Болезни Военный билет Призыв

Зарождение астрономии в древней греции. Астрономия в Древней Греции. находящегося в центре ее пути, и что

Астроном - это человек, интересующийся космическими процессами и явлениями. Что означает - быть астрономом? Кто первый задался вопросами о загадках неба? О первых и великих астрономах узнайте в нашей статье.

Астроном - это…

Людей всегда интересовало, что скрывается высоко за облаками и как же все устроено там, в межзвездном пространстве. Астроном - это человек, который призван не только задавать эти вопросы, но и отвечать на них. Это специалист в астрономии - науке о Вселенной, всех процессах и взаимосвязях, которые в ней происходят. А для этого необходимо обладать терпением, наблюдательностью, а главное - значительными знаниями в различных областях наук. Поэтому астроном - это прежде всего ученый.

Профессиональные астрономы должны обладать знаниями по физике, математике, а иногда и химии. Они работают в исследовательских центрах и обсерваториях, анализируя информацию о космических телах, их движениях и других явлениях, которую получают из собственных наблюдений, данных спутников, используя при этом различные приборы. Профессия эта включает в себя более узкие специализации, например, планетолог, астрофизик, астрохимик, космолог.

Первые астрономы

Наблюдая за ночным небосводом, люди заметили, что рисунок на нем меняется в зависимости от сезонов. Тогда они поняли, что земные и небесные процессы взаимосвязаны, и начали разгадывать их секрет. Первыми известными астрономами были шумеры и вавилоняне. Они научились предсказывать лунные затмения и измерять траектории движения планет, записывая наблюдения на глиняных табличках.

Египтяне ещё в IV веке до н. э. начали делить небо на созвездия и гадать по небесным светилам. В Древнем Китае прилежно отмечали все удивительные явления, такие как кометы, затмения, метеоры, новые звезды. Впервые комета упоминается в 631 году до нашей эры. В Древней Индии успехов было немного, хотя в V веке индийский астроном установил, что планеты вращаются вокруг своей оси.

Наблюдениями за звездами и планетами занимались инки, майя, кельтские друиды, древние греки. Последние сыпали как правильными, так и смешными теориями и предположениями. Например, Полюс Земли был далеко от Полярной звезды, а утренняя и вечерняя Венера считались разными звездами. Хотя некоторые были вполне точны, например, полагал, что Солнце больше Земли, и верил в гелиоцентризм. Эратосфен измерил земную окружность и наклон эклиптики к экватору.

Революция Коперника

Николай Коперник - ученый-астроном, который считается одним из зачинателей До него, в эпоху средневековья, астрономы в основном подстраивали свои наблюдения под принятую церковью и обществом Птолемея. Хотя отдельные личности, как Николай Кузанский или Георг Пурбах, все же выдвигали достойные гипотезы и расчеты, научные рассуждения носили достаточно отвлеченный характер.

В труде «О вращении небесных сфер», опубликованном в 1543 году, Коперник предлагает гелиоцентрическую модель. Согласно этому, Солнце является звездой, вокруг которой движется Земля и остальные планеты. Данную гипотезу поддерживали ещё в Древней Греции, но все это были лишь предположения.

Коперник в своем труде предоставил четкие аргументы и логические заключения. Его идею продолжили развивать многие великие астрономы, такие как Джордано Бруно, Галилео Галилей, Кеплер, Ньютон. Не все его мысли были верны. Так, Коперник считал, что орбиты планет круговые, Вселенная ограничивается Солнечной системой, однако его труд перевернул прежнее научное представления мира.

Галилео Галилей

Неоценимый вклад в астрономическую науку внес Галилео Галилей - итальянский астроном, физик, математик и философ. Одной из самых известных его заслуг является изобретение телескопа. Ученый создал первый в мире оптический прибор с линзами, чтобы наблюдать за небом.

Благодаря телескопу физик-астроном определил, что поверхность Луны не гладкая, как считали раньше. Обнаружил, что на Солнце есть пятна, облака Млечного Пути являются многочисленными тусклыми звездами, а вокруг Юпитера вращается несколько планет.

Галилей был ярым сторонником теорий Коперника. Он был убежден, что Земля вращается не только вокруг Солнца, но и вокруг своей оси, чем вызывает приливы и отливы океана. Это стало причиной многолетней борьбы с церковью.

Телескоп признали неисправным, а богохульнические идеи неверными. Перед инквизицией Галилео вынужден был отречься от своих доводов. Именно ему приписывают знаменитую фразу, которую он якобы произнес позже: «И все-таки она вертится!»

Иоганн Кеплер

Ученый-астроном Иоганн Кеплер считал, что астрономия является ответом на загадки тайной связи между космосом и человеком. Своими знаниями он пользовался, чтобы предсказывать погоду и урожайность. Он также поддерживал идеи Коперника, благодаря которым смог продвинуться ещё дальше в научных достижениях.

Кеплеру удалось объяснить видимую неравномерность движения планет, на основе трех выведенных им законов. Он ввел понятие орбит, форму которых определил как эллипс. Ученый также вывел уравнение, которое позволяет рассчитать положение небесных тел.

Все научные взгляды Кеплера совмещались с мистицизмом. Подобно пифагорейцам, он придерживался мнения о существовании особой гармонии в движении космических тел и пытался найти её числовое значение. Увлеченный тайным смыслом, он несколько компрометировал свои научные достижения, которые в конечном итоге были весьма точны.


План:
Введение………………………………………………………… ……………….2

1. Возникновение и основные этапы развития астрономии. Ее значение для человека……………… …………………………………………………………...3

2. Астрономия в Древнем Вавилоне………………………………………….…5

3. Астрономия в Древнем Египте………………………………………………..7

4. Астрономия в Древней Греции…………………………………… …………..8

5. Астрономия в Древней Индии……………………………………… ……….11

6. Астрономия в Древнем Китае……………………………………………..…14

Заключение…………………………………………………… ………………….18
Список используемой литературы……………………………………………... 20

Введение

Звездное небо, Луна, Солнце во все времена занимало воображение людей. Это всё интересовало древних людей не меньше, чем небесные тела интересуют нас сегодня. Отличие в том, что мы довольно много знаем о Солнце, Луне и звездах, а древние люди не знали ничего. Конечно, знаний наших пока недостаточно, чтобы в полной мере постичь тайны устройства Вселенной. Но можно представить, какой мистический трепет внушали небесные явления на заре цивилизации. Метеорный поток воспринимался людьми как предвестник катастроф и несчастий, солнечное затмение - как конец света. Недаром небесные тела окружены множеством мифов, а само Солнце в верованиях древних отождествлялось с образом главного божества (например, у египтян - Ра).,

Самые ранние представления людей о нем сохранились в сказках и легендах. Прошли века и тысячелетия, прежде чем возникла и получила глубокое обоснование и развитие наука о Вселенной, раскрывшая нам замечательную простату, удивительный порядок мироздания. Недаром еще в древней Греции ее называли Космосом, а это слово первоначально означало «порядок» и «красоту».

Начало серьезного изучения звездного неба и возникновение астрономии как науки относится к концу шестого - началу пятого тысячелетия до нашей эры. Известно, что древние шумеры дали названия множеству известных нам созвездий и впервые определили круг знаков Зодиака.
Целью данной работы является изучение Древних цивилизаций, таких как
Древний Вавилон, Египет, Греция, Индия и Китай.
В ходе исследования была использована научная и историческая литература.

1. Возникновение и основные этапы развития астрономии. Ее значение для человека

Самые ранние представления людей о звёздном небе сохранились в сказках и легендах. Прошли века и тысячелетия, прежде чем возникла и получила глубокое обоснование и развитие наука о Вселенной, раскрывшая нам замечательную простату, удивительный порядок мироздания. Недаром еще в древней Греции ее называли Космосом, а это слово первоначально означало «порядок» и «красоту».

Астрономия является одной из древнейших наук. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н.э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступают вскоре после того, как перед восходом Солнца на востоке появляется самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.
В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать солнечные и лунные затмения.
Астрономия возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением на ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летоисчислении (составлении календарей).
Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла наука о небесных телах – астрономия.
С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.
В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. до н.э.). Будучи принципиально неверной, система Птолемея, тем не менее, позволяла вычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам человека в течение нескольких веков.
Системой мира Птолемея завершается этап развития древнегреческой астрономии.
В средние века наибольшего развития астрономия достигла в странах Средней Азии и Кавказа, в трудах выдающихся астрономов того времени – Аль-Баттани (850–929 гг.), Бируни (973–1048 гг.), Улугбека (1394–1449) и др.
Правитель Самарканда Улугбек, будучи просвещенным государственным деятелем и крупным астрономом, привлекая в Самарканд ученых, выстроил для них грандиозную обсерваторию. Таких крупных обсерваторий не было нигде ни до Улугбека, ни долгое время после него. Самым замечательным из трудов самаркандских астрономов были "Звездные таблицы" – каталог, содержащий точные положения на небе 1018 звезд. Он долго оставался самым полным и самым точным: европейские астрономы переиздавали его еще спустя два века. Не меньшей точностью отличались и таблицы движений планет.
Начало серьезного изучения звездного неба и возникновение астрономии как науки относится к концу шестого - началу пятого тысячелетия до нашей эры. Известно, что древние шумеры дали названия множеству известных нам созвездий и впервые определили круг знаков Зодиака. Шумеры относятся к древнейшей культуре Древнего Вавилона и дают начало представлений о звёздном небе.

2. Астрономия в Древнем Вавилоне

Вавилонская культура – одна из древнейших культур на земном шаре – восходит своими корнями к IV тысячелетию до н. э. Древнейшими очагами этой культуры были города Шумера и Аккада, а также Элама, издавна связанного с Двуречьем. Вавилонская культура оказала большое влияние на развитие древних народов Передней Азии и античного мира. Одним из наиболее значительных достижений шумерийского народа было изобретение письменности, появившейся в середине IV тысячелетия до н.э. Именно письменность позволила установить связь не только между современниками, но даже между людьми различных поколений, а также передать потомству важнейшие достижения культуры.
Развитие хозяйственной жизни, главным образом земледелия, приводило к необходимости установления календарных систем, которые возникли уже в шумерийскую эпоху. Для создания календаря надо было иметь некоторые знания в области астрономии. Древнейшие обсерватории устраивались обычно на верхней площадке храмовых башен (зиккуратов), развалины которых были найдены в Уре, Уруке и Ниппуре. Вавилонские жрецы умели отличать звезды от планет, которым были даны особые названия. Сохранились перечни звезд, которые были распределены по отдельным созвездиям. Была установлена эклиптика (годичный путь Солнца по небесной сфере), которую разделили на 12 частей и соответственно на 12 зодиакальных созвездий, многие названия которых (Близнецы, Рак, Скорпион, Лев, Весы и т. д.) сохранились до наших дней. В различных документах регистрировали наблюдения над планетами, звездами, кометами, метеорами, солнечными и лунными затмениями.
О значительном развитии астрономии говорят данные, фиксирующие моменты восхода, захода и кульминации различных звезд, а также умение вычислять промежутки времени, их разделяющие.
В VIII–VI вв. вавилонские жрецы и астрономы накопили большое количество знаний, имели представление о процессии (предварения равноденствий) и даже предсказывали затмения.
Некоторые наблюдения и знания в области астрономии позволили построить особый календарь, отчасти основанный на лунных фазах. Основными календарными единицами счета времени были сутки, лунный месяц и год. Сутки делились на три стража ночи и три стража дня. Одновременно с этим сутки делились на 12 часов, а час – на 30 минут, что соответствует шестеричной системе счисления, лежавшей в основе вавилонской математики, астрономии и календаря. Очевидно, и в календаре отразилось стремление разделить сутки, год и круг на 12 больших и 360 малых частей.
Начало каждого лунного месяца и его продолжительность определялись каждый раз специальными астрономическими наблюдениями, так как начало каждого месяца должно было совпадать с новолунием. Различие между календарным и тропическим годом исправлялось при помощи вставочного месяца, что устанавливалось распоряжением государственной власти.

3. Астрономия в Древнем Египте

Египетскую астрономию создала необходимость вычислять периоды разлива Нила. Год исчислялся по звезде Сириус, утреннее появление которой после временной невидимости совпадало с ежегодным наступлением половодья. Большим достижением древних египтян было составление довольно точного календаря. Год состоял из 3 сезонов, каждый сезон – из 4 месяцев, каждый месяц – из 30 дней (трех декад по 10 дней). К последнему месяцу прибавляли 5 добавочных дней, что позволяло совмещать календарный и астрономический год (365 дней). Начало года совпадало с подъемом воды в Ниле, то есть с 19 июля, днем восхода самой яркой звезды – Сириуса. Сутки делили на 24 часа, хотя величина часа была не одинаковой, как сейчас, а колебалась, в зависимости от времени года (летом дневные часы были длинными, ночные – короткими, зимой – наоборот). Египтяне хорошо изучили видимое простым глазом звездное небо, они различали неподвижные звезды и блуждающие планеты. Звезды были объединены в созвездия и получили имена тех животных, контуры которых, по мнению жрецов, они напоминали («бык», «скорпион», «крокодил» и др.).
Постоянные наблюдения над небесными светилами дали возможность установить своеобразную карту звездного неба. Такие звездные карты сохранились на потолках храмов и гробниц. В гробнице архитектора и вельможи времени XVIII династии Сенмута изображена интересная астрономическая карта. В центральной ее части можно различить созвездия Большой и Малой Медведицы и известной египтянам Полярной Звезды. В южной части неба изображены Орион и Сириус (Сотис) в виде символических фигур, как обычно изображали созвездия и звезды египетские художники.
Замечательные звездные карты и таблицы расположения звезд сохранились и на потолках царских гробниц XIX и XX династий. При помощи таких таблиц расположения звезд, пользуясь пассажным, визирным инструментом, два египетских наблюдателя, сидящие в направлении меридиана, определяли время ночью. Днем для определения времени пользовались солнечными и водяными часами (позднейшая клепсидра). Древними картами расположения звезд пользовались и позднее, в греко-римскую эпоху; такие карты сохранились в храмах этого времени в Эдфу и Дендера.
К периоду Нового царства относится изложение догадки о том, что соответствующие созвездия находятся на небе и днем; они невидимы только потому, что тогда на небе находится Солнце.

4. Астрономия в Древней Греции

Астрономические знания, накопленные в Египте и Вавилоне заимствовали древние греки. В VI в. до н. э. греческий философ Гераклит высказал мысль, что Вселенная всегда была, есть и будет, что в ней нет ничего неизменного – все движется, изменяется, развивается. В конце VI в. до н. э. Пифагор впервые высказал предположение, что Земля имеет форму шара. Позднее, в IV в. до н. э. Аристотель при помощи остроумных соображений доказал шарообразность Земли. Он утверждал, что лунные затмения происходят, когда Луна попадает в тень, отбрасываемую Землей. На диске Луны мы видим край земной тени всегда круглым. И сама Луна имеет выпуклую, скорее всего, шарообразную форму.
В то же время Аристотель считал Землю центром Вселенной, вокруг которой обращаются все небесные тела. Вселенная, по мнению Аристотеля, имеет конечные размеры – ее как бы замыкает сфера звезд. Своим авторитетом, который и в древности, и в средние века считался непререкаемым, Аристотель закрепил на много веков ложное мнение, что Земля – неподвижный центр Вселенной. И все-таки, не все ученые поддерживали точку зрения Аристотеля по этому вопросу.
Живший в III в. до н. э. Аристарх Самосский полагал, что Земля обращается вокруг Солнца. Расстояние от Земли до Солнца он определил в 600 диаметров Земли (в 20 раз меньше действительного). Однако это расстояние Аристарх считал ничтожным по сравнению с расстоянием от Земли до звезд.
Эти гениальные мысли Аристарха, через много веков подтвержденные открытием Коперника, не были поняты современниками. Аристарха обвинили в безбожии и осудили на изгнание, а его правильные догадки были забыты.
В конце IV в. до н. э. после походов и завоеваний Александра Македонского греческая культура проникла во все страны Ближнего Востока. Возникший в Египте город Александрия стал крупнейшим культурным центром.
В Александрийской академии, объединившей ученых того времени, в течение нескольких веков велись астрономические наблюдения уже при помощи угломерных инструментов. В III в. до н. э. александрийский ученый Эратосфен впервые определил размеры земного шара. Вот как он это сделал. Было известно, что в день летнего солнцестояния в полдень Солнце освещает дно глубоких колодцев в г. Сиена (теперь Асуан), т.е. бывает в зените. В Александрии же в этот день Солнце не доходит до зенита. Эратосфен измерил, насколько полуденное Солнце в Александрии отклонено от зенита, и получил величину, равную 7°12 " , что составляет 1/50 окружности.Это ему удалось сделать при помощи прибора, называемого скафисом. Скафис представляет собой чашу в форме полушария. В центре ее отвесно укреплялась игла. Тень от иглы падала на внутреннюю поверхность скафиса. Для измерения отклонения Солнца от зенита (в градусах) на внутренней поверхности скафиса проводились окружности, помеченные числами. Если, например, тень доходила до окружности, помеченной числом 40, Солнце стояло на 40° ниже зенита. Построив чертеж, Эратосфен правильно заключил, что Александрия стоит от Сиены на 1/50 окружности Земли. Чтобы узнать окружность Земли, оставалось измерить расстояние от Александрии до Сиены и умножить его на 50. Это расстояние было определено по числу дней, которые тратили караваны верблюдов на переход между городами.
Размеры земли, определенные Эратосфеном (средний радиус Земли у него получился равным 6290 км – в переводе на современные единицы измерения) близки к тем, которые определены точными приборами в наше время.
Во II в. до н. э. великий александрийский астроном Гиппарх, используя уже накопленные наблюдения, составил каталог более, чем 1000 звезд с довольно точным определением их положения на небе. Гиппарх разделил звезды на группы и к каждой из них отнес звезды примерно одинакового блеска. Звезды с наибольшим блеском он назвал звездами первой величины, звезды с несколько меньшим блеском – звездами второй величины и т.д. Гиппарх правильно определил размеры Луны и ее расстояние от Земли. Он вывел продолжительность года с очень малой ошибкой – только на 6 минут. Позднее, в I в. до н. э., александрийские астрономы участвовали в реформе календаря, предпринятой Юлием Цезарем. Этой реформой был введен календарь, действовавший в Западной Европе до XVI – XVII вв., а в нашей стране – до 1917 года.
Гиппарх и другие астрономы его времени много внимания уделял наблюдениям за движением планет. Эти движения представлялись им крайне запутанными. В самом деле, направление движения планет по небу как будто периодически меняется – планеты как бы описывают в небе петли. Эта кажущаяся сложность в движении планет вызывается движением Земли вокруг Солнца – ведь мы наблюдаем планеты с Земли, которая сама движется. И когда Земля «догоняет» другую планету, то кажется, что планета как бы останавливается, а потом движется назад. Но древние астрономы, считавшие Землю неподвижной, думали, что планеты действительно совершают такие сложные движения вокруг Земли.
Во II в. до н. э. александрийский астроном Птолемей выдвинул свою систему мира, позднее названной геоцентрической: неподвижная Земля в ней была расположена в центре Вселенной.. Вокруг Земли, по Птолемею, движутся (в порядке удаленности от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звезды. Но если движение Луны, Солнца, звезд правильное, круговое, то движение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движется не вокруг Земли, а вокруг некоторой точки. Точка эта, в свою очередь, движется по кругу, в центре которого находится Земля. Круг, описываемый планетой вокруг точки, Птолемей назвал эпициклом, а круг, по которому движется точка относительно Земли – деферентом.
Система мира Аристотеля-Птолемея казалась правдоподобной. Она давала возможность заранее вычислять движение планет на будущее время – это было необходимо для ориентировки в пути во время путешествий и для календаря. Геоцентрическую систему признавали почти полторы тысячи лет.

5. Астрономия в Древней Индии

Наиболее ранние сведения о естественнонаучных знаниях индийцев относятся к эпохе Индской цивилизации, датирующейся III тысячелетием до н.э. До нас дошли краткие записи, сделанные на печатях и амулетах и значительно реже на орудиях и оружии. Как правило, крупные города Индии располагались или на берегу океана, или вдоль побережья больших судоходных рек. Для ориентации при передвижении судов в океане требовалось изучать небесные тела и созвездия. Другим побудительным мотивом развития астрономии была потребность измерять интервалы времени.
Вследствие общности черт древнеиндийской цивилизации с древнейшими культурами Вавилона и Египта и наличия между ними контактов, хотя и не регулярных, можно полагать, что ряд астрономических явлений, известных в Вавилоне и Египте, был также известен в Индии.
Сведения по астрономии можно найти в имеющей религиозно-философское направление ведической литературе, относящейся ко II–I тысячелетию до н.э. Там содержатся, в частности, сведения о солнечных затмениях, интеркаляциях с помощью тринадцатого месяца, список накшатр – лунных стоянок; наконец, космогонические гимны, посвященные богине Земли, прославление Солнца, олицетворение времени как начальной мощи, также имеют определенное отношение к астрономии.
В ведическую эпоху Вселенная считалась разделенной на три различные части – региона: Земля, небесный свод и небо. Каждый регион в свою очередь также делился на три части. Солнце во время своего прохождения через Вселенную освещает все эти регионы и их составляющие. Эти идеи неоднократно выражались в гимнах и строфах «Ригведы» – самой ранней по времени составления.
В ведической литературе встречается упоминание о месяце – одной из ранних естественных единиц времени, промежутке между последовательными полнолуниями или новолуниями. Месяц делился на две части, две естественные половины: светлая половина – шукла – от полнолуния до новолуния, и темная половина – кришна – от полнолуния до новолуния. Первоначально лунный синодический месяц определялся в 30 дней, затем он был более точно вычислен в 29,5 дней. Звездный месяц был больше 27, но меньше 28 дней, что нашло свое дальнейшее выражение в системе накшатр – 27 или 28 лунных стоянок.
Сведения о планетах упоминаются в тех разделах ведической литературы, которые посвящены астрологии. Семь адитья, упомянутые в «Ригведе», можно трактовать как Солнце, Луну и пять известных в древности планет – Марс, Меркурий, Юпитер, Венера, Сатурн.
Звезды уже давно использовались для ориентировки в пространстве и во времени. Тщательные наблюдения показали, что расположение звезд в один и тот же час ночи со временем года постепенно изменяется. Постепенно то же самое расположение звезд наступает раньше; самые западные звезды исчезают в вечерних сумраках, а на рассвете на восточном горизонте появляются новые звезды, восходя все раньше с каждым последующим месяцем. Это утреннее появление и вечернее исчезновение, определяемое годичным движением Солнца по эклиптике, повторяется каждый год в одну и ту же дату. поэтому было очень удобно использовать звездные явления для фиксирования дат солнечного года.
В отличие от вавилонских и древнекитайских астрономов, ученые Индии практически не интересовались изучением звезд как таковых и не составляли звездных каталогов. Их интерес к звездам в основном сосредотачивался на тех созвездиях, которые лежали н эклиптике или вблизи нее. Выбором подходящих звезд и созвездий они смогли получить звездную систему для обозначения пути Солнца и Луны. Эта система среди индийцев получила название «системы накшатры», среди китайцев – «системы сю», среди арабов – «системы маназилей».
Самые ранние сведения о накшатрах встречаются в «Ригведе», где термин «накшатра» употребляется как для обозначения звезд, так и для обозначения лунных стоянок. Лунные стоянки представляли собой небольшие группы звезд, удаленные друг от друга примерно на 13°, так что Луна при своем движении по небесной сфере каждую следующую ночь оказывалась в следующей группе.
Полный список накшатр впервые появился в «Черной Яджурведе» и «Атхарваведе», которые были составлены позднее «Ригведы». Древнеиндийские системы накшатр соответствуют лунным стоянкам, приведенным в современных звездных каталогах.
Так, 1-я накшатра «Ашвини» соответствует звездам b и g созвездия Овен; 2-я, «Бхарани» – части созвездия Овен; 3-я, «Криттика» – созвездию Плеяды; 4-я, «Рохини» – части созвездия Телец; 5-я, «Мригаширша» – части созвездия Орион и т.д.
В ведической литературе приводится следущее деление дня: 1 сутки состоят из 30 мухурта, мухурта в свою очередь делится на кшипру, этархи, идани; каждая единица меньше предыдущей в 15 раз.
Таким образом, 1 мухурта = 48 минутам, 1 кшипра = 3,2 минуты; 1 этархи = 12,8 секунды, 1 идани = 0,85 секунды.
Продолжительность года чаще всего составляла 360 дней, которые делили на 12 месяцев. Поскольку это на несколько дней меньше истинного года, к одному или нескольким месяцам прибавляли 5-6 дней или через несколько лет добавляли тринадцатый, так называемый интеркаляционный месяц.
Следующие сведения по индийской астрономии относятся к первым векам нашей эры. Сохранились несколько трактатов, а также сочинение «Ариабхатийа» крупнейшего индийского математика и астронома Ариабхаты I , родившегося в 476 г. В своем сочинении Ариабхата высказал гениальную догадку: ежедневное вращение небес – только кажущееся вследствие вращения Земли вокруг своей оси. Это было чрезвычайно смелой гипотезой, которая не была принята последующими индийскими астрономами.

6. Астрономия в Древнем Китае

Древнейший период развития китайской цивилизации относится ко времени царств Шан и Чжоу. Потребности повседневной жизни, развитие земледелия, ремесла побуждали древних китайцев изучать явления природы и накапливать первичные научные знания. Подобные знания, в частности, математические и астрономические, уже существовали в период Шан (Инь). Об этом свидетельствуют как литературные памятники, так и надписи на костях. Предания, вошедшие в «Шу цзин», рассказывают о том, что уже в древнейшие времена было известно деление года на четыре сезона. Путем постоянных наблюдений китайские астрономы установили, что картина звездного неба, если ее наблюдать изо дня в день в одно и то же время суток, меняется. Они подметили закономерность в появлении на небесном своде определенных звезд и созвездий и временем наступления того или иного сельскохозяйственного сезона года.
Установив эту закономерность, они в дальнейшем уже могли сказать земледельцу, что тот или иной сельскохозяйственный сезон начинается тогда, когда на горизонте появится определенная звезда или созвездие. Такие выдающиеся ориентировочные светила (по-китайски называемые «чэн») наблюдались астрономами древности в вечернее время суток сразу же после захода Солнца или в утреннее, перед самым восходом его.
Нужно отметить, что если египтяне для своей календарной системы пользовались гелиактическим (восходом перед самым появлением Солнца утром на горизонте . ) восходом Сириуса, халдейские жрецы – гелиактическим восходом Капеллы (Возничего), то у древних китайцев мы можем проследить смену нескольких «чэн»: звезды «Дахо» (Антарес, Скорпиона); созвездия «Цан» (Орион); созвездия «Бэй доу» – «Северный ковш» (Большая Медведица). Эти «чэн», как явствует из китайских источников, употреблялись во времена, предшествующие Чжоуской эпохе, т.е. ранее XII в. до н.э. В известных комментариях к книге «Чуньцю», составленных в III в. до н.э., есть такая фраза: «Дахо является великим ориентировочным светилом; Цан является великим ориентировочным светилом, и «самое северное» [Большая Медведица] тоже является великим ориентировочным светилом».
С древних времен в Китае год делился на четыре сезона. Очень важным было наблюдение акронического восхода « Огненной звезды» (Антарес). Ее восход происходил около момента весеннего равноденствия. За ее появлением на небесном своде следили астрономы и извещали жителей о наступлении весны.
Существует легенда, что император Яо приказал своим ученым составить календарь, которым могли бы пользоваться все жители страны. Для сбора сведений и производства необходимых астрономических наблюдений за Солнцем, Луной, пятью планетами и звездами в разных местах государства он послал четырех своих высших чиновников, ведавших при дворе астрономическими работами, братьев Си и братьев Хэ, в четырех направлениях: на север, юг, восток и запад. В книге «Шуцзин» глава «Яодянь» («Устав владыки Яо») в записи, описывающий период времени между 2109 и 2068 гг. до н.э. говорится: «владыка Яо приказывает своим астрономам Си и Хо поехать на окраины страны на восток, юг, запад и север для определения по звездному небу четырех времен года, а именно весеннего и осеннего равноденствий и зимнего и летнего солнцестояний. Далее Яо указывает, что продолжительность года равна 366 дням и дает распоряжение пользоваться методом «вставочной тринадцатой Луны» для «правильности календаря».
Календарь, связанный с сезонами, определяемыми по движению Солнца, являлся солнечным календарем, он был удобен для земледельца. Продолжительность тропического года китайцы знали уже в глубокой древности. В «Яодянь» говорится: «широко известно, что три сотни дней и шесть декад и шесть дней составляют полный год».
и т.д.................

Сергей Житомирский

Античная астрономия занимает в истории науки особое место. Именно в Древней Греции были заложены основы современного научного мышления. За семь с половиной столетий от Фалеса и Анаксимандра, сделавших первые шаги в осмыслении Вселенной, до Клавдия Птолемея, создавшего математическую теорию движения светил, античные учёные прошли огромный путь, на котором у них не было предшественников. Астрономы античности использовали данные, полученные задолго до них в Вавилоне. Однако для их обработки они создали совершенно новые математические методы, которые были взяты на вооружение средневековыми арабскими, а позднее и европейскими астрономами.

Вселенная в традиционной греческой мифологии

Как представляли себе мир греки в VIII в. до н. э., можно судить по поэме фиванского поэта Гесиода «Теогония» (О происхождении богов). Рассказ о возникновении мира он начинает так

Прежде всего во вселенной

Хаос зародился, а следом

Широкогрудая Гея, всеобщий приют

безопасный... Гея - Земля - родила себе

равное ширью Звёздное небо, Урана, чтоб точно

покрыл её всюду.

Небо утверждено на плоской Земле. На чём же тогда держится сама Земля? А ни на чём. Оказывается, под ней простирается огромное пустое пространство - Тартар, ставший тюрьмой для титанов, побеждённых богами.

Подземь их сбросили столь глубоко, сколь далёко до неба, Ибо настолько от нас отстоит

многосумрачный Тартар. Если бы, медную взяв наковальню,

метнуть её с неба, В девять дней и ночей до земли бы

она долетела, Если бы, медную взяв наковальню,

с земли её сбросить, В девять дней и ночей долетела б до Тартара тяжесть.

В представлениях древних греков Вселенная разделялась Землёй на светлую и тёмную части: верхняя была небом, а в нижней царил Эреб - подземный мрак. Считалось, что туда не заглядывает Солнце. Днём оно объезжает небо на колеснице, а ночью плывёт в золотой чаше по окружающему Землю океану к месту восхода. Конечно, такая картина мира не слишком подходила для объяснения движений небесных светил; впрочем, она для этого и не предназначалась.

Календарь и звёзды

В Древней Греции, как и в странах Востока, в качестве религиозного и гражданского использовался лунно-солнечный календарь. В нём начало каждого календарного месяца должно было располагаться как можно ближе к новолунию, а средняя продолжительность календарного года по возможности соответствовать промежутку времени между весенними равноденствиями («тропический год», как его называют сегодня). При этом месяцы по 30 и 29 дней чередовались. Но 12 лунных месяцев примерно на треть месяца короче года. Поэтому, чтобы выполнить второе требование, время от времени приходилось прибегать к интеркаляциям - добавлять в отдельные годы дополнительный, тринадцатый, месяц.

Вставки делались нерегулярно правительством каждого полиса -города-государства. Для этого назначались специальные лица, которые следили за величиной отставания календарного года от солнечного. В разделённой на мелкие государства Греции календари имели местное значение - одних названий месяцев в греческом мире существовало около 400. Математик и музыковед Аристоксен (354–300 до н. э.) писал о календарном беспорядке: «Десятый день месяца у коринфян - это пятый у афинян и восьмой у кого-нибудь ещё».

Простой и точный, 19-летний цикл, использовавшийся ещё в Вавилоне, предложил в 433 г. до н. э. афинский астроном Метон. Этот цикл предусматривал вставку семи дополнительных месяцев за 19 лет; его ошибка не превышала двух часов за один цикл.

Земледельцы, связанные с сезонными работами, издревле пользовались ещё и звёздным календарём, который не зависел от сложных движений Солнца и Луны. Гесиод в поэме «Труды и дни», указывая своему брату Персу время проведения сельскохозяйственных работ, отмечает их не по лунно-солнечному календарю, а по звёздам:

Лишь на востоке начнут восходить Атлантиды Плеяды, Жать поспешай, а начнут заходить - за сев принимайся. Вот высоко средь неба уж Сириус

встал с Орионом, Уж начинает Заря розоперстая

видеть Арктура, Режь, о Перс, и домой уноси

виноградные гроздья.

Таким образом, хорошее знание звёздного неба, которым в современном мире мало кто может похвастаться, древним грекам было необходимо и, очевидно, широко распространено. По-видимому, этой науке детей учили в семьях с раннего возраста.

Лунно-солнечный календарь использовался и в Риме. Но здесь царил ещё больший «календарный произвол». Длина и начало года зависели от понтификов (от лат. pontifices), римских жрецов, которые нередко пользовались своим правом в корыстных целях. Такое положение не могло удовлетворить огромную империю, в которую стремительно превращалось Римское государство. В 46 г. до н. э. Юлий Цезарь (100–44 до н. э.), исполнявший обязанности не только главы государства, но и верховного жреца, провёл календарную реформу. Новый календарь по его поручению разработал александрийский математик и астроном Созиген, по происхождению грек. За основу он взял египетский, чисто солнечный, календарь. Отказ от учёта лунных фаз позволил сделать календарь достаточно простым и точным. Этот календарь, названный юлианским, использовался в христианском мире до введения в католических странах в XVI в. уточнённого григорианского календаря. Летосчисление по юлианскому календарю началось в 45 г. до н. э. На 1 января перенесли начало года (раньше первым месяцем был март). В благодарность за введение календаря сенат постановил переименовать месяц квинтилис (пятый), в котором родился Цезарь, в юлиус - наш июль. В 8 г. н. э. в честь следующего императора, Октавиана Августа, месяц сек-стилис (шестой), был переименован в августус. Когда Тиберию, третьему принцепсу (императору), сенаторы предложили назвать его именем месяц септембр (седьмой), он будто бы отказался, ответив: «А что будет делать тринадцатый принцепс».

Новый календарь оказался чисто гражданским, религиозные праздники в силу традиции по-прежнему справлялись в соответствии с фазами Луны. И в настоящее время праздник Пасхи согласовывается с лунным календарём, причём для расчёта его даты используется цикл, предложенный ещё Метоном.

Фалес и предсказание затмения

Фалёс (конец VII - середина VI в. до н. э.) жил в греческом торговом городе Милете, расположенном в Малой Азии. С античных времён историки называют Фалеса «отцом философии». К сожалению, его сочинения до нас не дошли. Известно лишь, что он стремился найти естественные причины явлений, считал началом всего воду и сравнивал Землю с куском дерева, плавающим в воде.

Геродот, рассказывая о войне восточных государств Лидии и Мидии, сообщал: «Так с переменным успехом продолжалась эта война, и на шестой год во время одной битвы день превратился в ночь. Это солнечное затмение предсказал ионянам Фалес Милетский и даже точно определил заранее год, в который оно наступит. Когда лидийцы и мидяне увидели, что день обратился в ночь, то поспешно заключили мир».

Это затмение, согласно современным расчётам, произошло 28 мая 585 г. до н. э. Чтобы установить периодичность затмений, вавилонским астрологам потребовалось не одно столетие. Вряд ли Фалес мог обладать достаточными данными, чтобы сделать предсказание самостоятельно.

Ещё большую пользу астрономии Фалес принёс как математик. По-видимому, он первым пришёл к мысли о необходимости поиска математических доказательств. Он, например, доказывал теорему о равенстве углов при основании равнобедренного треугольника, т. е. вещи, на первый взгляд очевидные. Ему важен был не сам результат, а принцип логического построения. Для астрономии весьма существенно и то, что Фалес стал основоположником геометрического изучения углов.

Фалес мог бы первым сказать: «Не знающий математики да не входит в храм астрономии».

Анаксиманар

Анаксимандр Милетский (около 610 - после 547 до н. э.) был учеником и родственником Фалеса. Как и его учитель, он занимался не только науками, но также делами общественными и торговыми. Его книги «О природе» и «Сферы» не сохранились, и об их содержании мы знаем по пересказам читавших. Мир Анаксимандра необычен. Небесные светила учёный считал не отдельными телами, а окошками в непрозрачных оболочках, скрывающих огонь. Земля, по его мысли, имела вид части колонны, на поверхности которой, плоской или круглой, живут люди. Она парит в центре мира, ни на что не опираясь. Окружают Землю исполинские трубчатые кольца-торы, наполненные огнём. В самом близком кольце, где огня немного, имеются небольшие отверстия - - планеты. Во втором кольце с более сильным огнём находится одно большое отверстие - Луна. Оно может частично или полностью перекрываться (так философ объяснял смену лунных фаз и затмения светила). Гигантское отверстие размером с Землю есть и в третьем, дальнем, кольце. Сквозь него сияет самый сильный огонь - Солнце. Возможно, Вселенную Анаксимандра замыкала полная сфера с россыпью отверстий, через которые проглядывал огонь, окружавший её. Эти-то отверстия люди и называли «неподвижными звёздами». Неподвижны они, естественно, только относительно друг друга. Эта первая в истории астрономии геоцентрическая модель Вселенной с жёсткими орбитами светил, охватывающими Землю, позволяла понять геометрию движений Солнца, Луны и звёзд.

Анаксимандр стремился не только геометрически точно описать мир, но и понять его происхождение. Философ считал началом всего существующего апейрон - «беспредельное»: «некая природа бесконечного, из которой рождаются небосводы и находящиеся в них космосы». Вселенная, по Анаксимандру, развивается сама по себе, без вмешательства олимпийских богов.

Возникновение Вселенной философ представлял себе примерно так: апейрон порождает враждующие стихии - «горячее» и «холодное». Их материальное воплощение - огонь и вода. Противоборство стихий в возникшем космическом вихре привело к появлению и разделению веществ. В центре вихря оказалось «холодное» - Земля, окружённая водой и воздухом, а снаружи - огонь. Под действием огня верхние слои воздушной оболочки превратились в твёрдую кору. Эту сферу затвердевшего аэра (воздуха) стали распирать пары кипящего земного океана. Оболочка не выдержала и раздулась, «оторвалась», как сказано в одном из источников. При этом она должна была оттеснить основную массу огня за пределы нашего мира. Так возникла сфера неподвижных звёзд, а самими звёздами стали поры во внешней оболочке.

» Астрономия в Древней Греции

Древнегреческая наука во многом основана на достижениях египетских и шумерских жрецов. Несомненным достижением греческих ученых является то, что они систематизировали все существующие знания в разных областях наук и продолжили их изучение. Это относится и к астрономии.

Древние греки представляли Землю в виде плоского или выпуклого диска, окруженного океаном, хотя уже Платон и Аристотель говорили о шарообразности Земли. Аристотель наблюдал за Луной и заметил, что в определенные фазы она выглядит как шар, освещенный с одной стороны Солнцем. Значит, Луна имеет форму шара. Далее он сделал вывод, что тень, закрывающая Луну во время затмений, может принадлежать только Земле, а раз тень круглая, то и Земля должна быть круглой.

Аристотель указывал и на другой факт, доказывающий шарообразность Земли: на то, что созвездия при передвижении на север или юг меняют положение. Ведь если бы Земля была плоской, то и звезды оставались бы на месте. Но Аристотель был категорически против того, что Земля вращается вокруг Солнца, он, как и большинство людей его времени, считал, что Земля неподвижна.

Первым человеком, который высказал мысль, что Земля вращается вокруг Солнца, был Аристарх Самосский. Он постарался вычислить расстояние между Землей, Солнцем и Луной, а также отношения их размеров. Аристарх вычислил, что Солнце находится в 19 раз дальше от Земли, чем Луна (по современным данным – в 400 раз дальше), а объем Солнца в 300 раз превышает объем Земли. Далее Аристарх задался вопросом, как может огромное Солнце, а тем более Вселенная, вращаться вокруг маленькой Земли, и сделал вывод, что это Земля вращается вокруг Солнца. Аристарх также объяснил, почему происходит смена дня и ночи: просто Земля вращается не только вокруг Солнца, но вокруг своей оси.

Греческие астрономы пытались понять устройство Вселенной, следили за движением Луны, Солнца, планет, звезд, ввели астрономические понятия, которыми мы пользуемся до сих пор. Евклид дал определение горизонта, небесного экватора, зенита и надира (точки, противоположной зениту), небесного меридиана.

Гиппарх разрабатывал теорию круговых орбит, вычислил, что продолжительность астрономических времен года не одинакова, что летом Солнце движется по своей орбите медленнее, чем зимой. Следовательно, орбита Земли не круглая, как считалось до этого, а эллиптическая. Гиппарх составил звездный каталог, в котором обозначил положение примерно тысячи звезд и определил их относительные величины.

Древние греки использовали солнечно-лунные календарь. Месяц начинался с новолуния, а год примерно равнялся промежутку времени между весенними равноденствиями. По 12-тимесячному лунному календарю год получался примерно на 1/3 лунного месяца короче солнечного года, поэтому в отдельные годы добавляли дополнительный 13 месяц.

В тех местах на Земле, где зародились древнейшие цивилизации, сохранилось множество письменных документов, из которых видно, что с появлением письменности стала развиваться и астрономия. Наличие письменности позволяло астрономам надежнее сохранять свои наблюдения и знания об окружающем их мире. Письменная история астрономии берет начало в III-II тысячелетиях до н. э.

Поначалу развивалась наблюдательная астрономия, которая рассматривалась как часть астрологии. Для того чтобы получать более точные сведения о передвижениях небесных тел, человек придумал гномон и астрономический календарь. Креме этого, к древнейшим астрономическим инструментам относятся устройства типа отвеса с подвижней линейкой. Их направляли на Солнце для определения углового расстояния от зенита.

Накопление наблюдений и сведений о закономерностях небесных явлений привело к развитию новой науки, причем в разных странах обращали внимание на различные астрономические явления. Люди решали одни и те же задачи, описывали движения светил. Но главным было все-таки социально-экономическое различие, другой уклад жизни общества. Наиболее крупные государства (Вавилон, Египет, Китай) имели развитые торговые и государственные связи. Благодаря этому в области науки у них существовало взаимное влияние.

Государство Вавилон возникло на берегах Евфрата примерно во II тысячелетии до н. э. Согласно письменным источникам, вавилоняне уже в те времена систематически вели наблюдение за небом. Поначалу они просто фиксировали небесные явления, которые воспринимались ими как астральные божества. И только в VII веке до н. э. получила бурное развитие вавилонская математическая астрономия. Она при помощи необычных моделей и методов описывала движение светил. Прежде всего, вавилонянами была выделена на небе Луна, затем Сириус, Орион и Плеяды. Все эти звезды описаны на глиняных табличках, относящихся ко II тысячелетию до н. э. В это же время в Вавилоне появилась официальная должность придворного астронома. Он наблюдал и записывал наиболее важные изменения и явления на небе.

Систематизировав все астрономические записи, вавилоняне изобрели лунный календарь. Немного позднее он был усовершенствован. В календаре было 12 синодических лунных месяцев по 29 и 30 дней поровну, год равнялся 354 дням. Вавилонянам был известен и солнечный год. Для того чтобы согласовать с этим годом лунный календарь, они от случая к случаю делали вставки 13-го месяца.

Начиная с 763 года до н. э. вавилоняне составили практически полный список затмений. Впоследствии эти записи использовал Птолемей. Вставки в календарь, предсказание затмений и другие нужды — все это потребовало развития математики. Достижения вавилонян в математике были очень высокими. Они были знакомы со стереометрией, задолго до греков сформулировали теорему, которая сейчас называется «теорема Пифагора». В IV веке до н. э. в Вавилоне была изобретена эклиптическая система небесных координат. Там же астрономы составили таблицы лунных эфемерид, точно показывавших положение Луны.

Государство Египет, как полагают историки, существовало уже в IV тысячелетии до н. э. Побудительным мотивом интереса египтян к изучению неба стало, скорее всего, сельское хозяйство, полностью зависели от разливов Нила. Разливы происходили строго периодично, в определенный сезон, и египтяне сразу подметили их связь с полуденной высотой Солнца. Поэтому они и стали поклоняться Солнцу как главному богу Ра.

В Египте установилась власть фараонов, которых простые люди обожествляли. Фараоны учредили должность придворного астронома и тщательно следили за развитием этой науки, которая имела не только прикладные, но и хозяйственные и социально-политические цели. Кроме этого, астрономией занимались жрецы и специальные чиновники, которые вели записи.

Согласно египетскому мифу, Солнце возникло из цветка лотоса, который, в свею очередь, появился из первичного водяного хаоса. Практически с самого начала зарождения цивилизации у египтян существовала религиозно-мифологическая картина мира, имеющая астрономическую основу. По их мнению, Земля является центром Вселенной, вокруг которого вращаются все светила. А Меркурий и Венера обращаются еще и вокруг Солнца.

Поздняя астрономия получила в наследство от египтян 365-дневный календарь без вставок. Он использовался европейскими астрономами до XVI века.

Астрономия как наука была известна и в Китае. Примерно во II-I тысячелетии до н. э. китайскими астрономами небо было разделено на 28 участков-созвездий, в которых двигались Солнце, Луна и планеты. Потом они выделили Млечный Путь, назвав его явлением неизвестной природы. Самый ранний звездный каталог, включающий свыше 800 звезд, был составлен Гань Гуном и Ши Шэнем приблизительно в 355 году до н. э. Это примерно на сто лет раньше Тимохариса и Аристилла в Греции. Немного позднее знаменитый китайский астроном Чжан Хэн поделил небо на 124 созвездия и зафиксировал около 2,5 тысячи видимых звезд.

С III века до н. э. в Китае пользовались солнечными и водяными часами. Все астрономические наблюдения велись со специальных площадок-обсерваторий.

Как и у других народов древности, общие представления китайцев о Вселенной имели мифологическую основу. Центром мира у них считалась Китайская империя («Поднебесная, или Серединная, империя»). Вообще, история космогонических представлений древних китайцев дошла до настоящего времени в хрониках ранних династий. В это время было создано учение о пяти земных первоэлементах-стихиях. Это вода, огонь, металл, дерево, земля. Число стихий связано с древним делением на пять сторон света, а также соответствует числу подвижных звезд-планет. Символически это можно представить в сочетаниях: вода — Меркурий — север, огонь— Марс— юг, металл — Венера — запад, дерево — Юпитер— восток, земля — Сатурн — центр. Кроме этого, существовал еще и шестой элемент — ци (воздух, эфир).

В VIII-VII веках до н. э. возникла идея всеобщего изменения в природе и зарождения самой Вселенной. Считалось, что она появилась в результате борьбы двух противоположных начал — положительного, светлого, активного, мужского (ян) и отрицательного, темного, пассивного, женского (инь).

В связи с тем что Китай со временем стал замкнутой страной, развитие наук, в том числе и астрономии, затормозилось.

Не меньший интерес вызывает и Индия. Самыми древними источниками, рассказывающими об астрономических занятиях древних индийцев, считаются печати с изображениями на космогонические мифологические темы (которые датируются III тысячелетием до н. э.). Содержащиеся на них короткие надписи не расшифрованы и по сей день. Печати относятся к индской цивилизации, главными городами которой являлись Хараппа, Мохенджо-Даро, Калибанган. К XVII-XVI векам центры индской культуры были значительно ослаблены землетрясениями и внутренними противоречиями, а затем окончательно разрушены ариями и индо-ираноязычными племенами, давшими начало нынешнему населению Индии.

Документов об астрономических наблюдениях периода индской культуры сохранилось очень немного, но по ним все же можно понять, как складывались представления древних индусов о Вселенной. Первыми объектами исследования были Солнце и Лука. Как и у других древних народов, астрономическими изысканиями занимались жрецы, которые и составили впоследствии календарь. В нем начиная с VI века до н. э. в названиях дней семидневной недели были использованы имена семи подвижных светил: первый день Луны, второй — Марса, третий — Меркурия, четвертый — Юпитера, пятый — Венеры, шестой — Сатурна, седьмой — Солнца. Некоторое сходство с египетским календарем придавало деление месяца на две половины. В древнеиндийской астрономии это были светлая и темная половины.

На представление древних греков о Вселенной большое влияние оказали более ранние культуры: египетская, щумеро-вавилонская и, вероятно, древнеиндийская. Греция имела связи с Египтом, Вавилоном, с государствами Ближнего Востока.

Астрономическими наблюдениями занимались многие греческие философы и астрономы. Из поэм Гесиода и Гомера известно, что древним грекам были знакомы многие созвездия. Они даже создали практически о каждом из них свею легенду.