Болезни Военный билет Призыв

Значение числа эйлера. История числа е

Число появилось сравнительно недавно. Его иногда называют "неперовым числом" в честь изобретателя логарифмов шотландского математика Джона Непера (1550-1617), однако необоснованно, так как нет твёрдых оснований для утверждения, что Непер имел о числе е чёткое представление" . Впервые обозначение "е " ввёл Леонард Эйлер (1707-1783). Он также вычислил точные 23 десятичные знака этого числа, использовав представление числа е в виде бесконечного числового ряда: полученное Даниилом Бернули (1700-1782). "В 1873 году Эрмит доказал трансцендентность числа е .Л. Эйлер получил замечательный результат, связывающий числа е , p, и: . Ему принадлежит и заслуга определения функции для комплексных значений z , что положило начало математическому анализу в комплексной области - теории функций комплексного переменного" . Эйлером были получены следующие формулы: Рассматривают логарифмы по основанию е , называемые натуральными и обозначаются Lnx .

Способы определения

Число e может быть определено несколькими способами.

Через предел:

(второй замечательный предел) .

Как сумма ряда:

Как единственное число a , для которого выполняется

Как единственное положительное число a , для которого верно

Свойства

Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения является функция, где c - произвольная константа.

Число e иррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 году Шарлем Эрмитом. Предполагается, что e - нормальное число, то есть вероятность появления разных цифр в его записи одинакова.

См. формула Эйлера, в частности

Ещё одна формула, связывающая числа е и р , т. н. "интеграл Пуассона" или "интеграл Гаусса"

Для любого комплексного числа z верны следующие равенства:

Число e разлагается в бесконечную цепную дробь следующим образом:


Представление Каталана:

История

Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы "Описание удивительной таблицы логарифмов" (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).

Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Лейбница Гюйгенсу, 1690-1691 годы.

Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа "Механика, или Наука о движении, изложенная аналитически" 1736 год. Соответственно, e обычно называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c , буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential ("показательный", "экспоненциальный"). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой "свободной" буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ) [источник не указан 334 дня ] .

ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ

ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»

Учитель Математики Высшей категории

Число e

Число впервые появилось в математике как нечто незначительное. Это случилось в 1618 г. В приложении к работе Непера (Napier) по логарифмам была дана таблица натуральных логарифмов различных чисел. Однако никто не понял, что это логарифмы по основанию , так как в понятие логарифма того времени такая вещь как основание не входила. Это сейчас мы называем логарифмом степень, в которую нужно возвести основание, чтобы получить требуемое число. Мы еще вернемся к этому позже. Таблица в приложении скорее всего была сделана Отредом (Ougthred), хотя автор ее не был указан. Через несколько лет, в 1624 г., в математической литературе снова появляется , но опять-таки завуалированно. В этом году Бриггс (Briggs) дал численное приближение десятичного логарифма , но само число в его работе не упоминается.

Следующее появление числа снова cомнительно. В 1647 г. Сен-Винсент (Saint-Vincent) вычислил площадь сектора гиперболы. Понимал ли он связь с логарифмами, остается только догадываться, но даже если понимал, то вряд ли он мог прийти к самому числу . Только к 1661 г. Гюйгенс (Huygens) понял связь между равнобочной гиперболой и логарифмами. Он доказал, что площадь под графиком равнобочной гиперболы равнобочной гиперболы на промежутке от 1 до равна 1. Это свойство делает основанием натуральных логарифмов, но это не понимали математики того времени, однако они медленно приближались к этому пониманию.

Гюйгенс сделал следующий шаг в 1661 г. Он определил кривую, которую назвал логарифмической (в нашей терминологии мы будем называть ее экспоненциальной). Это кривая вида . И снова появляется десятичный логарифм , который Гюйгенс находит с точностью до 17 десятичных цифр. Однако он возник у Гюйгенса как некая константа и не был связан с логарифмом числа (итак, снова подошли вплотную к , но само число остается неузнанным).

В дальнейших работах по логарифмам опять-таки число не появляется в явном виде. Однако изучение логарифмов продолжается. В 1668 г. Никола Меркатор (Nicolaus Mercator) опубликовал работу Logarithmotechnia , которая содержит разложение в ряд . В этой работе Меркатор впервые использует название “натуральный логарифм” для логарифма по основанию . Число явно опять не появляется, а остается неуловимым где-то в стороне.

Удивительно, что число в явном виде впервые возникает не в связи с логарифмами, а в связи с бесконечными произведениями. В 1683 г. Якоб Бернулли пытается найти

Он использует биномиальную теорему для доказательства того, что этот предел находится между 2 и 3, и это мы можем рассматривать как первое приближение числа . Хотя мы принимаем это за определение , это первый случай, когда число определяется как предел. Бернулли, конечно, не понял связи между своей работой и работами по логарифмам.

Ранее упоминалось, что логарифмы в начале их изучения никак не связывались с экспонентами. Конечно, из уравнения мы находим, что , но это гораздо более поздний способ восприятия. Здесь мы в самом деле подразумеваем под логарифмом функцию, тогда как сначала логарифм рассматривался только как число, которое помогало в вычислениях. Возможно, Якоб Бернулли первым понял, что логарифмическая функция является обратной показательной. С другой стороны, первым, кто связал логарифмы и степени, мог быть Джеймс Грегори (Games Gregory). В 1684 г. он определенно осознал связь между логарифмами и степенями, но, возможно, он был не первым.

Мы знаем, что число появилось в том виде, как сейчас, в 1690 г. Лейбниц в письме к Гюйгенсу использовал для него обозначение . Наконец у появилось обозначение (хотя оно не совпадало с современным), и это обозначение было признано.

В 1697 г. Иоганн Бернулли начинает изучение показательной функции и публикует Principia calculi exponentialum seu percurrentium . В этой работе вычисляются суммы различных экспоненциальных рядов, и получены некоторые результаты их почленным интегрированием.

Эйлер (Euler) ввел так много математических обозначений, что
неудивительно, что обозначение также принадлежит ему. Кажется смешным утверждение, что он использовал букву из-за того, что это первая буква его имени. Вероятно, это даже не потому, что взято от слова “exponential”, а просто это следующая гласная за “a”, а Эйлер уже использовал обозначение “a” в своей работе. Независимо от причины, обозначение впервые появляется в письме Эйлера Гольдбаху (Goldbach) в 1731 г. Он сделал много открытий, изучая в дальнейшем, но только в 1748 г. в Introductio in Analysin infinitorum он дал полное обоснование всем идеям, связанным с . Он показал, что

Эйлер также нашел первые 18 десятичных знаков числа :

правда, не объясняя, как он их получил. Похоже, что он вычислил это значение сам. На самом деле, если взять около 20 членов ряда (1), то получится точность, которую получил Эйлер. Среди других интересных результатов в его работе приведена связь между функциями синус и косинус и комплексной показательной функцией, которую Эйлер вывел из формулы Муавра.

Интересно, что Эйлер нашел даже разложение числа в непрерывные дроби и привел образцы такого разложения. В частности, он получил

Эйлер не привел доказательства, что эти дроби так же продолжаются, однако он знал, что если бы такое доказательство было, то оно доказывало бы иррациональность . Действительно, если бы непрерывная дробь для , продолжалась так же, как в приведенном образце, 6,10,14,18,22,26, (каждый раз прибавляем по 4), то она никогда бы не прервалась, и (а значит, и ) не могло бы быть рациональным. Очевидно, это первая попытка доказать иррациональность .

Первым, кто вычислил довольно большое число десятичных знаков числа , был Шенкс (Shanks) в 1854 г. Глейшер (Glaisher) показал, что первые 137 знаков, вычисленные Шенксом, были верными, однако далее нашел ошибку. Шенкс ее исправил, и было получено 205 десятичных знаков числа . В действительности, нужно около
120 членов разложения (1), чтобы получить 200 верных знаков числа .

В 1864 г. Бенджамен Пирс (Peirce) стоял у доски, на которой было написано

В своих лекциях он мог бы сказать своим студентам: “Джентльмены, мы не имеем ни малейшего представления, что бы это значило, но мы можем быть уверены, что это значит что-то очень важное”.

Большинство считает, что Эйлер доказал иррациональность числа . Однако это сделал Эрмит (Hermite) в 1873 г. До сих пор остается открытым вопрос, является ли число алгебраическим. Последний результат в этом направлении — это то, что по крайней мере одно из чисел и является трансцендентным.

Далее вычисляли следующие десятичные знаки числа . В 1884 г. Бурман (Boorman) вычислил 346 знаков числа , из которых первые 187 совпали со знаками Шенкса, но последующие различались. В 1887 г. Адамс (Adams) вычислил 272 цифры десятичного логарифма .

Все знают геометрический смысл числа π - это длина окружности с единичным диаметром:

А вот смысл другой важной константы, e , имеет свойство быстро забываться. То есть, не знаю, как вам, а мне каждый раз стоит усилий вспомнить, чем же так замечательно это число, равное 2,7182818284590... (значение я, однако, по памяти записал). Поэтому я решил написать заметку, чтобы больше из памяти не вылетало.

Число e по определению - предел функции y = (1 + 1 / x ) x при x → ∞:

x y
1 (1 + 1 / 1) 1 = 2
2 (1 + 1 / 2) 2 = 2,25
3 (1 + 1 / 3) 3 = 2,3703703702...
10 (1 + 1 / 10) 10 = 2,5937424601...
100 (1 + 1 / 100) 100 = 2,7048138294...
1000 (1 + 1 / 1000) 1000 = 2,7169239322...
lim × → ∞ = 2,7182818284590...

Это определение, к сожалению, не наглядно. Непонятно, чем замечателен этот предел (несмотря на то, что он называется «вторым замечательным»). Подумаешь, взяли какую-то неуклюжую функцию, посчитали предел. У другой функции другой будет.

Но число e почему-то всплывает в целой куче самых разных ситуаций в математике.

Для меня главный смысл числа e раскрывается в поведении другой, куда более интересной функции, y = k x . Эта функция обладает уникальным свойством при k = e , которое можно показать графически так:

В точке 0 функция принимает значение e 0 = 1. Если провести касательную в точке x = 0, то она пройдёт к оси абсцисс под углом с тангенсом 1 (в жёлтом треугольнике отношение противолежащего катета 1 к прилежащему 1 равно 1). В точке 1 функция принимает значение e 1 = e . Если провести касательную в точке x = 1, то она пройдёт под углом с тангенсом e зелёном треугольнике отношение противолежащего катета e к прилежащему 1 равно e ). В точке 2 значение e 2 функции снова совпадает с тангенсом угла наклона касательной к ней. Из-за этого, заодно, сами касательные пересекают ось абсцисс ровно в точках −1, 0, 1, 2 и т. д.

Среди всех функций y = k x (например, 2 x , 10 x , π x и т. д.), функция e x - единственная обладает такой красотой, что тангенс угла её наклона в каждой её точке совпадает со значением самой функции. Значит по определению значение этой функции в каждой точке совпадает со значением её производной в этой точке: (e x )´ = e x . Почему-то именно число e = 2,7182818284590... нужно возводить в разные степени, чтобы получилась такая картинка.

Именно в этом, на мой вкус, состоит его смысл.

Числа π и e входят в мою любимую формулу - формулу Эйлера, которая связывает 5 самых главных констант - ноль, единицу, мнимую единицу i и, собственно, числа π и е :

e iπ + 1 = 0

Почему число 2,7182818284590... в комплексной степени 3,1415926535...i вдруг равно минус единице? Ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.

Меня всегда поражала красота этой формулы. Возможно, в математике есть и более удивительные факты, но для моего уровня (тройка в физико-математическом лицее и пятёрка за комплексный анализ в универе) это самое главное чудо.

ЧИСЛО e
Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e-kt, где k - число, характеризующее скорость распада данного вещества. Обратная величина 1/k называется средним временем жизни атома данного вещества, так как в среднем атом прежде, чем распасться, существует в течение времени 1/k. Величина 0,693/k называется периодом полураспада радиоактивного вещества, т.е. временем, за которое распадается половина исходного количества вещества; число 0,693 приближенно равно loge 2, т.е. логарифму числа 2 по основанию e. Аналогично, если бактерии в питательной среде размножаются со скоростью, пропорциональной их числу в настоящий момент, то по истечении времени t начальное количество бактерий N превращается в Nekt. Затухание электрического тока I в простом контуре с последовательным соединением, сопротивлением R и индуктивностью L происходит по закону I = I0e-kt, где k = R/L, I0 - сила тока в момент времени t = 0. Аналогичные формулы описывают релаксацию напряжений в вязкой жидкости и затухание магнитного поля. Число 1/k часто называют временем релаксации. В статистике величина e-kt встречается как вероятность того, что за время t не произошло событий, наступающих случайно со средней частотой k событий в единицу времени. Если S - сумма денег, вложенных под r процентов с непрерывным начислением вместо начисления через дискретные промежутки времени, то к моменту времени t первоначальная сумма возрастет до Setr/100. Причина "вездесущности" числа e заключается в том, что формулы математического анализа, содержащие экспоненциальные функции или логарифмы, записываются проще, если логарифмы брать по основанию e, а не 10 или какому-либо другому основанию. Например, производная от log10 x равна (1/x)log10 e, тогда как производная от loge x равна просто 1/x. Аналогично, производная от 2x равна 2xloge 2, тогда как производная от eх равна просто ex. Это означает, что число e можно определить как основание b, при котором график функции y = logb x имеет в точке x = 1 касательную с угловым коэффициентом, равным 1, или при котором кривая y = bx имеет в x = 0 касательную с угловым коэффициентом, равным 1. Логарифмы по основанию e называются "натуральными" и обозначаются ln x. Иногда их также называют "неперовыми", что неверно, так как в действительности Дж. Непер (1550-1617) изобрел логарифмы с другим основанием: неперов логарифм числа x равен 107 log1/e (x/107) (см. также ЛОГАРИФМ). Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции

График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера


где i2 = -1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению eip + 1 = 0, связывающему 5 наиболее известных в математике чисел. При вычислении значения e могут быть использованы и некоторые другие формулы (чаще всего пользуются первой из них):



Значение e с 15 десятичными знаками равно 2,718281828459045. В 1953 было вычислено значение e с 3333 десятичными знаками. Символ e для обозначения этого числа был введен в 1731 Л. Эйлером (1707-1783). Десятичное разложение числа e непериодично (e - иррациональное число). Кроме того, e, как и p, - трансцендентное число (оно не является корнем никакого алгебраического уравнения с рациональными коэффициентами). Это доказал в 1873 Ш.Эрмит. Впервые было показано, что столь естественным образом возникающее в математике число является трансцендентным.
См. также
МАТЕМАТИЧЕСКИЙ АНАЛИЗ ;
НЕПРЕРЫВНЫЕ ДРОБИ ;
ЧИСЕЛ ТЕОРИЯ ;
ЧИСЛО p;
РЯДЫ .

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ЧИСЛО e" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

    ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова

    ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590...., является пределом выражения (1/) при п, стремящемся к бесконечности. По сути,… … Научно-технический энциклопедический словарь

    Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество. небольшое число, несть числа, расти числом... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… … Словарь синонимов

Книги

  • Число имени. Тайны нумерологии. Выход из тела для ленивых. Учебник по экстрасенсорике (количество томов: 3)
  • Число имени. Новый взгляд на числа. Нумерология - путь познания (количество томов: 3) , Лоуренс Ширли. Число имени. Тайны нумерологии. Книга Ширли Б. Лоуренс является всесторонним исследованием древней эзотерической системы – нумерологии. Чтобы научиться использовать вибрации чисел для…

ЧИСЛО e . Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e –kt , где k – число, характеризующее скорость распада данного вещества. Обратная величина 1/k называется средним временем жизни атома данного вещества, так как в среднем атом прежде, чем распасться, существует в течение времени 1/k . Величина 0,693/k называется периодом полураспада радиоактивного вещества, т.е. временем, за которое распадается половина исходного количества вещества; число 0,693 приближенно равно log e 2, т.е. логарифму числа 2 по основанию e . Аналогично, если бактерии в питательной среде размножаются со скоростью, пропорциональной их числу в настоящий момент, то по истечении времени t начальное количество бактерий N превращается в Ne kt . Затухание электрического тока I в простом контуре с последовательным соединением, сопротивлением R и индуктивностью L происходит по закону I = I 0 e –kt , где k = R/L , I 0 – сила тока в момент времени t = 0. Аналогичные формулы описывают релаксацию напряжений в вязкой жидкости и затухание магнитного поля. Число 1/k часто называют временем релаксации. В статистике величина e –kt встречается как вероятность того, что за время t не произошло событий, наступающих случайно со средней частотой k событий в единицу времени. Если S – сумма денег, вложенных под r процентов с непрерывным начислением вместо начисления через дискретные промежутки времени, то к моменту времени t первоначальная сумма возрастет до Se tr /100.

Причина «вездесущности» числа e заключается в том, что формулы математического анализа, содержащие экспоненциальные функции или логарифмы, записываются проще, если логарифмы брать по основанию e , а не 10 или какому-либо другому основанию. Например, производная от log 10 x равна (1/x )log 10 e , тогда как производная от log e x равна просто 1/x . Аналогично, производная от 2 x равна 2 x log e 2, тогда как производная от e х равна просто e x . Это означает, что число e можно определить как основание b , при котором график функции y = log b x имеет в точке x = 1 касательную с угловым коэффициентом, равным 1, или при котором кривая y = b x имеет в x = 0 касательную с угловым коэффициентом, равным 1. Логарифмы по основанию e называются «натуральными» и обозначаются ln x . Иногда их также называют «неперовыми», что неверно, так как в действительности Дж.Непер (1550–1617) изобрел логарифмы с другим основанием: неперов логарифм числа x равен 10 7 log 1/e (x /10 7) .

Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции

График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера

где i 2 = –1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению e ip + 1 = 0, связывающему 5 наиболее известных в математике чисел.