Болезни Военный билет Призыв

Что такое световая фаза фотосинтеза. Учитель биологии - фотосинтез. Как происходит процесс фотосинтеза

Тема 3 Этапы фотосинтеза

Раздел 3 Фотосинтез

1.Световая фаза фотосинтеза

2.Фотосинтетическое фосфорилирование

3.Пути фиксации СО 2 при фотосинтезе

4.Фотодыхание

Сущность световой фазы фотосинтеза состоит в поглощении лучистой энергии и ее трансформации в ассимиляционную силу (АТФ и НАДФ-Н), необходимую для восстановления углерода в темновых реакциях. Сложность процессов преобразования свето­вой энергии в химическую требует их строгой мембранной орга­низации. Световая фаза фотосинтеза происходит в гранах хлоро­пласта.

Таким образом, фотосинтетическая мембрана осуществляет очень важную реакцию: она превращает энергию поглощенных квантов све­та в окислительно-восстановительный потенциал НАДФ-Н и в потен­циал реакции переноса фосфорильной группы в молекуле АТФ При этом происходит преобразование энергии из очень короткоживущей ее формы в форму достаточно долгоживущую. Стабилизированная энергия может быть позже использована в биохимических реакциях растительной клетки, в том числе и в реакциях, приводящих к восста­новлению углекислоты.

Пять основных полипептидных комплексов встроены во внутренние мембраны хлоропластов : комплекс фотосистемы I (ФС I), комплекс фотосистемы II (ФСII), светособирающий комплекс II (ССКII), цитохромный b 6 f-комплекс и АТФ-синтаза (CF 0 – CF 1 -комплекс). Комплексы ФСI, ФСII и ССКII содержат пигменты (хлорофиллы, каротиноиды), большинство которых функциониру­ют как пигменты-антенны, собирающие энергию для пигментов реакционных центров ФСI и ФСII. Комплексы ФСI и ФСII, а также цитохромный b 6 f -ком­плекс имеют в своем составе редокс-кофакторы и участвуют в фотосинтети­ческом транспорте электронов. Белки этих комплексов отличаются высоким содержанием гидрофобных аминокислот, что обеспечивает их встраивание в мембрану. АТФ-синтаза (CF 0 – CF 1 -комплекс) осуществляет синтез АТФ. Кроме крупных полипептидных комплексов в мембранах тилакоидов име­ются небольшие белковые компоненты - пластоцианин, ферредоксин и ферредоксин-НАДФ-оксидоредуктаза, расположенные на поверхности мембран. Они входят в электрон-транспортную систему фотосинтеза.

В световом цикле фотосинтеза происходят следующие процессы: 1) фотовозбуждение молекул фотосинтетических пигментов; 2) мигра­ция энергии с антенны на реакционный центр; 3) фотоокисление мо­лекулы воды и выделение кислорода; 4) фотовосстановление НАДФ до НАДФ-Н; 5) фотосинтетическое фосфорилирование, образование АТФ.

Пигменты хлоропластов объединены в функциональные ком­плексы - пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с антенной, состоящей из светособирающих пигментов. Современная схема фотосинтеза высших растений включает две фотохимические реакции, осуществляе­мые с участием двух различных фотосистем. Предположение об их существовании было высказано Р. Эмерсоном в 1957 г. на основании обнаруженного им эффекта усиления действия длин­новолнового красного света (700 нм) совместным освещением более коротковолновыми лучами (650 нм). Впоследствии было установлено, что фотосистема II поглощает более коротковолновые лучи по сравнению с ФСI. Фотосинтез идет эффективно только при их совместном функционировании, что объясняет эффект усиления Эмерсона.


В состав ФСI, в качестве реакционного центра входит димер хлорофилла а с максимумом поглощения света 700 нм (Р 700), а также хлорофиллы а 675-695 , играющие роль антенного компонен­та. Первичным акцептором электронов в этой системе является мономерная форма хлорофилла а 695 , вторичными акцепторами - железосерные белки (-FeS). Комплекс ФСI под действием света восстанавливает железосодержащий белок - ферредоксин (Фд) и окисляет медьсодержащий белок - пластоцианин (Пц).

ФСII включает реакционный центр, содержащий хлорофилл а (Р 680) и антенные пигменты - хлорофиллы а 670-683 . Первичным акцептором электронов является феофитин (Фф), передающий электроны на пластохинон. В состав ФСII входит также белко­вый комплекс S-системы, окисляющий воду, и переносчик элек­тронов Z. Этот комплекс функционирует с участием марганца, хлора и магния. ФСII восстанавливает пластохинон (PQ) и окис­ляет воду с выделением О 2 и протонов.

Связующим звеном между ФСII и ФСI служат фонд пластохинонов, белковый цитохромный комплекс b 6 f и пластоциа­нин.

В хлоропластах растений на каждый реакционный центр при­ходится примерно 300 молекул пигментов, которые входят в состав антенных или светособирающих комплексов. Из ламелл хлоропластов выделен светособирающий белковый комплекс, со­держащий хлорофиллы а и b и каротиноиды (ССК), тесно свя­занный с ФСП, и антенные комплексы, непосредственно входя­щие в состав ФСI и ФСII (фокусирующие антенные компоненты фотосистем). Половина белка тилакоидов и около 60 % хлоро­филла локализованы в ССК. В каждом ССК содержится от 120 до 240 молекул хлорофилла.

Антенный белковый комплекс ФС1 содержит 110 молекул хлорофиллов a 680-695 на один Р 700 , из них 60 молекул - компо­ненты антенного комплекса, который можно рассматривать как ССК ФСI. Антенный комплекс ФСI также содержит b-каротин.

Антенный белковый комплекс ФСII содержит 40 молекул хлорофиллов а с максимумом поглощения 670-683 нм на один Р 680 и b-каротин.

Хромопротеины антенных комплексов не обладают фотохи­мической активностью. Их роль состоит в поглощении и переда­че энергии квантов на небольшое количество молекул реакцион­ных центров Р 700 и Р 680 , каждая из которых связана с цепью транспорта электронов и осуществляет фотохимическую реак­цию. Организация электронно-транспортных цепей (ЭТЦ) при всех молекулах хлорофилла нерациональна, так как даже на пря­мом солнечном свету на молекулу пигмента кванты света попа­дают не чаще одного раза за 0,1 с.

Физические механизмы процессов поглощения, запасания и миграции энер­гии молекулами хлорофилла достаточно хорошо изучены. Поглощение фотона (hν) обусловлено переходом системы в различные энер­гетические состояния. В молекуле в отличие от атома возможны электронные, колебательные и вращательные движения, и общая энергия молекулы равна сумме этих видов энергий. Основной показатель энергии поглощающей систе­мы - уровень ее электронной энергии, определяется энергией внешних элек­тронов на орбите. Согласно принципу Паули, на внешней орбите находятся два электрона с противоположно направленными спинами, в результате чего образуется устойчивая система спаренных электронов. Поглощение энергии света сопровождается переходом одного из электронов на более высокую ор­биту с запасанием поглощенной энергии в виде энергии электронного воз­буждения. Важнейшая характеристика поглощающих систем - избирательность поглощения, определяемая электронной конфигурацией молекулы. В сложной органической молекуле есть определенный набор свободных орбит, на кото­рые возможен переход электрона при поглощении квантов света. Согласно «пра­вилу частот» Бора, частота поглощаемого или испускаемого излучения v дол­жна строго соответствовать разности энергий между уровнями:

ν = (E 2 – E 1)/h,

где h - постоянная Планка.

Каждый электронный переход соответствует определенной полосе погло­щения. Таким образом, электронная структура молекулы определяет характер электронно-колебательных спектров.

Запасание поглощенной энергии связано с возникновением электронно-воз­бужденных состояний пигментов. Физические закономерности возбужденных со­стояний Мg-порфиринов могут быть рассмотрены на основе анализа схемы элек­тронных переходов этих пигментов (рисунок).

Известно два основных типа воз­бужденных состояний - синглетные и триплетные. Они отличаются по энергии и состоянию спина электрона. В синглетном возбужденном состоянии спины электронов на основном и возбужденном уровнях остаются антипараллельны­ми, при переходе в триплетное состояние происходит поворот спина возбужден­ного электрона с образованием бирадикальной системы. При поглощении фото­на молекула хлорофилла переходит из основного (S 0) в одно из возбужденных синглетных состояний – S 1 или S 2 , что сопровождается переходом электрона на возбужденный уровень с более высокой энергией. Возбужденное состояние S 2 очень нестабильно. Электрон быстро (в течение 10 -12 с) теряет часть энергии в виде тепла и опускается на нижний колебательный уровень S 1 , где может находиться в течение 10 -9 с. В состоянии S 1 может произойти обращение спина электрона и переход в триплетное состояние Т 1 , энергия которого ниже S 1 .

Возможно несколько путей дезактивации возбужденных состояний:

· излучение фотона с переходом системы в основное состояние (флуорес­ценция или фосфоресценция);

· перенос энергии на другую молекулу;

· использование энергии возбуждения в фотохимической реакции.

Миграция энергии между молекулами пигментов может осуществляться по следующим механизмам. Индуктивно-резонансный механизм (механизм Фёрстера) возможен при условии, когда переход электрона оптически разрешен и обмен энергией осуществляется по экситонному механизму. Понятие «экситон» означает электронно-возбужденное состояние молекулы, где возбужденный электрон остается связанным с молекулой пигмента и разделения зарядов не происходит. Перенос энергии от возбужденной молекулы пигмента к другой молекуле осуществляется путем безызлучательного переноса энергии возбуж­дения. Электрон в возбужденном состоянии представляет собой осциллиру­ющий диполь. Образующееся при этом переменное электрическое поле может вызвать аналогичные колебания электрона в другой молекуле пигмента при выполнении условий резонанса (равенство энергии между основным и воз­бужденным уровнями) и условий индукции, определяющих достаточно силь­ное взаимодействие между молекулами (расстояние не более 10 нм).

Обменно-резонансный механизм миграции энергии Теренина-Декстера имеет место в том случае, когда переход оптически запрещен и диполь при возбуж­дении пигмента не образуется. Для его осуществления необходим тесный кон­такт молекул (около 1 нм) с перекрыванием внешних орбиталей. В этих усло­виях возможен обмен электронами, находящимися как на синглетных, так и на триплетных уровнях.

В фотохимии имеется понятие о квантовом расходе процесса. Применительно к фотосинтезу этот показатель эффективности превращения световой энергии в хими­ческую энергию показывает, сколько квантов света по­глощено для того, чтобы выделилась одна молекула О 2 . Следует иметь в виду, что каждая молекула фотоактивно­го вещества одновременно поглощает только один квант света. Этой энергии достаточно, чтобы вызвать опреде­ленные изменения в молекуле фотоактивного вещества.

Величина, обратная квантовому расходу, носит название квантового выхода : количество выделенных молекул кислорода или поглощенных молекул углекис­лоты, приходящееся на один квант света. Этот показа­тель меньше единицы. Так, если на усвоение одной молекулы СО 2 расходуется 8 квантов света, то кванто­вый выход составляет 0,125.

Структура электрон-транспортной цепи фотосинтеза и характеристика ее компонентов. Электрон-транспортная цепь фотосинтеза включает довольно большое число компонентов, расположенных в мембранных структу­рах хлоропластов. Практически все компоненты, кроме хинонов, являются белками, содержащими функциональные группы, спо­собные к обратимым окислительно-восстановительным изменениям, и выполняющие функции переносчиков электронов или электронов со­вместно с протонами. Ряд переносчиков ЭТЦ включают металлы (же­лезо, медь, марганец). В качестве важнейших компонентов переноса электронов в фото­синтезе можно отметить следующие группы соединений: цитохромы, хиноны, пиридиннуклеотиды, флавопротеины, а также железопротеины, медьпротеины и марганецпротеины. Местоположение названных групп в ЭТЦ определяется в первую очередь величиной их окисли­тельно-восстановительного потенциала.

Представления о фотосинтезе, в ходе которого выделяется кисло­род, формировалось под влиянием Z-схемы электронного транспорта Р. Хилла и Ф. Бенделла. Эта схема была представлена на основе из­мерения окислительно-восстановительных потенциалов цитохромов в хлоропластах. Электрон-транспортная цепь является местом превращения физической энергии электрона в химическую энергию связей и включает ФС I и ФС II. Z-схема исходит из последовательного функционирования и объе­динения ФСII с ФСI.

Р 700 является первичным донором электронов, является хлорофиллом (по некоторым данным – димером хлорофилла а), передает электрон на промежуточный акцептор и может быть окислен фотохимическим путем. А 0 – промежуточный акцептор электронов – является димером хлорофилла а.

Вторичными акцепторами электронов являются связанные железосерные центры А и В. Элементом структуры железосерных белков является решетка из взаимосвязанных атомов железа и серы, которую называ­ют железосерным кластером.

Ферредоксин, растворимый в стромальной фазе хлоропласта желе­зо-белок, находящийся снаружи мембраны, осуществляет перенос электронов от реакционного центра ФСI к НАДФ в результате обра­зуется НАДФ-Н, необходимый для фиксации СО 2 . Все растворимые ферредоксины фотосинтезирующих организмов, выделяющих кислород (включая цианобактерии), относятся к типу 2Fe-2S.

Компонентом, переносящим электроны, является также цитохром f, связанный с мембраной. Акцептором электронов для связанного с мембраной цитохрома f и непосредственным донором для хлорофилл-белкового ком­плекса реакционного центра является медьсодержащий белок, кото­рый назван «распределительным переносчиком», - пластоцианин.

Хлоропласты также содержат цитохромы b 6 , и b 559 . Цитохром b 6 , яв­ляющийся полипептидом с молекулярной массой 18 кДа, участвует в циклическом переносе электрона.

Комплекс b 6 /f - это интегральный мембранный комплекс полипептидов, содержащий цитохромы типа b и f. Комплекс цитохромов b 6 /f катализирует транспорт электронов между двумя фотосистемами.

Комплекс цитохромов b 6 /f восстанав­ливает небольшой пул водорастворимого металлопротеина - пластоцианин (Пц), который служит для передачи восстановительных эквивалентов на комплекс ФС I. Пластоцианин - небольшой по размеру гидро­фобный металлопротеин, включающий атомы меди.

Участниками первичных реакций в реакционном центре ФС II яв­ляется первичный донор электронов Р 680 , промежуточный акцептор феофитин и два пластохинона (обычно обозначаемые Q и В), распо­ложенные близко к Fe 2+ . Первичным донором электронов является одна из форм хлорофилла а, получившая название Р 680 , поскольку значительное изменение поглощения света наблюдалось при 680 им.

Первичным акцептором электронов в ФС II является пластохинон. Предполагают, что Q является железо-хиноновым комплексом. Вторичным акцептором электронов в ФС II является также пласто­хинон, обозначаемый В, и функционирующий последова­тельно с Q. Система пластохинон/пластохинон переносит одновре­менно с двумя электронами еще два протона и в связи с этим является двухэлектронной редокс-системой. По мере того, как два электрона передаются по ЭТЦ через систему пластохи­нон/пластохинон, два протона переносятся через мембрану тилакоида. Считают, что градиент концентрации протонов, возникающий при этом, и является движущей силой процесса синтеза АТФ. Следствием этого является повышение концентрации протонов внутри тилакоидов и возникнове­ние значительного градиента рН между внешней и внутренней сторо­ной тилакоидной мембраны: из внутренней стороны среда является более кислой, чем из внешней.

2. Фотосинтетическое фосфорилирование

Донором электронов для ФС-2 служит вода. Моле­кулы воды, отдавая электроны, распадаются на свобод­ный гидроксил ОН И протон Н + . Свободные гидро­ксильные радикалы, реагируя друг с другом, дают Н 2 О и О 2 . Предполагается, что при фотоокисле­нии воды принимают участие ионы марганца и хлора в качестве кофакторов.

В процессе фотолиза воды проявляется суть фото­химической работы, осуществляемой при фотосинте­зе. Но окисление воды происходит при условии, что выбитый из молекулы П 680 электрон передается акцеп­тору и далее в электрон-транспортную цепь (ЭТЦ). В ЭТЦ фотосистемы-2 переносчиками элек­тронов служат пластохинон, цитохромы, пластоцианин (белок, содержащий медь), ФАД, НАДФ и др.

Выбитый из молекулы П 700 электрон захватывается белком, содержащим железо и серу, и передается на ферредоксин. В дальнейшем путь этого электрона мо­жет быть двояким. Один из этих путей состоит из по­очередного переноса электрона от ферредоксина че­рез ряд переносчиков снова к П 700 . Затем квант света выбивает следующий электрон из молекулы П 700 . Этот электрон доходит до ферредоксина и снова возвраща­ется к молекуле хлорофилла. Явно прослеживается цикличность процесса. При переносе электрона от ферредоксина энергия электронного возбуждения идет на образование АТФ из АДФ и Н з Р0 4 . Этот вид фото­фосфорилирования назван Р. Арноном циклическим . Циклическое фотофосфорилирование теоретически может протекать и при закрытых устьицах, ибо для него обмен с атмосферой необязателен.

Нециклическое фотофосфорилирование проте­кает с участием обеих фотосистем. В этом случае вы­битые из П 700 электроны и протон Н + доходит до фер­редоксина и переносятся через ряд переносчиков (ФАД и др.) на НАДФ с образованием восстановленно­го НАДФ·Н 2 . Последний, как сильный восстановитель, используется в темновых реакциях фотосинтеза. Одновременно молекула хлорофил­ла П 680 , поглотив квант света, также переходит в воз­бужденное состояние, отдавая один электрон. Пройдя через ряд переносчиков, электрон восполняет элект­ронную недостаточность в молекуле П 700 . Электронная же «дырка» хлорофилла П 680 восполняется за счет элек­трона от иона ОН - - одного из продуктов фотолиза воды. Энергия электрона, выбитого квантом света из П 680 , при переходе через электрон-транспортную цепь к фотосистеме 1 идет на осуществление фотофосфори­лирования. При нециклическом транспорте электронов, как видно из схемы, происходит фотолиз воды и выде­ление свободного кислорода.

Перенос электронов является основой рассмот­ренного механизма фотофосфорилирования. Англий­ский биохимик П. Митчелл выдвинул теорию фото­фосфорилирования, получившую название хемиосмо­тической теории. ЭТЦ хлоропластов, как известно, расположена в мембране тилакоида. Один из пере­носчиков электронов в ЭТЦ (пластохинон), по гипо­тезе П. Митчелла, переносит не только электроны, но и протоны (Н +), перемещая их через мембрану ти­лакоида в направлении снаружи внутрь. Внутри мем­браны тилакоида с накоплением протонов среда подкисляется и в связи с этим возникает градиент рН: наружная сторона становится менее кислой, чем внутренняя. Этот градиент повышается также благо­даря поступлению протонов - продуктов фотолиза воды.

Разность рН между наружной стороной мембра­ны и внутренней создает значительный источник энергии. С помощью этой энергии протоны по осо­бым канальцам в специальных грибовидных вырос­тах на наружной стороне мембраны тилакоида выб­расываются наружу. В указанных каналах находится фактор сопряжения (особый белок), который спосо­бен принимать участие в фотофосфорилировании. Предполагается, что таким белком является фермент АТФаза, катализирующий реакцию распада АТФ, но при наличии энергии перетекающих сквозь мембра­ну протонов - и ее синтез. Пока существует гради­ент рН и, следовательно, пока происходит перемеще­ние электронов по цепи переносчиков в фотосисте­мах, будет происходить и синтез АТФ. Подсчитано, что на каждые два электрона, прошедшие через ЭТЦ внутри тилакоида, накапливается четыре протона, а на каждые три протона, выброшенные с участием фактора сопряжения из мембраны наружу, синтези­руется одна молекула АТФ.

Таким образом, в результате световой фазы за счет энергии света образуются АТФ и НАДФН 2 , использу­емые в темновой фазе, а продукт фотолиза воды О 2 выделяется в атмосферу. Суммарное уравнение свето­вой фазы фотосинтеза может быть выражено так:

2Н 2 О + 2НАДФ + 2 АДФ + 2 Н 3 РО 4 → 2 НАДФН 2 + 2 АТФ + О 2

Мембраны тилакоидов содержат большое количество белков и низкомолекулярных пигментов, как свободных, так и соединенных с белками, которые объединены в два сложно устроенных комплекса, называемых фотосистема I и фотосистема I I. Ядром каждой из этих фотосистем является белок, содержащий зеленый пигмент хлорофилл , способный поглощать свет в красной области спектра. Входящие в состав фотосинтетических комплексов разнообразные пигменты способны улавливать даже очень слабый свет и передавать его энергию на хлорофилл, в связи с этим фотосинтез может идти даже при незначительном освещении (например, в тени деревьев или в пасмурную погоду).

Поглощение кванта света молекулой хлорофилла фотосистемы II приводит к ее возбуждению, а именно, один из электронов при этом переходит на более высокий энергетический уровень. Данный электрон передается на цепь переносчиков электронов, а точнее, на пигменты и белки-цитохромы, растворенные в мембране тилакоида, чем-то напоминающие цитохромы внутренней мембраны митохондрий (см. рисунок). По аналогии с митохондриальной цепью переноса электронов, происходит снижение энергии электрона при его передаче от переносчика к переносчику. Часть его энергии уходит на перенос протонов через мембрану из стромы хлоропласта внутрь тилакоида. На мембране тилакоида, таким образом, появляется градиент концентрации протонов . Данный градиент может быть использован специальным ферментом АТФ-синтетазой для синтеза АТФ из АДФ и Н 3 РО 4 (Ф н). Т.е. в хлоропластах реализован тот же, так называемый, принцип «плотины», который был рассмотрен раньше на примере митохондрий. Синтез АТФ во время световой фазы фотосинтеза называют фотофосфорилированием . Это название связано с тем, что при этом используется энергия солнечного света. Отличительной чертой окислительного фосфорилирования в митохондриях является то, что энергия для синтеза АТФ образуется при окислении органических субстратов (см. раздел « «).

Восстановление окисленного хлорофилла, который «потерял» электрон, фотосистемы II происходит в результате деятельности специального фермента, разлагающего молекулу воды, отбирая у нее (молекулы) электроны:

Н 2 О —> 2e — + 2Н + + 1/2О 2

Вышеуказанный процесс назван фотолизом воды , а протекает он на внутренней стороне мембраны тилакоидов. Этот процесс приводит к еще большему увеличению градиента концентрации протонов на мембране, а следовательно, к дополнительному синтезу АТФ.

Т.е., можно сказать, что вода является «поставщиком» электронов для хлорофилла. Побочным продуктом этой реакции является молекулярный кислород, который за счет диффузии покидает хлоропласты и через устьица выделяется в атмосферу.

Попробуем проследить дальше «судьбу» электронов, отрываемых от хлорофилла фотосистемы II. Они проходят по цепи переносчиков и попадают в реакционный центр фотосистемы I, так же содержащий молекулу хлорофилла. Эта молекула хлорофилла так же поглощает квант света и передает его энергию одному из электронов, поднимая его при этом на более высокий энергетический уровень. Электрон, проходя по цепи специальных белков-переносчиков, передается молекуле НАДФ+. Эта молекуле НАДФ + получает в следующем цикле еще один электрон, захватывает протон из стромы хлоропласта и восстанавливается до НАДФН.

Итак, электроны, которые были «оторванны» от молекулы воды, получают высокую энергию благодаря поглощению квантов света хлорофиллами фотосистем II и I, затем, пройдя по цепи переносчиков, восстанавливают НАДФ + . Частично энергия этих электронов тратится на перенос протонов через мембрану тилакоида и создание градиента их концентрации. Затем энергия градиента протонов будет использована для синтеза АТФ ферментом АТФ-синтазой.

Фотосинтез — уникальная система процессов создания с помощью хлоро-филла и энергии света органических веществ из неорганических и выделения кислорода в атмосферу, реализуемая в огромных масштабах на суше и в воде.

Все процессы темновой фазы фотосинтеза идут без непосредственного потребления света, но в них большую роль играют высокоэнергетические ве-щества (АТФ и НАДФ.Н), образующиеся с участием энергии света, во время световой фазы фотосинтеза. В процессе темновой фазы энергия макроэнергетических связей АТФ преобразуется в химическую энергию органических соединений молекул углеводов. Это значит, что энергия солнечного света как бы консервируется в химических связях между атомами органических ве-ществ, что имеет огромное значение в энергетике биосферы и конкретно для жизнедеятельности всего живого населения нашей планеты.

Фотосинтез происходит в хлоропластах клетки и представляет собой синтез углеводов в хлорофиллоносных клетках, идущий с потреблением энергии сол-нечного света. Различают световую и темповую фазы фотосинтеза. Световая фаза при непосредственном потреблении квантов света обеспечивает про-цесс синтеза необходимой энергией в виде НАДН и АТФ. Темновая фаза — без участия света, но путем многочисленного ряда химических реакций (цикл Кальвина) обеспечивает образование углеводов, главным образом глюкозы. Значение фотосинтеза в биосфере огромно.

На этой странице материал по темам:

  • Фотосинтез световая и темновая фазы реферат

  • Темновая фаза фотосинтеза тест решать

  • Световая фаза и темновая процессы

  • Доклад на тему темновая фаза фотосинтеза

  • Световые реакции фотосинтеза протекают в

Вопросы по этому материалу:

Как объяснить такой сложный процесс, как фотосинтез, кратко и понятно? Растения являются единственными живыми организмами, которые могут производить свои собственные продукты питания. Как они это делают? Для роста и получают все необходимые вещества из окружающей среды: углекислый газ - из воздуха, воду и - из почвы. Также они нуждаются в энергии, которую получают из солнечных лучей. Эта энергия запускает определенные химические реакции, во время которых углекислый газ и вода превращаются в глюкозу (питание) и и есть фотосинтез. Кратко и понятно суть процесса можно объяснить даже детям школьного возраста.

"Вместе со светом"

Слово "фотосинтез" происходит от двух греческих слов - "фото" и "синтез", сочетание который в переводе означает "вместе со светом". В солнечная энергия преобразуется в химическую энергию. Химическое уравнение фотосинтеза:

6CO 2 + 12H 2 O + свет = С 6 Н 12 О 6 + 6O 2 + 6Н 2 О.

Это означает, что 6 молекул углекислого газа и двенадцать молекул воды используются (вместе с солнечным светом) для производства глюкозы, в итоге образуются шесть молекул кислорода и шесть молекул воды. Если изобразить это в виде словесного уравнения, то получится следующее:

Вода + солнце => глюкоза + кислород + вода.

Солнце является очень мощным источником энергии. Люди всегда стараются использовать его для выработки электричества, утепления домов, нагревания воды и так далее. Растения "придумали", как использовать солнечную энергию еще миллионы лет назад, потому что это было нужно для их выживания. Фотосинтез кратко и понятно можно объяснить таким образом: растения используют световую энергию солнца и преобразуют ее в химическую энергию, результатом которой является сахар (глюкоза), избыток которого хранится в виде крахмала в листьях, корнях, стеблях и семенах растения. Энергия солнца передается растениям, а также животным, которые эти растения едят. Когда растение нуждается в питательных веществах для роста и других жизненных процессов, эти запасы оказываются очень полезными.

Как растения поглощают энергию солнца?

Рассказывая про фотосинтез кратко и понятно, стоит затронуть вопрос о том, каким образом растениям удается поглощать солнечную энергию. Это происходит благодаря особой структуре листьев, включающей в себя зеленые клетки - хлоропласты, которые содержат специальное вещество под названием хлорофилл. Это который придает листьям зеленый цвет и отвечает за поглощение энергии солнечного света.


Почему большинство листьев широкие и плоские?

Фотосинтез происходит в листьях растений. Удивительным фактом является то, что растения очень хорошо приспособлены для улавливания солнечного света и поглощения углекислого газа. Благодаря широкой поверхности будет захватываться гораздо больше света. Именно по этой причине солнечные панели, которые иногда устанавливают на крышах домов, также широкие и плоские. Чем больше поверхность, тем лучше происходит поглощение.

Что еще важно для растений?

Как и люди, растения также нуждаются в полезных и питательных веществах, чтобы сохранить здоровье, расти и выполнять хорошо свои жизненные функции. Они получают растворенные в воде минеральные вещества из почвы через корни. Если в почве не хватает минеральных питательных веществ, растение не будет развиваться нормально. Фермеры часто проверяют почву для того, чтобы убедиться, что в ней имеется достаточное количество питательных веществ для роста культур. В противном случае прибегают к использованию удобрений, содержащих основные минералы для питания и роста растений.

Почему фотосинтез так важен?

Объясняя фотосинтез кратко и понятно для детей, стоит рассказать, что этот процесс является одной из наиболее важных химических реакций в мире. Какие существуют причины для такого громкого утверждения? Во-первых, фотосинтез кормит растения, которые, в свою очередь, кормят всех остальных живых существ на планете, включая животных и человека. Во-вторых, в результате фотосинтеза в атмосферу выделяется необходимый для дыхания кислород. Все живые существа вдыхают кислород и выдыхают углекислый газ. К счастью, растения делают все наоборот, поэтому они очень важны для человека и животных, так как дают им возможность дышать.

Удивительный процесс

Растения, оказывается, тоже умеют дышать, но, в отличие от людей и животных, они поглощают из воздуха углекислый газ, а не кислород. Растения тоже пьют. Вот почему нужно поливать их, иначе они умрут. При помощи корневой системы вода и питательные вещества транспортируются во все части растительного организма, а через маленькие отверстия на листиках происходит поглощение углекислого газа. Пусковым механизмом для запуска химической реакции является солнечный свет. Все полученные продукты обмена используются растениями для питания, кислород выделяется в атмосферу. Вот так можно объяснить кратко и понятно, как происходит процесс фотосинтеза.

Фотосинтез: световая и темновая фазы фотосинтеза

Рассматриваемый процесс состоит из двух основных частей. Существуют две фазы фотосинтеза (описание и таблица - далее по тексту). Первая называется световой фазой. Она происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента АТФ-синтетазы. Что еще скрывает фотосинтез? Световая и сменяют друг друга по мере наступления дня и ночи (циклы Кальвина). Во время темновой фазы происходит производство той самой глюкозы, пищи для растений. Этот процесс называют еще независимой от света реакцией.

Световая фаза Темновая фаза

1. Реакции, происходящие в хлоропластах, возможны только при наличии света. В этих реакциях энергия света преобразуется в химическую энергию

2. Хлорофилл и другие пигменты поглощают энергию от солнечного света. Эта энергия передается на фотосистемы, ответственные за фотосинтез

3. Вода используется для электронов и ионов водорода, а также участвует в производстве кислорода

4. Электроны и ионы водорода используются для создания АТФ (молекула накопления энергии), которая нужна в следующей фазе фотосинтеза

1. Реакции внесветового цикла протекают в строме хлоропластов

2. Углекислый газ и энергия от АТФ используются в виде глюкозы

Заключение

Из всего вышесказанного можно сделать следующие выводы:

  • Фотосинтез - это процесс, который позволяет получать энергию от солнца.
  • Световая энергия солнца преобразуется в химическую энергию хлорофиллом.
  • Хлорофилл придает растениям зеленый цвет.
  • Фотосинтез происходит в хлоропластах клеток листьев растений.
  • Углекислый газ и вода необходимы для фотосинтеза.
  • Углекислый газ поступает в растение через крошечные отверстия, устьица, через них же выходит кислород.
  • Вода впитывается в растение через его корни.
  • Без фотосинтеза в мире не было бы еды.

Основные понятия и ключевые термины: фотосинтез. Хлорофилл. Световая фаза. Темновая фаза.

Вспомните! Что такое пластический обмен?

Подумайте!

Зелёный цвет довольно часто упоминается в стихах поэтов. Так, у Богдана-Игоря Анто-нича есть строки: «...поэзии кипучей и мудрой, как зелень», «...метель зелени, пожар зелени»,

«...растительных рек возвышается зелёное наводнение». Зелёный цвет - это цвет обновления, символ молодости, спокойствия, цвет природы.

А почему растения зелёные?

Каковы условия фотосинтеза?

Фотосинтез (от греч. фото - свет, синтезис - сочетание) - чрезвычайно сложная совокупность процессов пластического обмена. Учёные выделяют три типа фотосинтеза: кислородный (с выделением молекулярного кислорода у растений и цианобактерий), безкислородный (при участии бактериохлорофилла в анаэробных условиях без выделения кислорода у фотобактерий) и бесхлорофиловый (при участии бактери-ородопсинов у архей). На глубине 2,4 км обнаружены зелёные серобактерии GSB1, которые вместо солнечного света используют слабые лучи чёрных курильщиков. Но, как писал К. Свенсон в монографии, посвящённой клеткам: «Первичным источником энергии для живой природы является энергия видимого света».

Наиболее распространённым в живой природе является кислородный фотосинтез, для которого необходимы энергия света, углекислый газ, вода, ферменты и хлорофилл. Свет для фотосинтеза поглощается хлорофиллом, вода доставляется в клетки сквозь поры клеточной стенки, углекислый газ поступает в клетки путём диффузии.

Основными фотосинтезирующими пигментами являются хлорофиллы. Хлорофилы (от греч. хлорос - зелёный и филон - листок) -зелёные пигменты растений, при участии которых происходит фотосинтез. Зелёный цвет хлорофилла - это приспособление для поглощения синих лучей и частично красных. А зелёные лучи отражаются от тела растений, попадают на сетчатку глаза человека, раздражают колбочки и вызывают цветные зрительные ощущения. Вот почему растения зелёные!

Кроме хлорофиллов у растений есть вспомогательные каротиноиды, у цианобактерий и красных водорослей - фикобилины. Зелёные

и пурпурные бактерии содержат бактериохлорофиллы, поглощающие синие, фиолетовые и даже инфракрасные лучи.

Фотосинтез происходит у высших растений, водорослей, цианобактерий, некоторых архей, то есть у организмов, известных как фото-автотрофы. Фотосинтез у растений осуществляется в хлоропластах, у цианобактерий и фотобактерий - на внутренних впячиваниях мембран с фотопигментами.

Итак, ФОТОСИНТЕЗ - процесс образования органических соединений из неорганических с использованием световой энергии и при участии фотосинтезирующих пигментов.

Каковы особенности световой и темновой фаз фотосинтеза?

В процессе фотосинтеза выделяют две стадии - световую и темно-вую фазы (ил. 49).

Световая фаза фотосинтеза происходит в гранах хлоропластов с участием света. Эта стадия начинается с момента поглощения квантов света молекулой хлорофилла. При этом электроны атома магния в молекуле хлорофилла переходят на более высокий энергетический уровень, накапливая потенциальную энергию. Значительная часть возбуждённых электронов передаёт её другим химическим соединениям для образования АТФ и восстановления НАДФ (никотинамид-адениндинуклеотидфосфат). Это соединение с таким длинным названием является универсальным биологическим переносчиком водорода в клетке. Под действием света происходит процесс разложения воды - фотолиз. При этом образуются электроны (е“), протоны (Н+) и как побочный продукт молекулярный кислород. Протоны водорода Н+, присоединяя электроны с высоким энергетическим уровнем, превращаются в атомарный водород, используемый для восстановления НАДФ+ до НАДФ. Н. Таким образом, основными процессами световой фазы являются: 1) фотолиз воды (расщепление воды под действием света с образованием кислорода); 2) восстановление НАДФ (присоединение к НАДФ атома водорода); 3) фотофосфорилирование (образование АТФ из АДФ).

Итак, светловая фаза - совокупность процессов, обеспечивающих образование молекулярного кислорода, атомарного водорода и АТФ за счёт световой энергии.


Темновая фаза фотосинтеза происходит в строме хлоропластов. Её процессы не зависят от света и могут протекать как на свету, так и в темноте, в зависимости от потребностей клетки в глюкозе. Основой темновой фазы являются циклические реакции под названием цикла фиксации углекислого газа, или цикла Кальвина. Этот процесс впервые изучил американский биохимик Мелвин Кальвин (1911 - 1997), лауреат Нобелевской премии по химии (1961). В темновой фазе из углекислого газа, водорода от НАДФ и энергии АТФ синтезируется глюкоза. Реакции фиксации СО 2 катализирует рибулозобисфосфаткар-боксилаза (Rubisco) - самый распространенный фермент на Земле.

Итак, темновая фаза - совокупность циклических реакций, которые благодаря химической энергии АТФ обеспечивают образование глюкозы с использованием углекислого газа, являющегося источником углерода, и воды - источника водорода.

В чём заключается планетарная роль фотосинтеза?

Значение фотосинтеза для биосферы трудно переоценить. Именно благодаря этому процессу световая энергия Солнца превращается фото-автотрофами в химическую энергию углеводов, которые в общем дают первичное органическое вещество. С него начинаются цепи питания, по которым энергия передаётся гетеротрофным организмам. Растения служат кормом травоядным животным, которые получают за счёт этого необходимые питательные вещества. Затем травоядные животные становятся пищей для хищников, им также необходима энергия, без которой жизнь невозможна.

Только незначительная часть энергии Солнца улавливается растениями и используется для фотосинтеза. Энергия Солнца в основном идёт на испарение и поддержание температурного режима земной поверхности. Итак, только около 40 - 50% энергии Солнца проникает в биосферу, и только 1 - 2% солнечной энергии превращается в синтезированное органическое вещество.

Зелёные растения и цианобактерии влияют на газовый состав атмосферы. Весь кислород современной атмосферы является продуктом фотосинтеза. Формирование атмосферы полностью изменило состояние земной поверхности, сделало возможным появление аэробного дыхания. В дальнейшем в процессе эволюции, после образования озонового слоя, живые организмы осуществили выход на сушу. Кроме того, фотосинтез препятствует накоплению СО 2 , защищает планету от перегревания.

Итак, фотосинтез имеет планетарное значение, обеспечивая существование живой природы планеты Земля.


ДЕЯТЕЛЬНОСТЬ Задание на сопоставление

С помощью таблицы сравните фотосинтез с аэробным дыханием и сделайте вывод о взаимосвязи пластического и энергетического обмена.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ФОТОСИНТЕЗА И АЭРОБНОГО ДЫХАНИЯ

Задание на применение знаний

Распознайте и назовите уровни организации процесса фотосинтеза у растений. Назовите приспособления растительного организма к фотосинтезу на разных уровнях его организации.

ОТНОШЕНИЕ Биология + Литература

К. А. Тимирязев (1843 - 1920), один из наиболее известных исследователей фотосинтеза, написал: «Микроскопическое зелёное зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия Солнца, а с другого берут начало все проявления жизни на Земле. Оно настоящий Прометей, похитивший огонь с неба. Похищенный им луч солнца горит и в мерцающей бездне, и в ослепительной искре электричества. Луч солнца приводит в движение и маховик гигантской паровой машины, и кисть художника, и перо поэта». Примените свои знания и докажите утверждение о том, что луч Солнца приводит в движение перо поэта.

Задания для самоконтроля

1. Что такое фотосинтез? 2. Что такое хлорофилл? 3. Что такое световая фаза фотосинтеза? 4. Что такое темновая фаза фотосинтеза? 5. Что такое первичное органическое вещество? 6. Как фотосинтез определяет аэробное дыхание организмов?

7. Каковы условия фотосинтеза? 8. Каковы особенности световой и темновой фаз фотосинтеза? 9. В чём заключается планетарная роль фотосинтеза?

10. В чём сходство и различие фотосинтеза и аэробного дыхания?

Это материал учебника