Болезни Военный билет Призыв

Экзопланеты названия. Как же ищут такие планеты? Сколько открыто экзопланет

Поиск землеподобных экзопланет — миссия обсерватории «Кеплер», которая выйдет на орбиту в начале 2009 года. За четыре года «Кеплер» обследует около 100 000 звезд типа нашего Солнца в поисках планет, похожих на Землю

Первая экзопланета, зарегистрированная с помощью прямого наблюдения в видимом диапазоне, — Фомальгаут b. На фотографиях, сделанных «Хабблом» с разницей в два года, видно перемещение планеты, совершающей полный оборот за 872 года

Обсерватория «Кеплер» — первая миссия NASA, способная обнаруживать планеты размером с Землю и даже меньше. Инструмент «Кеплера» — сверхчувствительный фотометр, оснащенный телескопом системы Шмидта с апертурой 0,95 м и шириной поля зрения 12°. Измерительная часть фотометра состоит из 42 ПЗС-матриц размерами 50 х 25 мм и разрешением 2200 х 1024 p.

«Кеплер» будет с большой точностью измерять интенсивность поступающего от далеких звезд света и способен засечь ее изменение при прохождении планеты по диску звезды.

Вкруг солнц, бесчисленных и сходных // C огнистым улеем, там, в высоте, // В сверкании пространств холодных, // Вращаются, впивая дивный свет, // Рои трагических планет.

Эмиль Верхарн, цикл «Вечера» (в переводе В. Брюсова)

В 1842 году французский мыслитель Огюст Конт во второй книге «Курса позитивной философии» провозгласил, что «химический и минералогический» состав звезд навеки останется тайной для науки. Между тем тридцатью годами ранее немецкий физик Йозеф Фраунгофер обнаружил в спектрах излучения некоторых звезд характерные темные линии, которые, как мы сейчас знаем, представляют собой подпись элементов, входящих в состав их атмосфер.

В те времена, когда автор этой статьи посещал астрономический кружок Московского планетария, в популярных книжках утверждалось, что с помощью земных телескопов нельзя обнаружить ни единой внесолнечной планеты. В 1990-е годы это предсказание рассыпалось в пух и прах, хотя научные методы, которые дали возможность его опровернуть (сперва радиоастрономические наблюдения, а позже доплеровский анализ спектральных линий), были созданы гораздо раньше.

К концу 2008 года было известно около 310 так называемых экзопланет, обращающихся вокруг звезд нашей Галактики. Нет сомнений, что планетными свитами обладают и светила из других галактик, просто их еще не обнаружили из-за огромных расстояний. Учитывая, что первый спутник обычной звезды был официально открыт всего 13 лет назад, приходится признать, что с самого начала отлов экзопланет взял очень высокий темп. А поскольку в последние годы экзопланеты обычно находят в процессе автоматического сканирования ночного небосвода (техника которого совершенствуется не по дням, а по часам), число таких открытий имеет шансы значительно увеличиться уже в ближайшее время.

Увидеть или угадать?

Самый простой способ поиска экзопланет — прямое наблюдение. Именно так в свое время искали околосолнечные планеты, лежащие за Сатурном: достаточно просто смотреть в телескоп (точнее, анализировать оцифрованные звездные снимки). В принципе (а с недавнего времени и на практике) это вполне решаемая задача — был бы телескоп помощнее да матрица почувствительней.

Однако шансы на успех невелики. Скажем, для звезды солнечного типа на расстоянии 15 световых лет от нас, вокруг которой на расстоянии приблизительно 5 астрономических единиц обращается газовый гигант размером с Юпитер. На земном небе угловое расхождение между такой звездой и ее спутником составит приблизительно одну угловую секунду, что вполне доступно современным телескопам. Но вот беда — контраст маловат. В оптическом спектре мощность звездного излучения превышает отраженный планетарный отблеск в миллиард раз, а в ИК-диапазоне — в миллион. Поэтому подобные открытия пока что возможны лишь в исключительных случаях. В 2004 году один из восьмиметровых телескопов Южной Европейской обсерватории зафиксировал планету с массой в пять Юпитеров, обращающуюся вокруг коричневого карлика 2 М 1207 (70 парсеков от Солнца) на расстоянии двух радиусов орбиты Нептуна (55 астрономических единиц). Однако французским и американским астрономам, которые год спустя опубликовали сообщение об этом открытии, крупно повезло. Материнская звезда в данном случае светит настолько слабо, что инфракрасный контраст между ее излучением и планетарным светом составляет всего 100:1. Первая в истории «прямая» фотография звездно-планетной пары (впрочем, сделанная с помощью адаптивной оптики) вполне заслуженно попала на страницы газет. Впоследствии с помощью инфракрасной фотографии удалось найти еще несколько кандидатов в экзопланеты (по разным оценкам, от пяти до семи). А в ноябре 2008 года американские астрономы сообщили о первой идентификации ранее неизвестной экзопланеты на фотоснимках в видимом свете (это небесное тело с массой от половины до трех масс Юпитера обращается вокруг любимой фантастами звезды Фомальгаут из созвездия Южной Рыбы). Впрочем, можно надеяться, что новые изображения такого рода в следующем десятилетии принесет орбитальный телескоп James Webb и пока еще не построенные наземные телескопы особо крупного калибра.

Невезучая астрометрия

В существовании экзопланет можно убедиться косвенными методами. Об их наличии свидетельствуют как аномалии движения материнских звезд, так и специфические особенности их излучения.

Движением светил на земном небосводе занимается древнейшая ветвь астрономии — астрометрия. Этой науке по силам находить звездные спутники-невидимки: звезда, обладающая космическим компаньоном, и ее спутник обращаются вокруг общего центра масс, и смещение звезды при наличии прецизионной угломерной аппаратуры можно зарегистрировать. Легче всего обнаружить планету, если звезда обладает заметным собственным движением (смещается на земном небосводе относительно других звезд). Еще в 1844 году немецкий астроном Фридрих Бессель пришел к выводу, что мельчайшие аберрации собственного движения Сириуса указывают на наличие у него спутника. Правда, им оказалась не планета, а звезда — точнее, белый карлик (второй по счету в истории астрономии), — которую спустя 18 лет рассмотрел в телескоп американец Алван Кларк.

Внесолнечные планеты начали систематически искать именно астрометрическими методами. Первым в этом деле стал переселившийся в США голландец Пиет Ван де Камп. В 1938 году он стал периодически фотографировать несколько специально выбранных звезд на 61-сантиметровом телескопе Спроуловской обсерватории в штате Пенсильвания. Шестью годами позже он заявил об открытии странного небесного тела, которое при желании можно было счесть кандидатом на роль экзопланеты.

Произошло это так. Де Кампа особенно заинтересовала тусклая звезда в созвездии Змееносца, которую в 1916 году прославил на весь мир американский астроном Эдвард Эмерсон Барнард. На основе многолетних наблюдений он показал, что этот красный карлик обладает рекордным собственным движением, ежегодно смещаясь на 10,3 угловой секунды. К тому же он расположен очень близко к Солнцу, всего 5,96 светового года (ближе лишь Альфа Центавра). Де Камп вполне логично решил поискать планетную свиту звезды со столь уникальными характеристиками и вскоре пришел к заключению, что не ошибся. В 1944 году он доложил на заседании Американского философского общества, что звезда Барнарда обладает несветящимся компаньоном, масса которого в 60 раз больше массы Юпитера. Для планеты многовато, а для звезды недостаточно. Де Камп проявил осторожность и назвал свое гипотетическое тело просто объектом промежуточной массы.

Де Камп не первым выступил с подобным анонсом. В 1943 году его коллега по Спроуловской обсерватории Кай Ааге Стрэнд и астрономы из обсерватории Маккормака Дирк Рейл и Эрик Холмберг сделали аналогичные заявления. Стрэнд сообщил об открытии у звезды 61 Лебедя компаньона массой в 16 Юпитеров, а Рейл и Холмберг обнаружили тело в полтора раза легче, принадлежащее двойной звездной системе 70 Змееносца. Однако эти заявки не удалось подтвердить, и авторы от них отказались. А вот де Камп не сдался. В 1963 году он сообщил, что абсолютно уверен в наличии у звезды Барнарда холодного спутника, но снизил его массу до 1,6 юпитерианской. Чуть позже он подарил ей еще одну планету меньшего калибра. Однако со временем эти выводы были не раз опровергнуты и планеты де Кампа пополнили список астрономических заблуждений. Аналогичная судьба постигла еще одного американского астронома — Джорджа Гэйтвуда. Приходится признать, что астрометрия пока что не принесла для поиска экзопланет пользы.

Первые успехи: радиопоиск

Первый успех в поиске экзопланет достался не оптике, а радиотехнике. Впрочем, это естественно. Как известно, в космосе хватает источников строго периодических радиосигналов — радиопульсаров (это быстро вращающиеся нейтронные звезды, обладающие сильным магнитным полем). Генерируемые на их магнитных полюсах мощные направленные пучки радиволн описывают в пространстве конические поверхности. Если на такой поверхности оказывается наша планета, луч пересекает ее на каждом обороте. Излучение регистрируют на Земле в виде периодических импульсов, из-за чего и сами источники называют пульсарами. Если вокруг пульсара обращаются планеты, то они своим притяжением чуть-чуть меняют характер его вращения и вызывают осцилляции принимаемого на Земле радиосигнала.

Планетные свиты искали у пульсаров с начала 1970-х. Но только в 1992 году работавшие в США поляк Александр Волщан и канадец Дэйл Фрей доказуемо обнаружили две планеты, обращающиеся вокруг миллисекундного пульсара PSR 1257+12, отдаленного от Солнца на 980 световых лет. Позднейшие вычисления показали, что планет не две, а три. Самая легкая из них вдвое тяжелее Луны, массы остальных равны 4,3 и 3,9 массы нашей планеты. Конечно, они не годятся на роль прибежища жизни любого мыслимого типа.

Судя по всему, пульсары не богаты планетами. Во всяком случае, позднее радиоастрономам удалось обнаружить лишь еще одного представителя этого семейства. Им оказался пульсар PSR 1620−26, вокруг которого обращается тело массой в два с половиной Юпитера. И совершенно очевидно, что аппаратура, с помощью которой были сделаны эти открытия, работает исключительно для пульсаров и не годится для поиска несветящихся спутников обычных звезд.

Доплеровская спетроскопия

Астрометрические методы в принципе (но пока не на практике) позволяют обнаруживать экзопланеты по смещениям двумерных траекторий звезд на небесной сфере. Поэтому они должны дать максимальный эффект в случае, если плоскость планетной орбиты перпендикулярна лучу зрения на звезду. Если же с Земли эта планетная система будет видна не в анфас, а в профиль, движение планеты сильнее всего будет влиять не на положение звезды на небесной сфере, а на ее радиальную скорость по отношению к Земле. Двигаясь в нашем направлении, планета-спутник потянет за собой звезду, и эта скорость возрастет; когда же планета пойдет на удаление, радиальная скорость звезды несколько уменьшится. В результате звезда с точки зрения земных наблюдателей будет покачиваться подобно маятнику в направлении «к нам — от нас». Обнаружить визуально такое смещение невозможно, однако в первом положении возникает доплеровское смещение спектральных линий звездного излучения в голубую сторону, а во втором — в красную. Поскольку планета обращается вокруг звезды по замкнутой траектории со стабильным годом, подобные смещения окажутся строго периодичными. Их вполне можно выявить с помощью чувствительных спектроскопов. Этот метод (называемый также методом радиальных, или лучевых, скоростей) работает, даже если угол, о котором шла речь, не равен 90 градусов, но все-таки отличен от нуля. Разумеется, длительность наблюдений должна составлять не менее планетарного года, а еще лучше — нескольких лет.

Охотники за экзопланетами осознали возможности этого метода еще в 1970-х годах. И не просто осознали, но и приступили к работе. В 1988 году канадские астрономы Брюс Кэмпбелл, Гордон Уолкер и Стефенсон Янг сообщили, что им предположительно удалось обнаружить темный спутник Гаммы Цефея. Однако они признали, что их аппаратура была недостаточно чувствительна, чтобы с уверенностью претендовать на открытие. Четыре года спустя их выводы были поставлены под сомнение, но в 2003 году полностью подтверждены. Так что в этом смысле нынешний год можно считать юбилейным — первое открытие экзопланеты состоялось 20 лет назад. Точно так же гарвардский астрофизик Дэвид Латам в 1989 году заявил о возможной идентификации планеты вблизи звезды HD 114762, но подтверждения этого открытия пришлось ждать целых семь лет (правда, до сих пор неизвестно, планета это или коричневый карлик).

В начале 1990-х уже несколько научных коллективов всерьез занимались спектрометрическим поиском как несветящихся, так и очень тусклых компаньонов звезд солнечного типа. Этим методом они надеялись обнаружить не только экзопланеты, но и давно предсказанные теоретиками коричневые карлики, инфракрасные звезды с массой меньше 8% массы Солнца, в недрах которых невозможно термоядерное горение обычного водорода (правда, там может гореть дейтерий, но его запасов хватает ненадолго). И те и другие надежды оправдались 13 лет назад, причем по занятному совпадению одновременно.

Гонка за экзопланетами

Среди многочисленных охотников за экзопланетами вперед вырвались три научные группы. Одну составили уже упоминавшиеся канадцы Кэмпбелл и Уолкер, вторую — американцы Джеффри Марси и Пол Батлер (химик, но с астрономическими устремлениями), третью — профессор астрономии Женевского университета Мишель Мэйор и его аспирант Дидье Келоз. Канадцы вполне могли первыми добиться признанного успеха, поскольку больше других сделали для разработки приборов, позволяющих заметить «раскачивание» звезд. Однако им опять не повезло. В 1994 году они снова претендовали на возможное открытие экзопланеты, однако их выводы не подтвердились. Американцам тоже никак не хотела улыбнуться удача. В том же году Марси сообщил, что они отмониторили треть списка специально выбранных звезд, но результатов так и не получили.

Швейцарцы тем временем приступили к систематическому поиску экзопланет, используя спектрометр высокого разрешения ELODIE, смонтированный в 1983 году на 193-сантиметровом телескопе 1958 года обсерватории От-Прованс в Южной Франции. 23 ноября 1995 года они опубликовали в Nature статью, из которой мир узнал о долгожданном открытии планеты, обращающейся вокруг обычной звезды. Всего через несколько недель американцы подтвердили этот результат и сообщили о регистрации еще пары экзопланет. Планетарная астрономия раз и навсегда вышла за пределы Солнечной системы. А позднее подобные открытия посыпались одно за другим.

Ученые сразу поняли, что экзопланеты отличаются от спутников Солнца. Первая из них была обнаружена около звезды 51 Пегаса. Она обращается по круговой траектории с радиусом в 7,5 млн километров, совершая один оборот всего за 4,2 суток, и обладает весьма солидной массой (0,47 массы Юпитера). Для сравнения: крошечный Меркурий никогда не подходит к Солнцу ближе, чем на 46 млн километров и делает полный оборот за 88 суток. Обе планеты, о которых сообщили американцы, также вызывали удивление. Это явно были газовые гиганты — 2,54 и 7,44 массы Юпитера. При этом они тоже оказались подозрительно близкими к своим звездам — 47 Большой Медведицы и 70 Девы: их большие полуоси равняются, соответственно, 2,1 и 0,48 а.е. (Юпитер отдален от Солнца на 5,2 а.е.). Вторая планета к тому же движется по чрезвычайно вытянутой орбите с эксцентриситетом 0,4, вдвое большим, нежели у Меркурия.

Звездные затмения

Экзопланеты отлавливают и с помощью фотометрии — определения колебаний видимой яркости звездного света. Разумеется, это возможно только в том случае, если планета периодически проходит между Землей и своей звездой. Амплитуда уменьшения светового потока пропорциональна квадрату отношения радиусов затмевающего и затмеваемого тела. Так, если диаметр планеты равен одной десятой диаметра звезды (таково соотношение геометрических параметров Юпитера и Солнца), она перекроет одну сотую звездного света, а планета земного размера уменьшит яркость звезды на одну десятитысячную.

Фотометрический метод не только приносит информацию о наличии и составе атмосферы планеты, но и расширяет возможности доплеровской спектроскопии. Действительно, если планета затмевает звезду, то доплеровская спектроскопия дает не минимальную, а реальную оценку планетарной массы (см. врезку). Осенью 1999 года Дэвид Шарбонне и Тимоти Браун впервые применили связку этих двух методов — спектрометрически выявили наличие спутника у звезды HD 209458, а затем зарегистрировали и периодические провалы на кривой колебаний ее яркости. Полученные данные позволили выяснить, что масса планеты составляет 0,69 массы Юпитера, а диаметр — полтора юпитерианских. Позднее затменный эффект этой планеты с гораздо большей точностью подтвердили приборы орбитального телескопа «Хаббл» и астрометрического спутника «Гиппарх».

В основе другой разновидности фотометрического отлова внесолнечных планет лежит явление гравитационного микролинзирования. Первоначально его использовали для поиска тусклых маломассивных звезд. Оказавшись между Землей и далеким ярким светилом, такая звезда своим тяготением искривляет его лучи и временно увеличивает его видимый блеск. Если звезда обладает спутником, световая кривая несколько изменяется. Впервые таким путем заметили далекую планету в 2003 году. Метод сам по себе весьма эффективен, но, к сожалению, не допускает повторных наблюдений.

Успешная погоня за экзопланетами не только дала астрономии богатейшую информацию, но также привлекла к этой науке общественное внимание и сильно увеличила ее престиж. А это благоприятно отразилось на финансировании новых проектов. Поэтому нет ничего удивительного, что разработка приборов следующих поколений, предназначенных для такого поиска, идет полным ходом. Но о них — в следующем номере.

Экзопланеты или внесолнечные планеты - планеты, обращающиеся вокруг звезд за пределами Солнечной системы.

На конец июня 2015 года астрономы подтвердили существование 1931 экзопланеты, каждая из которых обращается вокруг звезд за пределами Солнечной системы. Еще 4500 экзопланеты имеют статус надежных кандидатов и более 10 тысяч - статус возможных кандидатов. Однако это только начало поисков. По самым скромным оценкам количество планет только в нашей галактике не должно быть менее 100 млрд. 10 млрд из них должны быть похожими на нашу Землю, из них в свою очередь около 500 миллионов находятся в обитаемой зоне своих звезд и теоретически способны поддерживать жизнь.

Только вдумайтесь в эти цифры: 500 млн потенциально обитаемых миров в одном только Млечном Пути! А сколько их в бесконечной Вселенной среди бесконечного множества галактик? Какое невообразимо большое разнообразие конфигураций звездных систем и типов экзопланет, а вполне возможно, и форм жизни ждут чтобы их открыли.

Как ищут экзопланеты?

Однако открыть новую внесолнечную планету не так то и просто. В сравнении со звездами они чрезвычайно малы и в лучшем случае способны лишь отражать незначительную часть света звезды, в худшем - темны как уголь. Поэтому все перспективные методы обнаружения экзопланет являются косвенными или непрямыми. Наиболее эффективный из них - транзитный, суть которого состоит в фиксировании изменения светимости звезды при проходе транзитом по ее диску экзопланеты. Этим метод пользуются орбитальный телескоп НАСА Кеплер и наземная роботизированная обсерватория SuperWASP, которые на данный момент являются безоговорочными лидерами по числу открытых внесолнечных планет.

1. Транзит экзопланеты по диску звезды. 2. Падение кривой блеска звезды, свидетельствующее о наличии планеты.

Методы поиска внесолнечных планет:

Транзитный метод

Метод Доплера (метод радиальных скоростей). Суть: регистрация минимальных красных (доплеровских) смещений спектра звезды, которые возникают в результате того, что по мере обращения планета как бы раскачивает звезду. Метод также позволяет определить многие орбитальные характеристики экзопланеты, а в сочетании с транзитным способом - ее плотность и массу.

Сочетание двух первых методов дает наилучшие результаты.

Гравитационное микролинзирование. Суть: между наблюдателем и объектом наблюдения должна находится массивная звезда, которая своим гравитационным полем фокусирует свет наблюдаемого объекта, т.е. выступать в роли гравитационной линзы. Если у звезды-линзы имеются планеты, то кривая ее блеска будет ассиметричной.

Астрометрия. Суть: фиксация изменений собственного движения звезды под гравитационным воздействием планеты. В будущем с запуском новых инструментов на этот способ возлагаются большие надежды.

Радионаблюдение пульсаров. Если вокруг пульсара есть планеты, то излучаемый сигнал имеет колебательный характер.

Непосредственное (прямое) наблюдение. Пока напрямую возможно обнаружить исключительно большие, горячие и удаленные от своих солнц планеты. Ожидается, что передовой телескоп им. Джеймса Вебба изменит ситуацию в лучшую сторону.

Что касается статистики, то экзопланеты были найдены приблизительно у 10% звезд включенных в программы поиска.

Типы экзопланет

Если совсем утрировать, то можно сказать, что нет двух одинаковых звездных систем. Практически все обнаруженные конфигурации довольно сильно отличаются друг от друга и от Солнечной системы в частности. Соответственно и экзопланеты не всегда бывают похожими на знакомые нам 8 планет.

Классификация по элементному составу:

Железные

Силикатные

Углеродные

Водные или планеты-океаны

Монооксид углеродные

Водородные

Классификация по температуре поверхности / удалению от звезды:

  • Холодные - средняя температура поверхности ниже -50 °C.
  • Теплые. Как потенциально пригодный для жизни класс в свою очередь делятся на 3 подгруппы:
    • психропланеты - температура от −50 до 0 °C;
    • мезопланеты - температура от 0 до 50 °C;
    • термопланеты - температура от 50 до 100 °C;
  • Горячие - температура выше +100 °C

Классификация по размерам:

  • Миниземли - железные, силикатные, реже углеродные планеты, размером с Землю и меньше.
  • Суперземли - как правило, силикатные планеты, с массой от 2 до 10 масс Земли. На данный момент относятся к одним из наиболее распространенных.
  • Планеты-гиганты - крупные газовые и ледяные планеты, размером с Уран и больше.

Стоит также отметить, что существует зависимость размеров планеты от ее элементного состава: чем легче основные элементы, тем больше диаметр.


Кроме того, так сказать без классификации, выделяют такие типы экзопланет:

Горячий юпитер/нептун - крупная газовая планета размером с Юпитер/Нептун и больше, орбита которой расположена очень близко к звезде (менее 150 млн км).

Холодный юпитер/нептун - экзопланеты, похожие по своим физическим и орбитальным характеристикам на газовых гигантов Солнечной системы.

Рыхлая планета (сверхгорячий сатурн) - такие тела имеют очень низкую плотность (менее 0,5 грамм/см³) и очень близко расположены к светилу, вследствии чего их собственная гравитация не в силах противостоять тепловому расширению и размеры планеты увеличиваются. Самая известная рыхлая планета WASP-17b имеет плотность 0,1 грамм/см³, что ниже плотности пенопласта.

Хтоническая планета - горячий твердый остаток (ядро), возникший в результате улетучивания внешних слоев горячего юпитера/рыхлой планеты. Яркий пример - COROT-7 b - остаток газового гиганта, ныне представляющий собой постоянно бушующий лавовый океан с температурой около +2600°C.


Хтоническая планета COROT-7 b в представлении художника.

На данный момент самыми распространенными типами внесолнечных планет являются горячие нептуны, суперземли и горячие юпитеры. Однако причину подобного порядка можно списать на не совершенство методов обнаружения, поскольку землеподобные тела на современном оборудовании открыть пока достаточно сложно.

Жизнепригодные и потенциально обитаемые экзопланеты

Миллиарды долларов на поиски далеких миров выделяются не ради удовлетворения любопытства или каких-то эфимерных целей. Человечество хочет узнать одни ли мы во Вселенной. И хотя точный ответ на этот вопрос может открыться только будущим поколениям, определенные подвижки в этом направлении уже есть.

Еще каких-то 20 лет назад Земля была единственным известным нам миром во Вселенной, способным поддерживать жизнь. Сегодня науке известно немногим менее 2000 экзопланет самых разных типов. Да, Земля по-прежнему является уникальной и неповторимой планетой, но уже далеко не единственной, которая в состоянии предложить оптимальные для жизни условия.

Название Индекс подобия Земле (англ. ESI) Общий уровень жизнепригодности (англ. SPH) Масса (земных масс)
Земля 1,00 0,88 1,00 0
Kepler-438b 0,90 0,88 1,2-1,4 470
Kepler-296e 0,85 0,88 ~ 3-4 1089.6
KOI-3010.01 0,84 0,93 ~ 2 1213.4
Gliese 667 Cc 0,84 0,64 3.8 23.6
Kepler-442b 0,83 0,98 ~ 2 1291.6
Kepler-62e 0,83 0,96 ~ 3 1200
Kepler-452b 0,83 0,96 4.7 1402
Gliese 832 c 0,81 0,96 5,4 16,1

По состоянию на конец 2015 года только 8 экзопланет имеют Индекс подобия Земле (англ. Earth Similarity Index - ESI) выше 0,8, что соответствует силикатным планетам земной группы, которые в состоянии удерживать плотную атмосферу с умеренными температурами и поддерживать биологическую жизнь.

Отдельно стоит отметить, что при помощи ESI оценивают только землеподобные планеты, не беря во внимание остальные типы, которых как не сложно догадаться большинство. Вообще следует понимать, подобная Земле и жизнепригодная экзопланета - это далеко не одно и тоже. Вполне вероятен сценарий, что многие землеподобные экзопланеты окажутся стерильными, а какой-нибудь газовый гигант с водяной атмосферой, расположенный в центре обитаемой зоны своего солнца, стал домом для невиданных форм жизни.


HD 69830 d больше похоже на Нептун, чем на Землю. Но в тоже время на этом гиганте сформировались вполне оптимальные для жизни условия.

Ярким примером последних может оказаться HD 69830 d. Это относительно крупная ледяная планета с каменным ядром, масса которой равна почти 19 земным. Она находится в обитаемой зоне своей звезды, средняя температура ее поверхности равна 11 С, в атмосфере содержится большое количество пара, и возможно жидкая вода присутствует в верхних слоях. Чем не кандидат на звание потенциально обитаемого мира.

Ближайшие экзопланеты

Название Расстояние от Солнца (св.лет) Масса Класс экзопланеты Краткое описание
Альфа Центавра B b 4,37 1,11 земных масс горячая миниземля Землеподобная каменистая планета. Слишком близко расположена к звезде. Температура поверхности 1200°C.
Эпсилон Эридана b, Эпсилон Эридана c 10,5 1,55 ± 0,24 массы Юпитера / 0,1 массы Юпитера холодный юпитер / вероятно, холодная суперземля Далекие, холодные и не пригодные для жизни экзопланеты. Вероятность существования других планет в этой системы оценивается высоко.
Groombridge 34 А b 11,6 5,35 земных масс горячая суперземля -
Эпсилон Индейца А b 11,73 > 1 массы Юпитера холодный юпитер Статус экзопланеты на данный момент не подтвержден. Вероятность существования других планет в этой системы оценивается высоко.
Тау Кита b, c, d, e и f 11,73 2 / 3,1 / 3,6 / 4,3 / 6,6 земных масс первые три - горячие суперземли, последние - теплые суперземли Пять экзопланет системы Тау Кита вращаются вокруг солнцеподобной звезды. Две последние находятся в обитаемой зоне, теоретически являются жизнепригодными.
Каптейн b и Каптейн c 12,76 4,8 / 7 земных масс теплая суперземля или газовый карлик / неизвестно Каптейн b - старейшая из потенциально жизнепригодных экзопланет, ее возраст 11,5 млрд лет. Она расположена в обитаемой зоне; полный оборот делает за 48 суток.
...
Глизе 832 c 16,16 5,4 земных масс теплая суперземля Температура на поверхности колеблется от -20 до +50 °C. Имеет индекс подобия Земле 0,81.
...
Глизе 667 C c 22,7 3,8 земных масс теплая суперземля Глизе 667 C c - наиболее вероятное пристанище внеземной жизни в относительной близости от Солнца. Средняя температура на поверхности +27 °C. Имеет индекс подобия Земле 0,84.

Отдельно отметим, что наблюдения за ближайшей к нам звездной системой Альфа Центавра ABC, расчеты и компьютерное моделирование указывают на возможность существования землеподобной экзопланеты в зоне обитаемости компоненты В, но проверить эти данные инструментально пока не получается.

Рекордные экзопланеты

Самая тяжелая экзопланета земного типа: Kepler-10c. Эта планета в 17 раз тяжелее Земли, что в 99% случаев свойственно для газовых и/или ледяных гигантов, но Kepler-10c - каменная.

Самая старая экзопланета земного типа: Каптейн b. Возраст системы Каптейна, состоящей из красного субкарлика и двух планет, составляет 11,5 млрд лет.

Самая старая экзопланета: HIP 1195 b и c. Возраст 12,8 млрд лет.

Самая большая экзопланета: HAT-P-32 b. Ее диаметр в 2,037 раза больше, чем у Юпитера. Прежний рекордсмен, рыхлый газовый гигант WASP-17b больше Юпитера в 1,99 раза, но он довольно быстро продолжает увеличиваться за счет теплового расширения.

Самая маленькая экзопланета: KOI-961 d. Ее радиус 0,57 земных, иначе говоря она меньше практически вдвое.

Наивысшая плотность: PSR J1719−1438 b. Около 23 грамм/см³. Для сравнения удельный вес железного Меркурия равен всего 5,427 г/см³. Состоит из кристаллического углерода, вероятно из алмаза.

Наименьшая плотность: WASP-17b. Около 0,08-0,15 грамм/см³. Кубический метр вещества этой планеты весит меньше кубометра пенопласта.

Самая темная (наименьшее альбедо): TrES-2 b. Этот газовый гигант отражает по разным оценкам от 0,04 до 1% падающего на него света. Даже абсолютно черное, матовое тело отражает в разы больше света.

Самая большая система колец: J1407b. Собственно, это пока единственная открытая экзопланета с кольцами, но зато с какими. Система состоит из 30 отдельных колец, которые от края до края простираются на 120 млн км. Для сравнения у Сатурна 7 колец, а их диаметр 250 тыс км.

Наибольшее количество звезд в системе: KIC 4862625. Эта планета была обнаружена в системе 30 Ari, состоящей из 4-х звезд. Должно быть, там не бывает ночи.

Наибольшее количество планет в системе: система HD 10180. На данный момент обнаружено 9 планет.

Самый долгий год: Фомальгаут b. 876 земных лет.

Самый короткий год: 55 Рака e. 17,5 часов.

Самая удаленная от нас: OGLE-2005-BLG-390L b. Находится в 21 500 световых годах. Кроме того, получены свидетельства наличия экзопланеты в галактике Андромеды на расстоянии 2,52 млн световых лет и у в системе двойного квазара Q0957+561 на удалении 3,7 млрд световых лет.

Наиболее близкие друг к другу планеты: Kepler-36 b и Kepler-36 c. Каждые 97 суток эта парочка сближается до расстояния 1,9 млн км, что всего в 5 раз больше расстояния от Земли до Луны.

Общее количество экзопланет в галактике Млечный Путь составляет более 100 миллиардов. Экзопланета - это планета, которая находится за пределами нашей солнечной системы. В настоящее время учеными открыта лишь малая их доля. О 10 самых невероятных планетах в этом посте.

Самая темная экзопланета - далекий, размером с Юпитер, газовый гигант TrES-2b.

Измерения показали, что планета TrES-2b отражает менее одного процента света, что делает ее чернее угля и естественно темнее любой из планет солнечной системы. Работа, посвященная этой планете, была опубликована в журнале Королевского Астрономического Общества Monthly Notices. Планета TrES-2b отражает меньше света даже чем черная акриловая краска, так что это поистине темный мир.


TrES-4

Самая большая планета из найденных во Вселенной - это TrES-4. Ее обнаружили в 2006 году, и располагается она в созвездии Геркулес. Планета под названием TrES-4 вращается вокруг звезды, которая находится на расстоянии около 1400 световых лет от планеты Земля.

Исследователи утверждают, что диаметр обнаруженной планеты практически в 2 раза (точнее в 1,7) больше диаметра Юпитера (это самая большая планета Солнечной системы). Температура TrES-4 около 1260 градусов по Цельсию.

COROT-7b

Год на COROT-7b длится чуть больше 20 часов. Неудивительно, что погода в этом мире, мягко говоря, экзотическая.

Астрономы предположили, что планета состоит из литой и твердой горной породы, а не из замороженных газов, которые непременно выкипит при таких условиях.Температура по словам ученых падает с +2000 С на освещенной поверхности до -200 С на ночной.

WASP-12b

Астрономы увидели космический катаклизм: звезда поглощает собственную планету, которая оказалась в непосредственной близости от нее. Речь идет об экзопланете WASP-12b. Она была обнаружена в 2008 году.

WASP-12b, как и большинство известных экзопланет, обнаруженных астрономами, является большим газообразным миром. Однако, в отличие от большинства других экзопланет, WASP-12b вращается вокруг своей звезды на очень близком расстоянии - немногим более 1,5 миллиона километров (в 75 раз ближе чем Земля от Солнца).

Огромный мир WASP-12b уже заглянул в лицо своей смерти, утверждают исследователи. Самая главная проблема планеты - ее размеры. Она выросла до такой степени, что не может удержать свою материю против сил гравитации родной звезды. WASP-12b отдает свою материю звезде с огромной скоростью: шесть миллиардов тонн каждую секунду. В этом случае планета будет полностью уничтожена звездой примерно через десять миллионов лет. По космическим меркам, это совсем немного.

Kepler-10b

С помощью космического телескопа астрономы смогли обнаружить самую маленькую каменистую экзопланету, диаметр которой составляет около 1,4 диаметра Земли.

Новая планета получила обозначение Kepler-10b. Звезда, вокруг которой она вращается, находится на расстоянии около 560 световых лет от Земли в созвездии Дракона и похожа на наше Солнце. Относясь к классу «суперземель», Kepler-10b находится на довольно близкой к своему светилу орбите, совершая оборот вокруг него всего за 0,84 земных суток, при этом температура на ней достигает нескольких тысяч градусов Цельсия. По оценке учёных, при диаметре в 1,4 диаметра Земли Kepler-10b имеет массу 4,5 земных.

HD 189733b

Объект HD 189733b представляет собой планету, размерами похожую на Юпитер, которая обращается вокруг своей звезды на расстоянии 63 световых лет от нас. И хотя эта планета размерами походит на Юпитер, из-за близости к своей звезде она значительно горячее, чем господствующий газовый гигант нашей Солнечной системы. Как и для других найденных горячих юпитеров, вращение этой планеты синхронизовано с ее орбитальным движением - планета всегда повернута к звезде одной стороной. Период обращения равен 2.2 земных дня.


Kepler-16b

Анализ данных о системе Kepler-16 показал, что открытая в ней в июне 2011 года экзопланета Kepler-16b вращается сразу вокруг двух звезд. Если бы наблюдатель мог оказаться на поверхности планеты, то он увидел бы, как восходят и заходят два солнца, совсем как на планете Татуин из фантастической саги «Звездные войны».

В июне 2011 года ученые объявили, что в системе находится планета, которая получила обозначение Kepler-16b. Проведя в дальнейшем детальное исследование, они установили, что Kepler-16b вращается вокруг двойной звездной системы по орбите, примерно равной орбите Венеры, и совершает один оборот за 229 дней.

Благодаря совместным усилиям астрономов-любителей, участвовавшим в проекте Planet Hunters, и профессиональных астрономов удалось обнаружить планету в системе из четырех звезд. Планета обращается вокруг двух звезд, вокруг которых в свою очередь обращаются еще две звезды.

PSR 1257 b и PSR 1257 c

2 планеты вращаются вокруг умирающей звезды.

Кеплер-36b и Kepler-36c

Экзопланеты Кеплер-36b и Kepler-36c - эти новые планеты обнаружены телескопом Кеплер. Эти необычные экзопланеты находятся поразительно близко друг к другу.

Астрономы обнаружили пару соседних экпланет с разными плотностями на орбитах очень близко друг к другу. Экзопланеты слишком близко к своей звезде и не находятся в так называемой "обитаемой зоне" звездной системы, то есть зоне, где жидкая вода может существовать на поверхности, но они интересны не этим. Астрономов удивило очень близкое соседство этих двух совершенно разных планет: орбиты планет находятся так близко, как никакие другие орбиты ранее открытых планет.


>

– планеты за пределами Солнечной системы: обнаружение и характеристика, первые открытия, классификация, методы поиска, список, Кеплер и Джеймс Уэбб.

Экзопланетами называют миры, расположенные вне нашей Солнечной системы. За последние 20 лет были найдены тысячи чужих планет при помощи мощного космического телескопа Кеплер НАСА. Все они отличаются по размерам и орбитам. Некоторые – гиганты, вращающиеся очень близко, а другие – ледяные или же скалистые. Но космические агентства сосредоточены на конкретном виде. Они ищут экзопланеты размера Земли и с расположением в зоне обитаемости.

Зона обитаемости – идеальная дистанция между планетой и звездой, позволяющая поддерживать нужную температуру для образования жидкой воды. Первые наблюдения основывались только на балансе тепла, но сейчас учитываются и прочие факторы, вроде парникового эффекта. Конечно, это «размывает» границы зоны.

В августе 2016 года ученые заявили, что нашли подходящий кандидат в экзопланеты земного типа возле звезды Проксима Центавра. Новый мир назвали Проксима b. Он превосходит Землю по массивности в 1.3 раза (скалистый). Отдален от звезды на 7.5 миллионов км, а на орбиту тратит 11.2 дней. Это значит, что планета заблокирована – всегда повернута к звезде одной стороной (как в случае с земным спутником).

Ранние открытия экзопланет

Хотя официально наличие экзопланет не подтверждали до 1990-х годов, астрономы знали, что они там есть. И это не строилось на фантазиях и сильном желании. Достаточно было посмотреть на медлительность вращения нашей звезды и планет.

Ученые владели главным механизмом – история появления Солнечной системы. Они знали, что существовало газовое и пылевое облако, не выдержавшее давления собственной гравитации и рухнувшее в себя. В момент крушения появилось и . Сохранение углового момента обеспечило ускорение для будущей звезды. Солнце вмещает 99.8% массы всей системы, а у планет – 96% момента движения. Поэтому исследователи не уставали удивляться медлительности нашей звезды.

Они начали искать исключительно звезды, напоминающие нашу. Но ранние находки в 1992 году неожиданно привели к пульсару (мертвая звезда с быстрой скоростью вращения после взрыва сверхновой) – PSR 1257+12. В 1995 году обнаружился первый мир – 51 Пегаса b. По размеру напоминал , но располагался ближе к своей звезде. Это было удивительное и шокирующее открытие. Но прошло 7 лет, и мы нашли новую планету, намекающую на то, что Вселенная богата на миры.

В 1998 году команда из Канады заметила мир образца Юпитер возле Гамма Цефея. Но ее орбитальный путь был намного меньше, чем у Юпитера, и ученые не претендовали на исследование находки.

Методы регистрации экзопланет

Астрофизик Сергей Попов о транзитных планетах, явлении гравитационного линзирования и телескопе Gaia:

Бум на данные экзопланет

Первые открытые экзопланеты представляли собою газовых гигантов (как Юпитер). Тогда ученые использовали методику лучевых скоростей. Она вычисляла уровень «раскачивания» звезды. Этот эффект создавался, если рядом с ней были планеты. Крупные экземпляры имеют большую массивность, а потому их присутствие обнаружить проще.

Перед тем как вступить в активное исследование экзопланет, земные инструменты умели измерять движение звезд до км/с. Это слишком слабо, чтобы уловить колебание, вызванное планетой. Сейчас существует более тысячи найденных миров, обнаруженных космическим телескопом Кеплер. Оказался на орбите в 2009 году и охотился 4 года. Он вышел на новую методику – «транзит». То есть, измеряет уровень уменьшения яркости звезды в момент, когда перед ней появляется планета и затеняет. Ниже показана схема, где сопоставляются методы поиска и количество открытых экзопланет.

В 2014 году появилась еще одна техника – «тест на множественность», способный ускорять процесс подтверждения кандидатуры в экзопланету. Базируется на орбитальной устойчивости. Большинство звездных транзитов связаны с наличием на орбите малых планет. Но многократно затмевающие звезды могли имитировать этот эффект и выгонять друг друга гравитацией из системы.

Горячие Юпитеры

Это газовые гиганты, напоминающие массу Юпитера, но совершающие обороты слишком близко к звезде-хозяину. Из-за этого происходит резкий скачок температуры (7000°C). Для ученых было настоящим сюрпризом обнаружить, что этот вид довольно распространен, так как ранее полагали, что такие планеты должны вращаться во внешней линии.

Пульсарная планета

Такие объекты совершают орбитальные проходы вокруг нейтронных звезд – остаточные ядра крупных звезд, то есть, все, что сохранилось после взрыва сверхновой. Нет сомнений, что ни одна планета не переживет такое событие, поэтому они формируются уже после.

Эти объекты по параметрам и химическому составу напоминают нашу и вращаются в зоне обитания (идеальная дистанция к звезде, позволяющая сохранять воду в жидком состоянии). Они ценны для обнаружения, так как могут располагать жизнью.

Суперземля

Это скалистые планеты, превосходящие земную массу в 10 раз. Сама приставка «супер» намекает лишь на характеристики размера, а не какие-то планетарные особенности. Поэтому среди них встречаются и газовые карлики. Первыми найденными суперземлями были два объекта, совершающих обороты вокруг пульсара PSR B1257 + 12.

Сверхземли

Астрофизик Сергей Попов о многообразии планет Солнечной системы, свойствах сверхземель и составе экзопланет:

Эксцентрические планеты

В нашей , планеты по большей части имеют довольно равномерные круговые орбиты. Однако, экзопланеты, найденные до сих пор, могут иметь гораздо более эксцентричные орбиты, двигаясь то близко, то в отдаление от звезды. Если идеальный круг имеет значение эксцентриситета равное ноль, то примерно половина экзопланет имеет эксцентриситет 0,25 или более.

Эти эксцентричные орбиты могут привести к довольно экстремальным тепловым волнам. Например, HD 80606b, которая примерно в четыре раза больше Юпитера и находится на расстоянии примерно в 200 световых лет от Земли, имеет эксцентриситет примерно 0,93. Таким образом, орбитальное расстояние HD 80606b меняется в промежутках от орбитального расстояния Земли до орбитального расстояния Меркурия.

Газовые и ледяные гиганты

К газовым относят те, что напоминают Юпитер и Сатурн. Из элементов присутствуют водород и гелий, окружающие скалистое или металлическое ядро. У ледяных, вроде Нептуна и Урана, намного меньше этих элементов, зато заметны более тяжелые. К этим типам относятся примерно 2/3 найденных экзопланет.

Планета-океан

Эти объекты полностью укрыты водным слоем. Скорее всего, с самого начала это были ледяные миры, появившиеся на большой удаленности от звезды. Но что-то заставило их приблизиться. Температура поднялась и лед трансформировался воду.

Хтоническая планета

Изначально были газовыми гигантами, которым не повезло подойти слишком близко к звезде. Из-за этого атмосферы выгорела, оставив лишь металлическое или скалистое ядро. На поверхности может течь лава. Суперземли и хтонические планеты похожи, поэтому их иногда путают.

Планета-сирота

Их еще называют «сиротами», так как не располагают главной звездой. Находятся в изоляции, потому что по какой-то причине их выбросило из системы. Ученым удалось найти всего несколько примеров, но полагают, что этот тип распространен.

Земные приборы активно работают над поиском. У нас есть MOST и TESS НАСА, CHEOPS (Швейцария) и спектрограф HARPS. Не стоит забывать о телескопе Спитцер. Он идеален тем, что настроен на инфракрасный диапазон и способен вычислять экзопланеты по температуре и даже характеризовать атмосферные показатели. Ниже представлен список экзопланет, пригодных для жизни.

Известные экзопланеты

Мы располагаем двумя тысячами планет за пределами Солнечной системы, поэтому сложно выбрать несколько примеров. Конечно, выделяются небольшие и расположенные в зоне обитания. Но стоит вспомнить еще 5 объектов, способствующих нашему пониманию эволюционного планетарного пути.

- 51 Пегаса b – первая найденная планета, обладающая половиной массы Юпитера. Ее орбитальный путь приравнивается к маршруту Меркурия. Удаленность от звезды мала, поэтому находится в заблокированном состоянии (одна сторона всегда повернута к звезде).

- 55 Рака e – суперземля возле звезды, чья яркость позволяет наблюдать ее невооруженным глазом. Это очень хорошо, так как дает ученым возможность исследовать детали чужой системы. На один орбитальный проход уходит 17 часов и 41 минута. Объект может обладать алмазным ядром и большим количеством углерода.

- WASP-33b интересная планета с заметной защитной оболочкой. Речь идет о стратосфере, впитывающей видимое и ультрафиолетовое свечение звезды. Ее нашли в 2011 году. Орбитальное движение противоположно звездному, что создает ощутимые вибрации.

- HD 209458 b – первая, которую удалось найти при помощи звездного транзита в 1999 году. Она также стала первой, у которой выявили атмосферную характеристику вместе с температурными показателями и отсутствием облачных формирований.

- HD 80606 b – считалась самой необычной планетой из-за странностей в орбите (будто проход кометы Галлея вокруг нашей звезды). Скорее всего, на это влияет еще одна звезда. Нашли в 2001 году. Изучите список экзопланет земного типа с указанием звезды-хозяина и расстояния от Солнца.

Список ближайших экзопланет земного типа

Имя Изображение Жизнепригодность Звезда Расстояние от Солнца
Альфа Центавра B b 1 Предполагаемая температура поверхности: 1200 °C Альфа Центавра B 4,37
Gliese 876 d 2 Предполагаемая температура поверхности: 157-377°C Gliese 876 15
Gliese 581 e 3 Из-за слишком высокой температуры скорее всего не имеет атмосферы Gliese 581 20
Gliese 581 c 4 Сомнительна. Скорей всего находится вне обитаемой зоны Gliese 581 20
Gliese 581 d 5 Возможная психропланета. Находится внутри обитаемой зоны Gliese 581 20
Глизе 667 Cc 6 Возможная мезопланета Gliese 667C 22
61 Девы b 7 61 Девы 28
HD 85512 b 8 Возможная Термопланета. Считалась наиболее жизнепригодной экзопланетой до открытия Глизе 667 Cc. HD 85512 36
55 Cancri e 9 Слишком высокая температура из-за близости к звезде 55 Cancri 40
HD 40307 b 10 Слишком высокая температура из-за близости к звезде HD 40307 42
HD 40307 c 11 Слишком высокая температура из-за близости к звезде HD 40307 42
HD 40307 d 12 Слишком высокая температура из-за близости к звезде HD 40307 42

Посмотрите увлекательные видео про экзопланеты, чтобы исследовать их строение, внутренний состав, классификацию, особенности атмосферы и расположение в зоне обитаемости.

Внутреннее строение экзопланет

Астрофизик Сергей Попов о веществах планетарных недр, типах экзопланет и зависимости плотности от размера:

Атмосферы экзопланет

Астрофизик Сергей Попов о способах изучения атмосферы, структуре внешних слоев газовой оболочки планет и горячих юпитерах:

Зона обитаемости

Астрофизик Сергей Попов о параметрах зоны обитаемости, парниковом эффекте и перспективах поиска жизни на экзопланетах:

Как искать экзопланеты?

Как удается найти мир, по размеру напоминающий нашу планету, если он скрывается за десятками световых лет? И насколько сложно отыскать экзопланету земного типа с потенциалом для жизни? Вся грандиозность поставленной проблемы становится понятнее, если вспомнить, что крупные звезды кажутся всего лишь небольшими яркими точками. Некоторые даже в мощные телескопы не удается разглядеть.

Планеты достигают лишь небольшой части от звездной массы. Из-за этого ядерный синтез не активируется. В таком случае миры очень крошечные и темные, что еще больше усложняет работу исследователей. Приплюсуйте к этому и тот момент, что планеты обнаруживаются рядом с яркими звездами, часто закрывающие их своим свечением.

Но для ученых нет ничего невозможного и они всегда находят обходные пути. Если планету нельзя увидеть в прямое наблюдение, то остаются приметные звезды, которые влияют на орбитальный путь планеты. В начале 20-го века астрономы выявили конкретные критерии поиска, но только в последнее время телескопы достигли нужной чувствительности, чтобы применить их на практике и не ошибаться. Какие же есть методы? Перечислим их:

С развитием техники ученым удается открывать все больше экзопланет, чье количество начинает исчисляться уже тысячами. Именно поэтому важно уметь группировать объекты, чтобы разбираться в характеристиках. Но у нас до сих пор мало информации о далеких планетах, поэтому само определение остается неточным.

Астрофизик Сергей Попов об открытии экзопланет, астрономическом спутнике «Кеплер» и спектральных измерениях

Спутники экзопланет

Астрофизик Сергей Попов об образовании Луны, методах регистрации спутников и потенциальной обитаемости экзолун:

Что собою представляет планета?

Давайте разберемся в том, что такое планета. В 2006 году вышел документ Международного астрономического союза (МАС), в котором говорилось, что объект для планетарного статуса должен соответствовать нескольким критериям:

  • совершает обороты вокруг Солнца;
  • обладает необходимой массой, чтобы закрепить круглую форму;
  • устранил мусор и чужеродные объекты с орбиты;

Эти условия появились только после того, как Майк Браун обратил внимание на несколько миров на окраине Солнечной системы. По размеру они напоминали . Пришлось пересмотреть определение и Плутон автоматически перенесли в категорию карликовых планет.

Важно отметить, что это решение не восприняли с энтузиазмом и одобрением. За Плутон заступались не только ученые, но и простые люди. Особенно сильно протестовал Алан Стерн. Он был главным исследователем миссии «Новые горизонты», посетившей Плутон в 2015 году. Он много раз заявлял, что «устранить чужеродные объекты» – слишком расплывчатое требование. Ведь на Земной орбите есть астероиды. Да и фото продемонстрировали сложный и интересный мир, на котором видны горы, замороженные озера и прочие планетарные атрибуты.

Но в МАС отказались что-то менять и сказали, что карликовые планеты представляют такой же научный интерес. Они также упомянули такие крупные тела, как и , на которых заметно много интересных особенностей.

В 2017 году Стерн и несколько других ученых предложили более усовершенствованное определение: «Планета – субзвездный массивный объект, лишенный ядерного синтеза и обладающий достаточной собственной гравитацией, чтобы сформировать сфероид».

Первую экзопланету заметили в 1992 году недалеко от PSR B1257+12 (пульсар). А вот планету у звезды главной последовательности (51 Пегаса b) обнаружили в 1995 году. С того момента телескопу Кеплер удалось отыскать тысячи «земных» планет и проживающих в зоне обитаемости (есть необходимые условия для того, чтобы вода сохранялась в виде жидкости).

Но он также выявил широкое разнообразие планет. Например, были распространены горячие юпитеры. Некоторые были невероятно древние. Достаточно вспомнить PSR 1620-26 b, которая уступает по возрасту Вселенной всего на миллиард лет. Есть те, кому не повезло проживать чересчур близко к звезде, и их атмосфера напоминает ад на Венере. Были найдены экземпляры, которым удается совершать обороты вокруг двух или даже трех звезд сразу.

Конечно, становится понятно, что при таком планетарном разнообразии очень сложно следовать единой системе классификации. Прежде всего исследователи учитывают предрасположенность к наличию жизни. Такие числятся в списке обитаемых экзопланет.

Вот только для этого нужно знать два параметра: массу и орбиту. К сожалению, современная техника все еще не обладает необходимой мощностью, чтобы изучать чужие атмосферы, если только объект не расположен близко и недостаточно крупный. Но все может измениться с появлением в 2018 году телескопа Джеймс Уэбб.

Многообразие планет

Астрофизик Сергей Попов о газовых и ледяных гигантах, системах двойных звезд и одиночных планетах:

Классификация экзопланет

Какие существуют типы экзопланет и что собою представляет классификация? Наверное, самая популярная та, которой пользовались в «Звездном Пути»: населенная планета – класс М. Следуя этой схеме, имеем:

  • D – планетоид или спутник, лишенный атмосферы.
  • H – непригодная для жизни.
  • J – газовый гигант.
  • К – есть жизнь или используются купольные камеры.
  • L – есть растительность, но нет животных.
  • M – наземная.
  • N – серная.
  • R – изгой.
  • T – газовый гигант.
  • Y – токсичная атмосфера и высокий температурный показатель.

Если взять научные схемы, то для распределения используют массу или разнообразие элементов. Массу получают на основе наблюдений в телескоп. Ее вычисляют по лучевой скорости, улавливаемой спектрографами. В таком случае, классификация выглядит так:

Малые планеты, спутники и кометы:

  • астероид: меньше 0.00001 земной массы.
  • меркурианский тип: от 0.00001 до 0.1 земной массы.

Земная группа (скалистые):

  • субтерран: 0.1-0.5 земной массы.
  • терран (земли): 0.5-2 земных масс.
  • супертерран: 2-10 земных масс.

Газовые гиганты:

  • Нептун: 10-50 земных масс.
  • Юпитер: 50-5000 земных масс.

Эволюция экзопланет

Астрофизик Сергей Попов об изменениях орбит планет, сверхземле в Солнечной системе и превращении звезды в красного гиганта:

Современные методы изучения экзопланет

Астрофизик Сергей Попов об открытии экзопланет, астрономическом спутнике «Кеплер» и спектральных измерениях:

Что такое экзопланета? Это планета, которая находится вне пределов Солнечной системы и вращается вокруг звезды. Помимо данного определения существует ещё такое понятие как обитаемая зона (зона Златовласки). Под ней подразумевается условная область в космическом пространстве, где на находящейся в ней планете может существовать вода в жидком состоянии. Если данная характеристика присутствует, то, значит, есть условия для возникновения жизни.

Иоганн Кеплер

Как открывают экзопланеты?

В отличии от звёзд, ярко сияющих в ночном небе Земли , экзопланеты такие тусклые и маленькие, что их почти невозможно разглядеть. Об их существовании в космическом пространстве заговорили только в 1885 году, когда капитан Джейкоб из Мадрасской обсерватории сообщил о присутствии планетарного тела в системе 70 Змееносца (двойная звёздная система в созвездии Змееносца). Однако впоследствии существование этого несветящегося тела было подвергнуто сомнению.

Прошло немало лет, прежде чем очередная внесолнечная планета была обнаружена тремя канадскими астрономами. Найдена она была возле двойной звезды Гамма Цефея в созвездии Цефея. Случилось это в 1988 году, но официальная наука подтвердила это открытие только в 2002 году.

В 1995 году швейцарские астрономы Дидье Келос и Мишель Майор обнаружили внесолнечную планету возле звезды 51 Пегас в созвездии Пегаса. По своим размерам она соответствовала Юпитеру , но находилась очень близко от светила и делала полный оборот вокруг него за 4,23 суток. Назвали её Планета b.

Шестого марта 2009 года NASA запустила телескоп «Кеплер», в задачу которого входило обнаружение экзопланет. Данный аппарат назвали в честь немецкого астронома и математика Иоганна Кеплера. Именно он открыл законы движения планет.

Телескоп оснастили самыми совершенными приборами, способными наблюдать за светом звёзд. Когда несветящееся космическое тело проходит перед звездой, то затмевает её свет. Телескоп при этом фиксирует данное явление, и астрономы выявляют новые внеземные планеты.

Кроме «Кеплера» существует орбитальный телескоп COROT. Он фиксирует кривые блеска звёзд. Запущен данный аппарат 27 декабря 2006 года. Запущена также 19 декабря 2013 года космическая обсерватория Gaia. Её главной задачей является создание трёхмерной карты Млечного пути и обнаружение внесолнечных планет. Имеются и наземные обсерватории, ведущие наблюдение за космосом.

Помимо транзитного метода , определяющего несветящиеся тела на фоне звезды, существует и другие способы поиска экзопланет. Здесь надо назвать метод Доплера , с помощью которого можно обнаружить очень большие планеты, которые по своей массе значительно превосходят Землю. Они, воздействуя на звезду, как бы раскачивают её. В результате этого наблюдается смещение спектра звезды.

Так может выглядеть экзопланета

Используется также гравитационное микролинзирование . Суть его заключается в том, что между астрономом на Земле и звездой, за которой он наблюдает, должна существовать ещё одна звезда. Она берёт на себя роль линзы, то есть фокусирует своим гравитационным полем рассеянный свет наблюдаемой звезды. Вблизи такой звезды-линзы может оказаться планета. Её присутствие проявляется в ассиметричной кривой блеска и отсутствии цветного тона. С помощью данного метода можно определить планеты с маленькой массой, соответствующей земной.

Помимо названных существует астрометрический способ . Он базируется на фиксировании изменения движения звезды под воздействием гравитационных сил планеты. Благодаря астрометрии, можно определять массы таких космических тел.

С Земли также ведётся радионаблюдение за пульсарами . Если возле пульсара есть планеты, то его излучение создаёт в космическом пространстве конические формы, которые указывают на наличие планетарных тел.

Ну и, конечно, экзопланеты можно обнаружить путём прямого наблюдения , изолируя их от света звёзд. Данный способ хорош в тех случаях, когда планетарные тела удалены от светила на значительное расстояние. Они имеют остаточное тепло, сохранившееся после их образования. Указанный метод даёт хороший эффект при наблюдении за молодыми звёздами.

Сколько открыто экзопланет?

В настоящее время у 10% звёзд, которые включены в программу поиска, обнаружены планеты. При этом их количество неуклонно увеличивается. На июль месяц 2015 года насчитывалось 1935 планетарных тел. А вот кандидатов, которые могут стать экзопланетами, больше. Их числится 4695.

В Млечном пути таких космических тел должно быть не менее 100 млрд. При этом около 20 млрд могут оказаться подобными Земле. По современным оценкам у 34% звёзд, подобных Солнцу , в обитаемых зонах имеются планеты, сравнимые по многим характеристикам с нашей.

Специалисты разработали индекс подобия. Он характеризует пригодность той или иной планеты или спутника для жизни. Индекс учитывает такие характеристики как массу, размер, плотность, расстояние до светила, температуру на поверхности.

Для нашей голубой планеты индекс, естественно, равен 1. Для Марса он составляет 0,64, а вот у некоторых экзопланет он достигает 0,8. Так у недавно открытой Kepler-452b данный показатель равен 0,862.

Похожие на Землю экзопланеты, слева направо:
Земля, Kepler-186f, Kepler-62f, Kepler-452b, Kepler-69c, Kepler-22b

Возможна ли жизнь на экзопланетах?

Планеты, находящиеся вне Солнечной системы и имеющие характеристики, близкие к земным, могут иметь жизнь. Вот только она может кардинально отличаться от земной. Для примера рассмотрим уже упомянутый Kepler-452b. Данное небесное тело вращается вокруг звезды Kepler-452, которая находится в созвездии Лебедя и отстоит от Земли на расстоянии в 1400 световых лет. Возраст светила равен 6 млрд лет, то есть оно старше Солнца на 1,5 млрд лет, превосходит его по яркости на 20% и на 10% больше в диаметре.

Что же касается Kepler-452b, то эта экзопланета имеет диаметр в 1,6 раз превышающий земной. Её период обращения вокруг звезды составляет 385 суток. На её поверхности, как предполагается, существуют действующие вулканы, а получаемое от светила тепло не исключает возможность фотосинтеза.

Таких космических тел во Вселенной чрезвычайно много. Отсюда напрашивается совсем простой вывод: жизнь за пределами Солнечной системы возможна . А раз возможна жизнь, то, значит, нельзя исключать и существование разума. Но пока это только предположения и догадки, а вот когда наступит момент истины - неизвестно.

Юрий Сыромятников