Болезни Военный билет Призыв

Что такое квантовая точка. Квантовые точки. Квантовые точки в биологии и медицине

«Квантовые точки - это искусственные атомы, свойствами которых можно управлять »

Ж.И. Алферов, лауреат Нобелевской премии 2000г. по физике за развитие полупроводниковых гетероструктур для высокоскоростной и оптоэлектроники

Квантовые точки (КТ) - это изолированные нанообъекты, свойства которых существенно отличаются от свойств объемного материала такого же состава. Сразу следует отметить, что квантовые точки являются скорее математической моделью, нежели реальными объектами. И связано это с невозможностью формирования полностью обособленных структур - малые частицы всегда взаимодействуют с окружающей средой, находясь в жидкой среде или твердой матрице.

Чтобы разобраться в том, что такое квантовые точки, и понять их электронное строение, представьте себе древнегреческий амфитеатр. Теперь вообразите, что на сцене разворачивается увлекательное представление, а зрительские ряды наполнены публикой, пришедшей посмотреть игру актеров. Так вот оказывается, что поведение людей в театре во многом похоже на поведение электронов квантовой точки (КТ). Во время представления актеры передвигаются по арене, не выходя в зрительский зал, а сами зрители следят за действием со своих мест и не спускаются на сцену. Арена - это нижние заполненные уровни квантовой точки, а зрительские ряды - возбужденные электронные уровни, обладающие более высокой энергией. При этом как зритель может находиться в любом ряду зала, так и электрон способен занять любой энергетический уровень квантовой точки, но не может располагаться между ними. Покупая в кассах билеты на представление, все стремились получить самые лучшие места - как можно ближе к сцене. Действительно, ну кто же захочет сидеть в последнем ряду, откуда лицо актера не рассмотришь даже в бинокль! Поэтому, когда перед началом представления зрители рассаживаются, все нижние ряды зала оказываются заполнены, также как в стационарном состоянии КТ, обладающем наименьшей энергией, нижние энергетические уровни полностью заняты электронами. Однако во время представления кто-то из зрителей может покинуть свое место, например, потому что музыка на сцене слишком громко играет или просто сосед неприятный попался, и пересесть на свободный верхний ряд. Вот так и в КТ электрон под действием внешнего воздействия вынужден переходить на более высокий, не занятый другими электронами энергетический уровень, приводя к образованию возбужденного состояния квантовой точки. Наверное, Вам интересно, что при этом происходит с тем пустым местом на энергетическом уровне, где раньше был электрон - так называемой дыркой? Оказывается, посредством зарядовых взаимодействий электрон остается с ней связан и в любой момент может перейти обратно, также как пересевший зритель всегда может передумать и вернуться на обозначенное в его билете место. Пару “электрон-дырка” называют «экситоном» от английского слова “excited”, что означает “возбужденный”. Миграция между энергетическими уровнями КТ, аналогично подъему или спуску одного из зрителей, сопровождается изменением энергии электрона, что соответствует поглощению или излучению кванта света (фотона) при переходе электрона соответственно на более высокий или низкий уровень. Описанное выше поведение электронов в квантовой точке приводит к нехарактерному для макрообъектов дискретному энергетическому спектру, за который КТ часто называют искусственными атомами, в которых уровни электрона дискретны.

Сила (энергия) связи дырки и электрона определяет радиус экситона, который является характеристической величиной для каждого вещества. Если размер частицы меньше радиуса экситона, то экситон оказывается ограничен в пространстве ее размерами, а соответствующая энергия связи значительно изменяется по сравнению с объемным веществом (см. «квантоворазмерный эффект»). Не трудно догадаться, что если энергия экситона изменяется, то изменяется и энергия фотона, излучаемого системой при переходе возбужденного электрона на свое исходное место. Таким образом, получая монодисперсные коллоидные растворы наночастиц различных размеров, можно управлять энергиями переходов в широком диапазоне оптического спектра.

Первыми квантовыми точками были наночастицы металлов, которые синтезировали еще в древнем Египте для окрашивания различных стекол (кстати, рубиновые звезды Кремля получены по близкой технологии), хотя более традиционными и широко известными КТ являются выращенные на подложках полупроводниковые частицы GaN и коллоидные растворы наноокристаллов CdSe. В настоящий момент известно множество способов получения квантовых точек, например, их можно «вырезать» из тонких слоев полупроводниковых «гетероструктур» с помощью «нанолитографии», а можно спонтанно сформировать в виде наноразмерных включений структур полупроводникового материала одного типа в матрице другого. Методом «молекулярно-пучковой эпитаксии» при существенном отличии параметров элементарной ячейки подложки и напыляемого слоя можно добиться роста на подложке пирамидальных квантовых точек, за исследование свойств которых академику Ж.И.Алферову была присуждена Нобелевская премия. Контролируя условия процессов синтеза, теоретически можно получать квантовые точки определенных размеров с заданными свойствами.

Квантовые точки до сих пор являются «молодым» объектом исследования, но уже вполне очевидны широкие перспективы их использования для дизайна лазеров и дисплеев нового поколения. Оптические свойства КТ используются в самых неожиданных областях науки, в которых требуется перестраиваемые люминесцентные свойства материала, например, в медицинских исследованиях с их помощью оказывается возможным “подсветить” больные ткани. Люди, мечтающие о «квантовых компьютерах», видят в квантовых точках перспективных кандидатов для построения кубитов.

Литература

Н. Кобаяси. Введение в нанотехнологию. М.: БИНОМ. Лаборатория знаний, 2007, 134 с.

В.Я. Демиховский, Г.А. Вугальтер Физика квантовых низкоразмерных структур. М.: Логос, 2000.



Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - h/(2md^2), где:

  1. h - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

  1. ħ - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Теги: Добавить метки

June 14th, 2018

Квантовая точка — фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах.

Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как — ħ/(2md^2), где:
ħ — приведённая постоянная Планка;
d — характерный размер точки;
m — эффективная масса электрона на точке

Если же говорить простым языком то квантовая точка — это полупроводник, электрические характеристики которого зависят от его размера и формы.
Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек
Различают два типа:
эпитаксиальные квантовые точки;
коллоидные квантовые точки.

По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов. Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации — также в полярных растворителях.

Конструкция квантовых точек
Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях
История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?
Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.

Жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный, зеленый, синий).

Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Стоит отметь что область применения квантовых точек не ограничивается только LED — мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками
В телевизорах QLED в качестве источника света выступают квантовые точки — это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением. Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10-12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2-3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек. В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

Ученые построили теорию формирования широко распространенного класса квантовых точек, которые получают из содержащих кадмий и селен соединений. В течение 30 лет разработки в этом направлении во многом полагались лишь на метод проб и ошибок. Статья опубликована в журнале Nature Communications.

Квантовые точки — это наноразмерные кристаллические полупроводники с примечательными оптическими и электронными свойствами, благодаря которым они уже нашли применение во многих областях исследований и технологий. Они обладают промежуточными свойствами между объемными полупроводниками и отдельными молекулами. Однако в процессе синтеза этих наночастиц остаются неясные моменты, так как полностью понять, как взаимодействуют реагенты, некоторые из которых высокотоксичны, ученые не смогли.

Тодд Краусс и Ли Френетт из Рочестерского университета собираются изменить эту ситуацию. В частности, они выяснили, что в процессе реакции синтеза появляются токсичные соединения, которые использовали для получения первых квантовых точек 30 лет назад. «По сути дела мы отправились "назад в будущее" благодаря нашему открытию, — поясняет Краусс. — Оказалось, что применяемые сегодня более безопасные реактивы превращаются именно в те самые вещества, использование которых пытались избежать десятилетиями. Они же, в свою очередь, реагируют с образованием квантовых точек».

Во-первых, оно уменьшит количество догадок при производстве квантовых точек на основе кадмия или селена, что приводило к несоответствиям и невоспроизводимости, мешавшим поиску промышленного применения.
Во-вторых, предупредит исследователей и компании, работающие с синтезом квантовых точек в больших объемах, что они по-прежнему имеют дело с такими опасными веществами, как селеноводород и алкил-кадмиевые комплексы, хотя и неявно.
В-третьих, прояснит химические свойства фосфинов, применяемых во многих процессах синтеза квантовых точек при высокой температуре.

Источники:

Для того чтобы получить общее представление о свойствах материальных предметов и законах, в соответствии с которыми «живет» привычный каждому макромир, вовсе не обязательно заканчивать высшее учебное заведение, ведь ежедневно каждый сталкивается с их проявлениями. Хотя в последнее время все чаще упоминается принцип подобия, сторонники которого утверждают, что микро и макромир весьма схожи, тем не менее, разница, все же, есть. Особенно это заметно при очень незначительных размерах тел и объектов. Квантовые точки, иногда называемые наноточками, как раз представляют собой один из этих случаев.

Меньше меньшего

Давайте вспомним классическое устройство атома, например, водорода. Он включает в себя ядро, которое благодаря присутствию в нем положительно заряженного протона обладает плюсовым то есть +1 (так как водород - первый элемент в таблице Менделеева). Соответственно, на определенном расстоянии от ядра находится электрон (-1), формируя электронную оболочку. Очевидно, что если увеличить значение то это повлечет за собой присоединение новых электронов (напомним: в целом атом электрически нейтрален).

Расстояние между каждым электроном и ядром определяется уровнями энергии отрицательно заряженных частиц. Каждая орбита является постоянной, суммарная конфигурация частиц определяет материал. Электроны могут перескакивать с одной орбиты на другую, поглощая или выделяя энергию посредством фотонов той или иной частоты. На наиболее удаленных орбитах находятся электроны с максимальным уровнем энергии. Что интересно, сам фотон проявляет двойственную природу, определяясь одновременно как безмассовая частица и электромагнитное излучение.

Само слово «фотон» греческого происхождения, оно означает «частица света». Следовательно, можно утверждать, что при смене электроном своей орбиты, он поглощает (выделяет) квант света. В данном случае уместно объяснить смысл другого слова - «квант». На самом деле ничего сложного нет. Слово произошло от латинского «quantum», что дословно переводится как наименьшее значение любой физической величины (здесь - излучения). Поясним на примере, что такое квант: если бы при измерении веса наименьшей неделимой величиной являлся миллиграмм, то его можно было бы так назвать. Вот так просто объясняется, казалось бы, сложный термин.

Квантовые точки: разъяснение

Часто в учебниках можно встретить следующее определение для наноточки - это чрезвычайно маленькая частица какого-либо материала, размеры которой сопоставимы с величиной излучаемой длины волны электрона (полный спектр охватывает предел от 1 до 10 нанометров). Внутри нее значение единичного носителя отрицательного заряда меньше, чем вне, поэтому электрон ограничен в перемещениях.

Однако термин «квантовые точки» может быть объяснен иначе. Электрон, поглотивший фотон, «поднимается» на более высокую энергетическую ступень, а на его месте образуется «недостача» - так называемая дырка. Соответственно, если электрон обладает -1 зарядом, то дырка +1. Стремясь вернуться к прежнему устойчивому состоянию, электрон испускает фотон. Связь носителей зарядов «-» и «+» в данном случае носит название экситон и в физике понимается как частица. Ее размер зависит от уровня поглощенной энергии (более высокой орбиты). Квантовые точки как раз и являются этими частицами. Частота излучаемой электроном энергии непосредственно зависит от размера частицы данного материала и экситона. Стоит отметить, что в основе цветового восприятия света человеческим глазом лежит различная