического понимания природы.

Ленин указывал, что новая физика лежит в родах диалектико-материалистического мировоззрения. Он первым увидел, что физика вступила в новую эпоху неисчерпаемого атома и электрона и переживает подлинную революцию, сопровождающуюся кризисом старого мировоззрения физиков!

История физики XX столетия - это история небывалой по своим масштабам научной революции.

Первый подготовительный этап этой революции приходится на начало века. В 1901-1917 гг. внешний ход развития физики, каким он рисуется по журнальной литературе того времени, еще сравнительно спокоен. Физика развивается темпами XIX столетия, физические работы классифицируются по разделам, установленным еще в этом столетии. Знаменитая работа Эйнштейна "К электродинамике движущихся сред" идет в реферативных журналах под рубрикой "Электромагнитная индукция". Но в этой привычной картине плавного хода физической науки и сказывалась революция.

В этот период создается специальная и общая теория относительности, опрокинувшая представления о пространстве, времени, тяготении, укоренившиеся со времен Ньютона. Вместе с тем эта теория завершала построение здания макроскопической классической физики. "Теорию относительности,- писал известный физик XX столетия М. Борн,- справедливо можно рассматривать как кульминационный пункт физики XIX столетия. Но она является также главной движущей силой современной физики, так как отвергает традиционные метафизические аксиомы, предположенные Ньютоном о природе пространства и времени, и утверждает право ученого строить свои идеи, включая философские концепции, согласно эмпирической ситуации. Таким образом, новая эра физической науки началась актом освобождения, подобным тому, который подорвал авторитет Платона и Аристотеля со времен Ренессанса".

Следующий революционный шаг этого периода - проникновение в мир атома. В 1911 г. Э. Резерфорд открыл ядерную структуру атома, в 1912 г. Лауэ, отец и сын Брегги доказали волновую природу рентгеновских лучей и открыли метод рентгенографического анализа структуры кристаллов. В 1913 г. Бор дал квантовую теорию атома водорода и нашел ключ к расшифровке таинственных спектральных закономерностей. Революционные идеи Бора о существовании квантованных уровней энергии в атоме были подтверждены в 1914 г. опытами Франка и Герца. В 1915 г. Зоммерфельд обобщил правила квантования Бора на эллиптические орбиты и с помощью идеи пространственного квантования истолковал эффект Зеемана. В 1917 г. Эйнштейн дал замечательный вывод формулы Планка, основанный на идее квантовых переходов, и окончательно остановился на квантовой теории света.

Создание теории относительности и квантовой модели атома - важнейшие итоги развития физики в начале XX столетия, определившие дальнейший ход ее истории.

К достижениям в области классической физики следует прибавить замечательные итоги экспериментальной физики.

Развитие физики низких температур отмечается открытием нового термодинамического закона Нернстом (1907) и открытием сверхпроводимости Камерлинг-Оннесом в 1911 г. Атомная и электронная физика также обогатились новыми достижениями, из которых прежде всего следует отметить классические опыты Милликена по определению заряда электрона (1909), изобретение счетчика Гейгера (1908), камеры Вильсона (1911), метода парабол Томсона (1913). Электронная лампа диод была изобретена Флемингом в 1904 г., триод - де Форестом в 1907 г. Катодный генератор незатухающих колебаний был изобретен Мейсснером в 1913 г. Наступала революция в физическом эксперименте, связанная с широким внедрением электроники.

Затем следует кратковременный период 1918-1925 гг. Это был период восстановления нормальной научной работы, нарушенной войной, восстановления международных научных связей, период становления советской физики. Внутренняя жизнь физики характеризуется дальнейшим прогрессом квантовой теории. Установление Бором принципа соответствия (1918) имело важное значение для всего последующего развития этой теории. Истолкование тонкой структуры спектральных линий и аномального эффекта Зеемана было дано в 1921 г. Ланде на основе формальной векторной модели. В этом же 1921 г. Штерн и Герлах провели свой замечательный опыт с молекулярными пучками по доказательству наличия магнитного момента у атомов. В эти же годы Бор разрабатывал теорию периодической системы и показал теоретически, что за группой редкоземельных элементов должен быть новый элемент. Этот элемент - гафний - был открыт в 1922 г. Хевеши и Костером.

В 1923 г. Комптон открыл эффект, носящий его имя, который получил наглядное теоретическое истолкование им самим и Дебаем с помощью идеи о фотоне как частице с определенной энергией и импульсом. Это открытие укрепило позиции квантовой теории света, но вместе с тем с еще большей остротой поставило вопрос о сочетании волновых и корпускулярных свойств света. В 1924 г. Де Бройль выдвинул идею о существовании волн материи. В том же 1924 г. Паули ввел новое квантовое "внутреннее" число, которое после введения в 1925 г. Юленбеком и Гаудсмитом гипотезы о вращающемся электроне получило значение "спинового" квантового числа. 1924 г. был также годом рождения новой квантовой статистики Бозе-Эйнштейна

Не менее важные события происходили в ядерной физике. В 1919 г. Резерфорд открывает первую ядерную реакцию. В том же году Астон, продолжая в Кембридже прерванные войной исследования, с помощью своего масс-спектрографа открывает изотопы стабильных элементов. Бомбардируя α-частицами легкие элементы, Резерфорд и Чедвик в 1921-1924 гг. получили реакции с ядрами всех элементов от бора до калия, за исключением углерода и кислорода. Все эти реакции были типа (α, р), т. е. ядра бомбардируемых атомов поглощали α-частицу и испускали протон. В ходе этих исследований Резерфорд пришел к выводу о существовании нейтрона и тяжелого водорода. Он полагал, что если бы удалось получить в массовом количестве частицы, обладающие энергией, сравнимой с энергией α-частиц или превосходящей ее, то дело расщепления ядер атома, "новая алхимия", как назвал ее Резерфорд, двинулось бы небывалыми темпами.

Крупные успехи выпали на долю радиоэлектроники. В 1918 г. Армстронг изобрел супергетеродин. Радиотехника начала осваивать коротковолновый диапазон. Триод стал ведущим прибором в электронной радиофизике. Теория этого прибора успешно разрабатывалась Баркгаузеном, Лэнгмюром, Иккльсоми другими в 1918-1920 гг.

С 1918 г. в России развивается электронная радиотехника. Большую роль при этом сыграла организованная в 1918 г. по указанию В. И. Ленина Нижегородская лаборатория. Здесь работали организаторы советской радиотехники - М. А. Бонч-Бруевич, Д. А. Рожанский, В. К. Лебединский, А. Ф. Шорин и другие. М. А. Бонч-Бруевич, применив водяное охлаждение анода, создал в 1920 г. мощные лампы. Мощность ламп повышалась из года в год и к 1923 г. составила 30 квт . В 1924 г. началось советское радиовещание.

Период 1918-1925 гг. был в полной мере периодом накопления сил перед решающим штурмом. Мировая физика пополнилась новым мощным отрядом советских физиков.

В полную силу работали такие физики, как Резерфорд, Бор, Эйнштейн, Планк, Зоммерфельд, Эренфест, Лауэ, Ланжевен, А. Ф. Иоффе, Д. С. Рождественский, на плечи которых лег переход к новой физике. В науку пришли молодые силы: Паули, Гейзенберг, Дирак, которые наряду с физиками более старшего возраста: Де Бройлем, Шредингером, Борном и в особенности Бором - совершили переворот в физическом мировоззрении.

Период 1926-1939 гг. был особенно важным в истории научной революции XX в. Уже в 1925 г. появилась первая работа Гейзенберга по новой квантовой механике и работа Дирака. В 1926 г. появились новые работы Гейзенберга и Дирака, первые статьи Шредингера, работы Борна и Иордана по разработке математического аппарата новой механики. Затем последовала работа по физическому осмысливанию квантовой механики. В результате были открыты статистическая интерпретация волновой функции Борном, принцип неопределенности Гейзенбергом и принцип дополнительности Бором.

Осенью 1927 г. на Сольвеевском конгрессе состоялась дискуссия тю основным проблемам квантовой механики. Оппонентами копенгагенской теории были Лорентц и Эйнштейн. Особенно острой была дискуссия между Бором и Эйнштейном. Эти дискуссии отражали тот факт, что в физику вторгалось новое мышление, в корне противоположное классическому миропониманию. И не удивительно, что такие представители классической физики, как Лорентц и Эйнштейн, не могли принять новых воззрений, в которых представители новой физики видели огромное достижение человеческой мысли. "Открытие принципа неопределенности,- говорил академик Л. Д. Ландау,- является, как мне кажется, одним из величайших триумфов человеческого ума. Этот принцип противоречит всему тому, во что мы привыкли верить на основании своих ощущений, к чему мы привыкли с раннего детства. Мы привыкли к большим масштабам - атома же никто из нас не видел своими глазами. Поэтому мы не можем ощутить своим внутренним чутьем, как происходит движение в атоме, и тем не менее изучить это движение научными методами оказывается возможным. Открытие принципа неопределенности показало, что человек в процессе познания природы может оторваться от своего воображения, он может открыть и осознать даже то, что ему не под силу представить. В этом - величайшая заслуга принципа неопределенности".

Вот как далеко ушла физика от лоджевского идеала понимания!

Приведем еще одно из высказываний Бора по поводу перемены в теоретических воззрениях физиков:

"Как известно,- пишет Бор,- поразительное развитие искусства физического экспериментирования не только устранило последние следы старого представления о том, что грубость наших чувств будто бы навсегда лишает нас возможности получить непосредственную информацию об индивидуальных атомах, но и достигло большего. Эти опыты показали, что сами атомы состоят из еще более мелких частиц, которые можно изолировать и чьи свойства можно исследовать в отдельности. В этом захватывающем поле исследований мы в то же время научились, однако, и тому, что известные до сих пор законы природы, составляющие великое здание классической физики, годятся, только если мы имеем дело с телами, состоящими из практически бесконечного числа атомов..."

"Насколько радикальна вызванная этим развитием физики перемена в наших взглядах на описание природы, видно яснее всего из того факта, что даже принцип причинности, до сих пор считавшийся непременной основой для всех толкований явлений природы, оказался слишком узким для того, чтобы охватить своеобразные закономерности, управляющие индивидуальными атомными процессами".

Бор указывает на ограниченность механического понимания причинности, такого, которое было дано еще Лапласом и которое, как правильно указывает Бор, считалось непременной основой объяснения природы, как его понимал, скажем, Лодж.

Атомные закономерности подчиняются другим причинным связям, существенно отличающимся от механической причинности. Представление о мире как гигантской машине, ход которой определен раз и навсегда, рухнуло и заменилось новым, неизмеримо более сложным пониманием мира, в котором статистическая закономерность играет основную роль.

На новом пути физика достигла огромных успехов. Полное описание спектральных закономерностей, прогресс в квантовой теории твердого тела, теории магнетизма, понимании химических связей и т. д. стали возможными только на основе квантовой механики. Замечательным достижением была теория электрона Дирака (1928), давшая теоретическое истолкование спина и постоянной тонкой структуры, содержащее в себе, как оказалось, предсказание существования античастиц. Дирак развил также теорию испускания, поглощения и рассеяния электромагнитного излучения. Отсюда началась квантовая электродинамика, первый этап которой связан с именами Ферми, Гейзенберга, Паули, Венцеля и других. Вместе с Ферми Дирак развил новую, квантовую статистику для частиц с полуцелым спином (1926). Новая теория экспериментально подтверждалась не только в известных уже явлениях (спектры атомов и молекул, дисперсия, электропроводность металлов, ферромагнетизм, α-распад и т. д.), но и в открытии новых фактов. К числу таких фактов относится открытие дифракции микрочастиц. Дифракция электронов была открыта в 1927-1928 гг. (Дэвиссон и Джермер в США, Д. П. Томпсон в Англии, П. С. Тартаковский в СССР), дифракция атомов гелия, атомов и молекул водорода - О. Штерном в 1929 г. и Джонсоном в 1931 г. На этой почве возникла электронная микроскопия (Кноль и Руска, 1931). Первые промышленные микроскопы появились в 1939 г.

Новый оптический эффект - комбинационное рассеяние света - был открыт Раманом в Индии и Мандельштамом и Ландсбергом в СССР в 1928 г. Другое явление - эффект Черепкова-Вавилова было открыто в лаборатории академика С. И. Вавилова в 1934 г. Период 1926-1939 гг. был периодом становления не только квантовой механики, но и ядерной физики. До 1932 г. процессы, происходящие в ядре, описывались на основе протонно-электронной модели Резерфорда - М. Кюри. Исходя из этой модели, Гамов, Кондон и Гэрни в 1928 г. дали теорию α-распада, основанную на применении "туннельного эффекта" квантовой механики. Теория α-распада удовлетворительно объяснила эмпирическое правило Гейгера-Нуттола (1912), связавшего длину пробега, а следовательно, и энергию α-частиц с периодом полураспада. Однако β-распад представлял непреодолимые трудности для протонно-электронной модели. Это прежде всего трудности с моделью ядра азота, которая должна быть нечетной по существующей теории, в то время как эксперимент показывает ее четность ("азотная катастрофа"). Другая трудность - сплошной спектр γ-частиц, не удовлетворяющий закону сохранения энергии. Для преодоления этой трудности Паули предложил гипотезу нейтрино, на основе которой Ферми в 1934 г. развил теорию β-распада.

1930 г. был годом создания ускорителей. В этом году Кокрофт и Уолтон, используя идею умножения напряжения, предложенную Грейнахером в 1920 г., построили каскадный генератор. С протонами, ускоренными на этом ускорителе, они получили в этом году замечательную реакцию по расщеплению ядра лития. В этом же году Лоуренс нашел принцип циклотрона, первая модель которого была построена Лоуренсом и Ливингстоном в 1931 г. В 1931 г. был создан и ускоритель Ван-дер-Граафа. В 1928 г. Видероэ построил линейный ускоритель. Таким образом, тридцатые годы были годами возникновения техники ускорителей.

Но пока еще принципиальные открытия делались со старой техникой. В 1930 г. Боте и Беккер открыли проникающее излучение бериллия, возникающее при бомбардировке его α-частицами. Исследование этого явления супругами Ирэн и Фредериком Жолио-Кюри показало, что это излучение способно выбивать из водородосодержащих веществ протоны высокой энергии. Правильную интерпретацию этих опытов дал Чедвик, показавший, что это проникающее излучение представляет собой нейтроны (1932).

В том же, 1932 г. Д. Д. Иваненко и В. Гейзенберг предложили протонно-нейтронную модель ядра, ставшую прочной базой ядерной физики.

В 1932 г. была открыта и первая античастица - позитрон. Она была открыта Андерсоном в США с помощью метода, предложенного Д. В. Скобельцыным: космические частицы фотографировались в камере Вильсона, помещенной в магнитном поле. В том же году Блэкстт и Оккиалини, применив камеру, автоматически действующую с помощью счетчиков, работающих по методу совпадений, не только подтвердили открытие Андерсона, но и зарегистрировали образование электронно-позитронных пар и ливней космических частиц.

Очень важным для развития ядерной физики оказался 1934 г. В этом году супруги Жолио-Кюри открыли искусственную радиоактивность, а Ферми начал свои знаменитые опыты по бомбардировке тяжелых элементов, и прежде всего урана нейтронами. В этом же году И. Е. Тамм и Д. Д. Иваненко предложили обменную теорию ядерных сил. Расчеты И. Е. Тамма показали, что обмен электронами не обеспечивает необходимой величины сил. В следующем году Юкава ввел гипотезу мезонного поля, предположив, что ядерные силы обусловлены обменом частицами с массой, промежуточной между массой электрона и протона. В 1937 г. Андерсон и Неддермейер открыли в космических лучах "μ-мезоны. Следует отметить, что со времен открытия позитрона до открытия антипротона в 1955 г. источником открытий новых частиц были космические лучи.

В 1936 г. появилась фундаментальная работа Б о р а о захвате нуклона ядром. Вместе с тем шло интенсивное обсуждение противоречивых результатов опытов Ферми по бомбардировке тяжелых ядер нейтронами. Дискуссия вокруг открытия так называемых "заурановых элементов" завершилась открытием в 1938-1939 гг. Ганом и Штрассманом деления урана. Начиналась эпоха атомной энергии.

Итак, в 1930-1939 гг. в ядерной физике произошли крупнейшие события. Были открыты нейтрон, позитрон, мезон, утвердилась гипотеза нейтрино. Были созданы первые ускорители частиц, открыта искусственная радиоактивность, деление урана. Были сделаны первые шаги в построении теории ядерных сил, создана капельная модель ядра, на основе которой было объяснено деление урана. Наука подошла вплотную к практическому использованию ядерной энергии.

Расцвет квантовой и ядерной физики не означает, что классическая физика перестала интенсивно развиваться. На базе успехов радиотехники сложилась и развилась новая отрасль классической физики - теория нелинейных колебаний. Работы А. М. Ляпунова по устойчивости движения и А. Пуанкаре по качественной теории дифференциальных уравнений получили новое мощное развитие. Л. И. Мандельштам, Н. Д. Папалекси, А. А. Андронов и другие советские физики и математики создали теорию нелинейных колебаний, ставшую прочной теоретической базой радиотехники и автоматики. Развивались и такие старые отрасли физики, как акустика, магнетизм, оптика. Существенную роль в их развитии сыграли новые экспериментальные средства электроники и такие новые отрасли науки и техники, как звуковое кино. Новая физика начала свой выход в технику. Звуковое кино, телевидение, фотоэлементы, фотоумножители, генераторы высокочастотных колебаний возникли в этот период.

В этот период с особенной силой выявилось общественное значение физики. Физические теории: теория относительности и квантовая механика - стали предметом широких философских дискуссий. В Советском Союзе шла напряженная работа по философскому осмысливанию результатов новой физики с позиций диалектического материализма. В фашистской Германии реакционеры типа Ленарда и Штарка объявили новую физику "неарийской". Таким образом, новая физика сделалась предметом острой идеологической борьбы. Особую роль в истории мировой физики играла советская физика. В годы первых пятилеток в СССР шло интенсивное строительство физических институтов и университетов. Реорганизованная Академия наук превратилась в штаб советской науки. Советская физика стала наукой сплошного фронта и уверенно вышла на передовые позиции. Работы А. Ф. Иоффе, П. Л. Капицы, И. В. Курчатова, Д. С. Рождественского, Л. Д. Ландау, Л. И. Мандельштама, И. Е. Тамма, С. И. Вавилова и многих других получили мировое признание. Таким образом, период 1926-1934 гг. был периодом создания квантовой механики, периодом становления ядерной физики, интенсивного развития классической (макроскопической) физики. Вместе с тем это был период повышения общественного значения физики, усиления ее роли в техническом прогрессе и в идеологии.

Следующий период, 1940-1955 гг., характеризуется прежде всего событиями второй мировой войны, оказавшей огромное влияние на ход мировой истории и на научно-технический прогресс. Во время мировой войны решилась проблема использования энергии деления урана и плутония. Вся работа по ядерной физике велась в обстановке строгой секретности, и это наложило отпечаток на всю историю военной и послевоенной физики. Только в 1955 г. на первой Женевской международной конференции по мирному использованию атомной энергии были рассекречены некоторые проблемы ядерной физики и техники. Таким образом, период 1940-1955 гг.- это период развития науки в обстановке секретности, отсутствия исчерпывающей международной научной информации, в обстановке милитаризации науки.

Вторая особенность этого периода - переход к индустриальным методам в развитии ядерной физики и физики элементарных частиц. В этот период были созданы исследовательские реакторы и мощные ускорители. Первый реактор мощностью 200 вт , работающий на естественном уране с графитовым замедлителем, был пущен группой Ферми в Чикаго в 1942 г. В 1943 г. были построены реакторы в Чикаго и Ок-Ридже. Советский реактор мощностью 350-600 квт был пущен в 1949 г. Во Франции Жолио-Кюри создал реактор "ЗОЭ" в 1948 г. В том же году в Английском атомном центре в Хэруэлле был пущен реактор на 4000 квт с графитовым замедлителем и воздушным охлаждением. К 1955 г. в мире работало уже около 50 реакторов исследовательского типа. В 1954 г. в СССР была построена первая электростанция, работающая на ядерном горючем, которая стала своеобразной исследовательской лабораторией для разработки реакторов.

Наряду с реакторами в экспериментальную технику вводились машины для получения частиц высоких энергий: электронные синхротроны и бетатроны, синхроциклотроны и синхрофазотроны. В 1946 г. был пущен синхрофазотрон в Калифорнийском университете в Беркли, ускоряющий протоны до 350 Мэв. В 1949 г. вступил в строй советский синхроциклотрон (ныне синхроциклотрон Объединенного института ядерных исследований в Дубне), ускоряющий протоны до 680 Мэв. Это была крупнейшая машина такого типа. К 1955 г. в мире работало 20 синхроциклотронов и 10 электронных синхротронов. В 1952 г. вступил в строй Бринзавенский синхрофазотрон (космотрон),ускоряющий протоны до 3 Бэв (миллиардов электроновольт). В 1954 г. вступил в строй синхрофазотрон Калифорнийского университета, ускоряющий протоны до 6,2 Бэв. На этом синхрофазотроне в 1955 г. были получены антипротоны. Советский синхрофазотрон на 10 Бэв вступил в строй в 1957 г. Посетив Дубну в 1961 г., Н. Бор в следующих словах выразил свое впечатление от перехода старой, "ремесленной" физики к новой, "индустриальной":

"Это было действительно настоящим событием, что, я смог 50 лет назад наблюдать зарождение ядерной физики. Мне посчастливилось тогда присоединиться к группе вдохновляемых Резерфордом молодых ученых из многих стран. Я приехал в Манчестер спустя всего несколько месяцев после открытия атомного ядра.

Почти невозможно рассказать о той разнице, которая существует между физической наукой тех времен и наукой наших дней. Там, где раньше работали с очень примитивными приборами, теперь вследствие развития техники созданы такие сложные установки, какие есть в вашем большом институте. Удивительно видеть, как вместо очень простых теоретических средств в наши дни возникла замечательная математическая техника, позволившая накопить столь большие знания".

Оценивая гигантские ускорительные установки в Дубне, Бор сказал:

"Особенно глубокое впечатление произвели на меня замечательные гигантские установки. Их проектирование и строительство потребовали проникновения в самую суть вещей и, я бы даже сказал,- мужества".

В приведенном выше высказывании Бор упоминает о математической технике. Индустриализация проникла в такую, казалось бы, отвлеченную область, как математика. Электронные счетные машины, выполняющие логические операции, возникли из военных потребностей. Необходимо было разработать быстродействующие устройства, ведущие управление огнем зенитной артиллерии. Вследствие больших скоростей самолетов старые методы управления не годились. Американский математик Норберт Винер сформулировал в 1940 г. условия, которым должны удовлетворять такие машины:

  1. Эти машины должны быть цифровыми, как в обычном арифмометре.
  2. Эти устройства должны состоять не из механических частей, а электронных ламп. Это необходимо, чтобы обеспечить достаточно быстрое действие.
  3. В них должна использоваться двоичная, а не десятичная система счисления.
  4. Последовательность действия должна планироваться самой машиной так, чтобы человек не вмешивался в процесс решения задачи, с момента введения исходных данных до съема окончательных результатов. Все логические операции, необходимые для этого, должна выполнять сама машина.
  5. Машина должна содержать устройство для записывания данных. Это устройство должно быстро их записывать, надежно хранить до стирания, быстро считывать, быстро стирать их и немедленно подготавливать к записыванию нового материала.

Во время войны Пенсильванский университет в Филадельфии построил первую электронную вычислительную машину "Эниак" для вооруженных сил. Она была впервые публично продемонстрирована после войны в феврале 1946 г. Пенсильванский университет построил и вторую электронную вычислительную машину "ЭДВАК".

В 1948 г. вышла книга Винера, содержащая основы новой научной дисциплины,- кибернетики, выросшей из проблем, возникающих при устройстве "думающих" машин.

Работа над радиолокаторами ("радар") во время войны и электронными счетными машинами привела к полному перевороту в электронике. Уже к 1939 г. были построены генераторы колебаний сверхвысокой частоты: клистроны и магнетроны.

Применение сверхвысокой частоты потребовало разработки теории волноводов и новых типов антенн. На этой базе возникли радиоастрономия и радиоспектроскопия. Наконец, большое распространение получили полупроводниковые приборы.

На основе этих технических достижений появились успехи и в теоретической науке. Были открыты новые частицы π-мезоны, χ-мезоны, гипероны. Возникла новая отрасль физики - физика элементарных частиц. Открытие сдвига уровней в водородном спектре и дополнительного магнитного момента электрона стимулировали развитие квантовой электродинамики. Создание ускорителей вызвало к жизни физику высоких энергий, выдвинувшую проблемы структуры нуклонов и множественности рождения частиц. В конце периода возникла квантовая радиофизика. Поток новых открытий в науке и технике не оставлял сомнений в том, что мир вступил в полосу небывалой по своему размаху и социальным последствиям научно-технической революции. Важнейшее достижение этого периода - начало космической эры.

Дальнейшее развитие получила ядерная физика. Разработка проблемы управляемой термоядерной реакции привела к возникновению новых отраслей физики - физики плазмы и магнитной гидродинамики. Интенсивно развивается физика элементарных частиц.

Открытие несохранения четности было одним из фундаментальных открытий последнего периода. Но физиков не оставляет предчувствие, что они находятся еще только на пороге фундаментальных открытий. Существующие теории еще не в состоянии справиться с лавиной новых экспериментальных фактов.

Колоссально выросло общественное значение физики. Она превращается в могучую производительную силу. Ее достижения могут принести человечеству процветание, но они способны и уничтожить человечество. Человечество стоит перед дилеммой: идти по пути прогресса и процветания или погибнуть.

Люди науки лучше всех понимают грозную опасность, возникшую в связи с грандиозными открытиями физики. Отвечая на новогоднюю анкету журнала "Техника - молодежи", Э. Шредингер писал за несколько дней до своей смерти:

"Для меня существует сейчас только одна величайшая "проблема человечества": как сохранить мир и помешать новому применению адского оружия" ("Техника-молодежи", № 1, 1961). Н. Бор также отвечал в "Технике-молодежи" в августе 1961 г. на вопрос о проблеме № 1: "Наиболее важная проблема современности - это проблема исключения войны из взаимоотношений между людьми. С древних времен люди пытались войной решать свои судьбы. Мы пришли к такому положению, когда все главные проблемы могут и должны решаться мирно". И далее в своей статье "Единство человеческого знания" Бор писал: "Быстрый прогресс науки и техники в наши дни, представляющий одновременно и благо и угрозу общей безопасности, поставил перед человечеством новые проблемы. Всякое достижение в науке и технике увеличивает ответственность, но в настоящий момент, когда судьбы всех народов неразрывно связаны, сотрудничество и взаимопонимание необходимы более чем когда-либо в истории человечества".

Коммунистическая партия Советского Союза ведет неутомимую борьбу за мир, за исключение войны из жизни общества, за мирное сосуществование между народами. Эта политика отвечает чаяниям всего человечества.

ХХ век – век научных революций. Открытия, сделанные в этом веке, изменили ход человеческой цивилизации.

Квантовая теория Планка

Макс Планк

В самом начале ХХ века, в 1900 г., профессор Берлинского университета Макс Планк вывел формулу, описывающую распределение энергии в спектре абсолютно чёрного тела. До открытия Планка считалось, что энергия распределяется равномерно. Но Планк доказал, что она распределяется порциями – квантами. Планк сделал доклад Немецкому физическому обществу 14 декабря 1900 г. Конечно же, ему никто не поверил.

Но уже в 1905 г. на основании выводов Планка Эйнштейн создал квантовую теорию фотоэффекта. А Нильс Бор построил модель атома, в которой электроны вращались по строго определённым орбитам, излучая энергию только в момент перехода из одной орбиты на другую.

Благодаря гениальному открытию Планка учёные поняли, как ведут себя электроны. Впоследствии теория Планка дала мощный толчок развитию электроники, генной инженерии, атомной энергетики.

Теория относительности Эйнштейна

Альберт Эйнштейн

Второе великое научное открытие ХХ века – общая теория относительности Эйнштейна, или теория гравитации.

В 1905 г. Эйнштейн создал специальную теорию относительности. Эйнштейн сделал вывод, что различные наблюдатели по-разному воспринимают любые события, даже пространство и время. Например, для пассажира трамвая предмет, который он уронит на пол, будет падать вертикально вниз. А для наблюдателя на улице этот предмет падает по параболе, так как трамвай движется. То есть, описание любого события зависит от системы отсчёта, в которой находится наблюдатель. Если изменится система отсчёта, то изменится и описание события. Но законы природы отнаблюдателя не зависят. И они будут одни и те же для всех систем отсчёта, движущихся с постоянной скоростью. А общая теория относительности, созданная Эйнштейном в 1916 г., распространяет этот принцип на все системы отсчёта, даже на те, которые движутся с ускорением.

Эйнштейн доказал, что гравитация – это следствие искривления четырёхмерного пространства - времени. Теория Эйнштейна дала объяснение эффекта замедления времени. С помощью этой теории рассчитали орбиту планеты Меркурий, объяснили, почему искривляются лучи звёзд, когда проходят рядом с другими звёздами.

Открытие транзистора

Уильям Шокли, Джон Бардин, Уолтер Браттейн

Без сомнения, открытие транзистора является одним из важнейших открытий в истории человечества.

Первый рабочий транзистор был создан в 1947 г. американскими физиками Уолтер Браттейном, Уильямом Шокли и Джоном Бардиным. Вначале эти великие учёные продемонстрировали опыт, в котором с помощью обычной скрепки для бумаг, золотой фольги и небольшого количества германия увеличили силу тока в сотни раз. Это случилось 16 декабря. А уже через неделю было готово устройство, которое можно было считать действующим транзистором. В июне 1948 г. был создан радиоприёмник, где привычные электронные лампы были заменены транзисторами.

В 1956 г. авторы первого транзистора получили Нобелевскую премию за своё изобретение. А уже в 1958 г. была продемонстрирована первая интегральная схема, которая представляла собой два транзистора, расположенные на одной подложке из кремния.

В электронике началась новая транзисторная эра. Транзисторы заменили лампы повсюду – в телевизорах, радиоприёмниках, ламповых компьютерах.

Если бы не открытие транзистора, современные компьютеры не существовали бы в таком виде, как сейчас. Они не обладали бы таким огромным быстродействием и большой памятью. Не существовало бы жидкокристаллических мониторов, ноутбуков и мобильных телефонов.

Конечно, современные транзисторы отличаются от тех, которые были созданы в середине ХХ века. Технологии изменились. Ина одной подложке размещаются уже миллионы транзисторов.