Болезни Военный билет Призыв

Ядро атомов состоит из. Атомное ядро: состав, характеристики, модели, ядерные силы. Масса. Размеры ядер

Задолго до появления достоверных данных о внутреннем устройстве всего сущего греческие мыслители представляли себе материю в виде мельчайших огненных частиц, которые находились в постоянном движении. Вероятно, это видение мирового устройства вещей было выведено из чисто логических умозаключений. Несмотря на некоторую наивность и абсолютную бездоказательность этого утверждения, оно оказалось верным. Хотя подтвердить смелую догадку ученые смогли лишь двадцать три века спустя.

Строение атомов

В конце XIX века были исследованы свойства разрядной трубки, через которую пропущен ток. Наблюдения показали, что при этом испускается два потока частиц:

Отрицательные частицы катодных лучей были названы электронами. В дальнейшем частицы с тем же отношением заряда к массе были обнаружены во многих процессах. Электроны казались универсальными составляющими различных атомов, довольно легко отделяющимися при бомбардировке ионов и атомов.

Частички, несущие положительный заряд, представлялись осколками атомов после потери ими одного или нескольких электронов. На самом деле положительные лучи представляли собой группы атомов, лишенных отрицательных частиц, и вследствие этого имеющих положительный заряд.

Модель Томпсона

На основании опытов было выяснено, что положительные и отрицательные частички представляли суть атома, были его составляющими. Английский ученый Дж. Томсон предложил свою теорию. По его мнению, строение атома и атомного ядра представляли собой некую массу, в которой отрицательные заряды были втиснуты в положительно заряженный шар, как изюм в кекс. Компенсация зарядов делала «кекс» электрически нейтральным.

Модель Резерфорда

Молодой американский ученый Резерфорд, анализируя треки, оставшиеся после альфа-частиц, пришел к выводу, что модель Томпсона несовершенна. Некоторые альфа-частицы отклонялись на небольшие углы - в 5-10 o . В редких случаях альфа-частицы отклонялись на большие углы в 60-80 o , а в исключительных случаях углы были очень большими - 120-150 o . Модель атома Томпсона не могла объяснить такую разницу.

Резерфорд предлагает новую модель, объясняющую строение атома и атомного ядра. Физика процессов утверждает, что атом должен быть пуст на 99%, с крошечным ядром и вращающимися вокруг него электронами, которые движутся по орбитам.

Отклонения при ударах он объясняет тем, что частицы атома имеют собственные электрические заряды. Под воздействием бомбардирующих заряженных частиц атомные элементы ведут себя как обыкновенные заряженные тела в макромире: частицы с одинаковыми зарядами отталкиваются друг от друга, а с противоположными - притягиваются.

Состояние атомов

В начале прошлого века, когда были запущены первые ускорители элементарных частиц, все теории, объяснявшие строение атомного ядра и самого атома, ждали экспериментальной проверки. К тому времени были уже досконально изучены взаимодействия альфа- и бета-лучей с атомами. Вплоть до 1917 года считалось, что атомы либо стабильны, либо радиоактивны. Стабильные атомы нельзя расщепить, распад радиоактивных ядер невозможно контролировать. Но Резерфорду удалось опровергнуть это мнение.

Первый протон

В 1911 году Э. Резерфорд выдвинул идею о том, что все ядра состоят из одинаковых элементов, основой для которых является атом водорода. На эту идею ученого натолкнул важный вывод предыдущих изучений строения вещества: массы всех химических элементов делятся без остатка на массу водорода. Новое предположение открывало невиданные возможности, позволяющие по-новому видеть строение атомного ядра. Ядерные реакции должны были подтвердить или опровергнуть новую гипотезу.

Опыты проводились в 1919 году с атомами азота. Бомбардируя их альфа-частицами, Резерфорд добился удивительного результата.

Атом N поглотил альфа-частицу, превратился после этого в атом кислорода О 17 и испустил ядро водорода. Это стало первым искусственным превращением атома одного элемента в другой. Подобный опыт вселял надежду на то, что строение атомного ядра, физика существующих процессов позволяют осуществлять и другие ядерные превращения.

Ученый использовал в своих опытах метод сцинтилляции - вспышки. По частоте вспышек он делал выводы о том, каким является состав и строение атомного ядра, о характеристиках рожденных частиц, об их атомной массе и порядковом номере. Неизвестная частица было названа Резерфордом протоном. Она имела все характеристики атома водорода, лишенного своего единственного электрона - одиночный положительный заряд и соответствующую массу. Таким образом было доказано, что протон и ядро водорода являются одними и теми же частицами.

В 1930 году, когда были построены и запущены первые большие ускорители, модель атома Резерфорда удалось проверить и доказать: каждый атом водорода состоит из одинокого электрона, положение которого невозможно определить, и рыхлого атома с одиноким положительным протоном внутри. Поскольку при бомбардировке из атома могут влетать протоны, электроны и альфа-частицы, ученые думали, что они и есть составляющие любого ядра атома. Но подобная модель атома ядра казалась неустойчивой - электроны были слишком велики для того, чтобы умещаться в ядре, кроме этого, существовали серьезные затруднения, связанные с нарушением закона количества движения и сохранения энергии. Эти два закона, как строгие бухгалтеры, говорили о том, что количество движения и масса при бомбардировке исчезают в неизвестном направлении. Поскольку эти законы являлись общепринятыми, следовало отыскать объяснения для подобной утечки.

Нейтроны

Ученые всего мира ставили эксперименты, направленные на открытие новых составляющих ядер атомов. В 1930-х годах немецкие физики Беккер и Боте бомбардировали атомы бериллия альфа-частицами. При этом было зарегистрировано неизвестное излучение, которое было решено назвать G-лучами. Подробные исследования рассказали о некоторых особенностях новых лучей: они могла распространяться строго по прямой, не взаимодействовали с электрическими и магнитными полями, обладали высокой проникающей способностью. Позднее частицы, образующие этот вид излучения, были найдены при взаимодействии альфа-частиц с другими элементами - бором, хромом и прочими.

Гипотеза Чедвика

Тогда Джеймс Чедвик, коллега и ученик Резерфорда, в журнале «Нэйчур» дал короткое сообщение, которое позднее стало общеизвестным. Чедвик обратил внимание на тот факт, что противоречия в законах сохранения легко разрешаемы, если допустить, что новое излучение является потоком нейтральных частиц, каждая из которых имеет массу, приблизительно равную массе протона. Рассматривая это предположение, физики существенно дополнили гипотезу, объясняющую строение атомного ядра. Кратко суть дополнений сводилась к новой частице и ее роли в строении атома.

Свойства нейтрона

Обнаруженной частице было дано имя «нейтрон». Новооткрытые частички не образовывали вокруг себя электромагнитных полей, легко проходили через вещество, не теряя при этом энергии. При редких столкновениях с легкими ядрами атомов нейтрон в состоянии выбить из атома ядро, теряя при этом значительную часть своей энергии. Строение атомного ядра предполагало наличие различного количества нейтронов в каждом веществе. Атомы с одинаковым зарядом ядра, но с различным количеством нейтронов получили название изотопов.

Нейтроны послужили отличной заменой альфа-частицам. В настоящее время именно их используют для того, чтобы изучить строение атомного ядра. Кратко их значение для науки описать невозможно, но именно благодаря бомбардировке нейтронами атомных ядер физики смогли получить изотопы практически всех известных элементов.

Состав ядра атома

В настоящее время строение атомного ядра представляет собой совокупность протонов и нейтронов, скрепленных между собой ядерными силами. Например, ядро гелия представляет собой комочек из двух нейтронов и двух протонов. Легкие элементы имеют практически равное число протонов и нейтронов, у тяжелых элементов количество нейтронов значительно больше.

Такая картина строения ядра подтверждается экспериментами на современных больших ускорителях с быстрыми протонами. Электрические силы отталкивания протонов уравновешиваются ядреными силами, которые действуют только в самом ядре. Хотя природа ядерных сил еще до конца не изучена, их существование является практически доказанным и полностью объясняет строение атомного ядра.

Связь массы и энергии

В 1932 камера Вильсона запечатлела удивительный фотоснимок, доказывающий существование положительных заряженных частиц, с массой электрона.

До этого положительные электроны были предсказаны теоретически П. Дираком. Реальный положительный электрон был обнаружен также в космическом излучении. Новую частичку назвали позитроном. При столкновении со своим двойником - электроном, происходит аннигиляция - взаимное уничтожение двух частиц. При этом освобождается определенное количество энергии.

Таким образом, теория, разработанная для макромира, полностью подходила для описания поведения мельчайших элементов вещества.

Размеры планет и даже самого Солнца малы по сравнению с размерами солнечной системы. Так, напри­мер, расстояние от Земли до Солнца больше диаметра Солнца, примерно, в 100 раз, а расстояние от Солнца до самой удалённой планеты Плутона больше диамет­ра Солнца в 4 000 раз. Объём Солнца составляет лишь

■iwuoiuoььoJ - Объёма шара с радиусом, равным рас­стоянию от Солнца до Плутона. Такое же положе­ние имеет место и в атоме, несмотря на то, что почти вся тяжесть атома сосредоточена в его ядре, 10 размеры ядра очень малы по сравнению с размерами атома.

Диаметры ядер атомов разных элементов несколько отличаются друг от друга, но в общем диаметр ядра, примерно, в 100 000 раз меньше диаметра атома. Таким

Образом, ядро занимает в атоме лишь "Т"оооооо ооо ооо ооо"

Часть его объёма (напоминаем, что объём пропорцио-

Нален кубу диаметра). Ядро в атоме занимает в 2 000 раз меньше места, чем Солнце в солнечной системе.

Если увеличить ядро до размеров булавочной голов­ки, то атом с трудом поместился бы в огромном сто­метровом зале. Если же мы увеличили бы ядро до размеров винтика карманных часов, то атом был бы больше огромного океанского парохода (рис. 3).

Предположим теперь, что удалось бы сжать веще­ство до такой степени, что ядра атомов касались бы друг друга. Тогда огромный линкор водоизмещением в 45 000 тонн поместился бы в булавочной головке!

Наша задача состоит в том, чтобы рассказать об атомном ядре и его энергии. Об атоме и его строении мы подробно говорить здесь не собираемся, и если выше нам пришлось кратко остановиться на этом

Вопросе, то лишь потому, что ядро является частью атома. Не зная строения атома, изучать свойства ядра невозможно. Поэтому физики вначале энергично заня­лись атомом. Изучение ядра оказалось в центре вни­мания лишь лет 15 тому назад, когда строение атома стало хорошо известно, В настоящее время исследова­ние свойств и строения атомного ядра как раз и яв­ляется основным вопросом, которым занимаются мно­гие физики.

Мы знаем, что ядро является центром атома, знаем уже его заряд, вес и размеры.

Но как ядро устроено? Состоит ли ядро из других более простых частичек или само является простейшей частицей? Нельзя ли разрушить ядро и как это сде­лать? Все эти вопросы сейчас же встают перед нами и на них нужно ответить.

Применение ядерной энергии является совсем новой областью науки и техники. Поэтому многое здесь ещё неизвестно. Фантазировать же на эту тему мы не будем. Использование ядерной энергии, о котором мы гово­рили, …

Кроме урана, под влиянием нейтронов делятся также ядра элементов протактиния (заряд 91) и тория (заряд 90). Использование протактиния не имеет абсо­лютно никакого значения, так как этот элемент очень редок: во …

235 Деление ядер урана 92 в природном уране, смешан* ном с графитом, приводит, как это ясно из сказанного выше, к образованию плутония. Замечательно, что плу­тоний обладает такими же свойствами, как …

ЯДРО АТОМНОЕ - центральная массивная часть атома, состоящая из протонов и нейтронов (нуклонов). В Я. а. сосредоточена почти вся масса атома (более 99,95%). Размеры ядер порядка 10 -13 -10 -12 см. Ядра имеют положит. электрич. , кратный абс. величине заряда электрона е: Q = Ze . Целое число Z совпадает с порядковым номером элемента в периодической системе элементов . Я. а. было открыто Э. Резерфордом (Е. Rutherford) в 1911 в опытах по рассеянию a-частиц при прохождении их через вещество.

Состав ядра. Вскоре после открытия нейтрона Дж. Чед-виком (J. Chadwick, 1932), Д. Д. Иваненко и В. Гёйзенбер-гом (W. Heisenberg) независимо было высказано фундам. предположение о том, что Я. а. состоит из протонов (р) и нейтронов (n). Общее число нуклонов в Я. а. наз. м а сс о в ы м ч и с л о м A , число протонов в ядре равно заряду ядра Z, число нейтронов N = A - Z . Ядра с одинаковыми зарядами Z и разным числом нейтронов наз. и з о т о п ам и, ядра с разными Z и одинаковыми N -и з о т о н а м и, ядра с одинаковыми А и разными Z и N -и з о б а р а м и. По совр. представлениям, протон и нейтрон состоят из кварков и глюонов и Я. а.- сложная система из большого кол-ва , глюонных и мезонных полей, взаимодействующих друг с другом. Последовательное описание Я. а. должно достигаться в рамках квантовой хромодинамики . Однако в силу своей сложности эта задача ещё не решена.

Составная природа нуклонов проявляется лишь в столкновениях с большой передачей импульса и энергии. При небольших энергиях возбуждения такие столкновения в ядре редки. Поэтому при описании Я. а. и ядерных реакций , происходящих при не слишком больших энергиях (<= 1 ГэВ на нуклон), в первом приближении можно считать, что ядра состоят из вполне определённого числа нуклонов, движущихся с нерелятивистскими скоростями (u 2 /c 2 ~0,l). Кварки "заперты" каждый в своём нуклоне. Нуклоны не теряют своей индивидуальности и обладают примерно такими же свойствами, как и в свободном состоянии (за нек-рыми исключениями, см. ниже). Протонно-нейтронная картина строения Я. а. является приближённой и нарушается при высоких энергиях возбуждения и в процессах с большой передачей импульса и энергии.

В обычных условиях отклонения от протонно-нейтрон-ной модели, связанные с составной природой нуклонов и кварк-глюонной структурой Я. а., невелики и заключаются в следующем. 1) В результате взаимодействия между нуклонами последние могут существовать в Я. а. не только в основном, но и в возбуждённых состояниях, наз. н у к л о н н ы м и и з о б а р а м и. Низшим из них по энергии является т. н. D-изобара (см. Резонансы ).Часть времени (~ 1%) нуклоны в ядре могут пребывать в виде нуклонных изобар. 2) Запирание кварков в нуклонах не является абсолютным, в ядре могут на короткое время образовываться сгустки кварк-глюонной материи (флуктоны ),состоящие из 6, 9 и т. д. кварков (см. Кварк-глюонная плазма ).3) Свойства нуклонов, связанных в ядре, могут отличаться от свойств свободных нуклонов. Как показывают эксперименты по глубоко неупругому рассеянию (см. Глубоко неупругие процессы) лептонов на ядрах, структурные ф-ции нуклонов в ядре, характеризующие распределение кварков по импульсам в нуклоне, отличаются от структурных ф-ций свободных нуклонов (эффект ЕМС - Европейской Мюонной Коллаборации, ЦЕРН, 1982). Одно из возможных объяснений эффекта ЕМС основано на гипотезе об увеличении радиуса нуклона в ядре по сравнению со свободным нуклоном. 4) В ядрах периодически на время 10 -23 -10 -24 с появляются (виртуальные) мезоны ,в т. ч. пи-мезоны .Исследование ненуклонных степеней свободы ядра - осн. предмет совр. исследований в релятивистской ядерной физике .

Ядерные силы . Нуклоны являются адронами , т. е. принадлежат к числу частиц, испытывающих сильное взаимодействие . Взаимодействие между нуклонами, удерживающее их в ядре, т. е. ядерные силы ,возникает в результате взаимодействия между составными частями (кварки, глю-оны), к-рые образуют нуклоны. Теория ядерных сил на основе кварковых представлений находится в стадии становления и пока не завершена.

Традиционная мезонная теория ядерных сил основана на идее, предложенной в 1935 X. Юкавой (Н. Yukawa). Согласно мезонной теории, взаимодействие между нуклонами осуществляется путём обмена мезонами. характеризуются радиусом действия; он определяется ком-птоновской длиной волны мезонов, к-рыми обмениваются нуклоны, где m - масса мезона. Наиб. радиус действия имеют силы притяжения, обусловленные обменом я-мезонами. Для них l с =1,41 Фм (1 Фм=10 -13 см). Это соответствует расстоянию между нуклонами в ядрах. Обмен более тяжёлыми мезонами (r, w и др.) оказывает влияние на взаимодействие между нуклонами на меньших расстояниях, вызывая, в частности, отталкивание между ними на расстояниях <=0,4 Фм.

Размеры ядер зависят от числа нуклонов в ядре и изменяются в пределах от 10 -13 до 10 -12 см. Эксперим. данные показывают, что ср. нуклонов (число нуклонов в единице объёма) почти одинакова во всех ядрах с А>= 20. Это означает, что объём ядра пропорционален А , а его радиус R пропорционален А 1/3 :

где постоянная а близка к радиусу действия ядерных сил. Различают зарядовый радиус ядра, т. е. ср. радиус распределения протонов в ядре, и радиус распределения ядерного вещества (радиус распределения нуклонов независимо от их сорта). Первый измеряется в экспериментах с электромагнитным взаимодействием (рассеяние электронов высоких энергий на ядрах, исследование уровней мюонных атомов) , что даёт значение а =1,12 Фм; второй - в ядерных реакциях с участием (рассеяние нуклонов, a-частиц, взаимодействие p- и К-мезонов с ядрами и др.). При этом получают несколько большее значение а = 1,2- 1,4 Фм. Ср. плотность ядерного вещества очень велика и составляет ~ 10 14 г/см 3 .

Эксперименты по рассеянию быстрых электронов на ядрах позволили не только определить ср. размеры ядра, но и детально исследовать распределение заряда r(r )в ядре. Эксперим. результаты лучше согласуются не с однородным распределением заряда в ядре, а с т. н. фермиев-ским распределением:

где R 0 = 1,1 А 1/3 Фм. Это распределение показывает, что плотность заряда почти постоянна во внутр. области (r 0 )тяжёлого или ср. ядра и экспоненциально спадает за её пределами. Параметр b = 0,5 Фм характеризует "размытость" поверхности ядра; он почти одинаков для всех ядер и означает, что "толщина" ядерной поверхности (интервал, на к-ром плотность заряда убывает от 90% до 10% значения r 0 = 0,17 нуклон/Фм 3) составляет 2,2 Фм. Ф-лы (1,2) описывают зависимость радиуса ядра R и плотности заряда r(r )от А в среднем и не учитывают индивидуальных особенностей строения ядер. Последние могут привести к нерегулярностям в изменении R . В частности, из измерений изотопических сдвигов энергий атомных уровней следует, что иногда радиус ядра может даже уменьшаться при добавлении двух нейтронов (напр., радиус ядра 48 Са меньше радиуса 46 Са). Измерение изотопич. сдвигов уровней атомов и мезоатомов дало возможность оценить изменение радиуса ядра в возбуждённом состоянии. Как правило, по мере возбуждения ядра его радиус увеличивается, но незначительно (доли %). Имеющиеся данные свидетельствуют о том, что распределения протонов и нейтронов в ядре практически одинаковы. Но в тяжёлых ядрах из-за больших кулоновских сил и связанного с ними избытка нейтронов радиус распределения нейтронов может немного превышать радиус распределения заряда (н е й т р о н н о е г а л о). Подобное гало может возникать также в лёгких ядрах, перегруженных нейтронами (11 Li).

Энергия связи и масса ядра . Энергией связи ядра наз. энергия, к-рую необходимо затратить, чтобы расщепить ядро на отд. нуклоны. Она равна умноженной на с 2 разности суммарной массы всех нуклонов, входящих в состав ядра, и массы М самого ядра:

Здесь т р, т n - массы протона и нейтрона. Энергия связи ядра примерно пропорц. числу нуклонов в ядре, а уд. энергия связи почти постоянна (для большинства ядер /A~ 6-8 МэВ). Это свойство, называемое н а с ыщ е н и е м я д е р н ы х с и л, означает, что нуклон в ядре эффективно взаимодействует не со всеми нуклонами ядра, а только с нек-рым ограниченным их числом (в противном случае уд. энергия связи была бы пропорц. А) .

Постоянство плотности и уд. энергии связи ядра сближает свойства ядра со свойствами жидкости. Это сходство легло в основу модели ядра как жидкой капли (капельная модель ядра ),исходя из к-рой К. Ф. фон Вайцзеккер (С. F. von Weizsacker) в 1935 предложил полуэмпирич. ф-лу (Вайцзеккера формула )для энергии связи ядра:

Здесь первый член описывает объёмную энергию "капли", второй - характеризует ослабление связи для нуклонов, находящихся на поверхности ядра, третий член описывает вклад кулоновской энергии капли радиусом R~A 1/3 и с зарядом Z . Четвёртый член (т. н. э н е р г и я с и м м е т р и и) не имеет классич. аналога и отражает тот факт, что притяжение между нуклонами разного сорта в ср. сильнее, чем для одинаковых нуклонов. Это вместе с Паули принципом делает энергетически невыгодным значит. отклонение N от Z . Пятый член наз. э н е р г и е й с п а р и в а н и я:


Он воспроизводит опытный факт, что четно-чётные ядра (Z и N чётные) связаны сильнее, чем соседние четно-нечётные, а последние, в свою очередь, более устойчивы, чем нечётно-нечётные ядра.

Совр. значения параметров ф-лы Вайцзеккера: b 1 = 15,75 МэВ, b 2 = 17,8 МэВ, b 3 = 0,71 МэВ, b 4 = 23,7 МэВ. Ф-ла (4) в ср. хорошо описывает энергии связи ядер, ограничивает значением Z 2 /A ~ 46 область существования ядер, устойчивых по отношению к делению. Однако она не учитывает индивидуальных особенностей оболочечной структуры ядра. Эти эффекты можно учесть методом оболочечной поправки Струтинского, предсказывающим возможность существования т. н. о с т р о в о в с т а б и л ьн о с т и сверхтяжёлых ядер при Z ~114 (см. Трансурановые элементы ).

Квантовые характеристики ядерных уровней . Я. а. при энергиях ниже порога распада (с испусканием нуклона, a-частицы и т. п.) может находиться только в дискретных состояниях с определ. энергией, характеризующихся набором квантовых чисел, задающих значения сохраняющихся величин (интегралов движения) в этих состояниях. Выше порога распада ядра дискретные состояния становятся нестационарными и проявляются в ядерных реакциях как резонансы конечной ширины.

Наиб. важными характеристиками ядерных состояний являются спин ядра (или момент кол-ва движения, называемый также у г л о в ы м м о м е н т о м я д р а) I и чётность p = + 1. Спин / измеряется в единицах и принимает полуцелые значения (I = 1 / 2 , 3 / 2 , ...) У нечётных ядер и целочисленные значения (I =0, 1, 2, ....) у чётных ядер. Чётность p указывает на симметрию волновой ф-ции y ядерного состояния относительно зеркального отражения пространства Р (см. Пространственная инверсия): Р y = py. В связи с этим для ядерных состояний указывают объединённую характеристику I p . Эмпирически установлено, что осн. состояния четно-чётных ядер имеют характеристику 0 + . Спины и чётности нечётных ядер, как правило, объясняются моделью оболочек (см. ниже). Строго говоря, чётность не является точным квантовым числом, поскольку она не сохраняется при слабом взаимодействии . За счёт сил электрослабого взаимодействия между нуклонами происходит смешивание состояний с одним и тем же спином I и противоположными чётностями. Однако вследствие малости сил, нарушающих чётность, указанное смешивание мало и им можно пренебречь при рассмотрении спектров ядерных уровней, разнообразных ядерных реакций и переходов, за исключением процессов, направленных специально на изучение явления несохранения чётности в ядрах .

Ещё одной важной, хотя и приближённой ядерной характеристикой является изотопический спин (или изобарический спин) Т , к-рый складывается из изоспинов отд. нуклонов по тем же правилам, что и обычный спин. Сохранение этой величины связано с изотопической инвариантностью ядерных сил, к-рая состоит в том, что ядерные взаимодействия между двумя нуклонами в одинаковых пространств. и спиновых состояниях не зависят от сорта нуклонов, т. е. одинаковы в парах рр, рп и пп. Изотопич. спин (изоспин) может принимать значения T>=(N-Z)/ 2, целые для чётных ядер и полуцелые для нечётных. Подобно обычному спину, он имеет также фиксированную проекцию на одну из осей формального изоспинов. пространства T Z = (A - 2Z )/2. Она связана с зарядом ядра и поэтому является строго сохраняющейся величиной во всех ядерных состояниях. В отличие от этого, изоспин Т является приближённым квантовым числом. Нарушение изоспина (т. е. смешивание компонент с разл. значениями Т в волновой ф-ции ядерного состояния) обусловлено различием масс протона и нейтрона, а также кулоновским взаимодействием между протонами. В лёгких ядрах с Z<=20 эти эффекты малы и изоспин Т является достаточно точным квантовым числом. В результате ядерные состояния можно характеризовать квантовыми числами Т и T Z , a состояния с одинаковыми значениями I p , Т в соседних ядрах-изобарах объединить в и з о т о п и ч. м у л ь т и п л е т ы. Поскольку проекция изоепина принимает значения T Z =T, Т -1, ...., - T , то в изотопич. мульти-плет входит 2Т+ 1 уровней.

Опытным путём установлено, что энергия возбуждения ядерного состояния тем выше, чем больше изоспин. Поэтому в осн. состоянии ядра Т= T Z и у четно-чётных ядер с Z=N T= 0. Ядра с T= 1 / 2 и T Z = b 1 / 2 образуют изодуб-лет (напр., 3 Н - 3 Не). Примером изотриплета могут служить осн. состояние 0 + (Т =1, Т Z = 1) ядра 6 Не, возбуждённое состояние 0 + (Т= 1, T Z = 0 )ядра 6 Li (энергия возбуждения 3,56 МэВ) и осн. состояние ядра 6 Ве (Т= 1, T Z = -1) . В ядерной физике принято приписывать нуклону изоспин Т= 1 / 2 и значения Т Z = 1 / 2 нейтрону, T Z = - 1 / 2 протону, в отличие от физики элементарных частиц, где используются противоположные знаки проекций изоспина нуклона. Это сделано из соображений удобства, чтобы значения T Z были положительны для стабильных ядер, у к-рых N> Z .

Состояния ядер, входящих в состав одного изотопич. мультиплета, наз. аналоговыми состояниями . Вследствие изотопич, инвариантности ядерных сил структура (чисто ядерная) этих состояний одинакова, а все отличия в их свойствах обусловлены эл--магн. взаимодействием. Напр., энергии связи аналоговых состояний одинаковы с точностью до различия кулоновских энергий в ядрах данного мультиплета. С увеличением Z возрастает роль кулонов-ского взаимодействия. Поэтому в тяжёлых ядрах точность изоепина как квантового числа уменьшается. Тем не менее следы изоспиновой симметрии проявляются в том, что в разл. ядерных реакциях наблюдаются открытые в 1961 состояния, нестабильные по отношению к испусканию нуклона, к-рые являются аналогами основного или низших стабильных возбуждённых состояний соседнего ядра с меньшим Z (а н а л о г о в ы е р е з о н а н с ы). Напр., при рассеянии протонов на стабильном ядре А с числами нейтронов и протонов N и Z (T 0 = T Z = (N-Z)/ 2 )наблюдаются резонансы, отвечающие образованию составного ядра А+ 1 (Z+l, N )в возбуждённом состоянии с квантовыми числами T=T 0 + 1 / 2 , T Z =T 0 - 1 / 2 , входящем в тот же изотопич. мультиплет, что и осн. состояние соседнего ядра А + 1(N+ 1, Z), T=T Z =T 0 + 1 / 2 . Однако эксперименты показали, что аналоговые резонансы имеют тонкую структуру, к-рая свидетельствует о том, что имеет место смешивание аналогового состояния, характеризуемого изоспином T 0 + 1 / 2 c др. возбуждёнными состояниями составного ядра, отвечающими изоспину Т=Т 0 - 1 / 2 .

Электрические и магнитные моменты ядер . В каждом из возможных состояний Я. а. имеет определ. значения магн. дипольного момента и квадрупольного электрического момента (см. Квадрупольный момент ядра) . Статич. магн. момент может быть отличен от 0 только в том случае, когда спин ядерного состояния I 0, а статич. квадруполь-ный момент может иметь ненулевое значение лишь при I > 1 / 2 . Ядерное состояние с определ. чётностью не может иметь отличного от нуля электрич. дипольного момента (Е 1) , а также др. электрич. моментов E l нечётной муль-типольности l и статич. магн. моментов M l чётной муль-типольности l. Существование ненулевого электрич. дипольного момента E 1 запрещено также инвариантностью относительно обращения времени (T -инвариантность). Поскольку эффекты несохранения чётности и нарушения T -инвариантности очень малы, то дипольные электрич. моменты ядер или равны 0, или очень малы и пока недоступны для измерения.

Магн. моменты ядер (M 1) имеют порядок величины ядерного магнетона .Электрич. квадрупольные моменты eQ изменяются от е 10 -27 см 2 в нек-рых лёгких ядрах до е 10 -24 см 2 в тяжёлых деформированных ядрах. Систематическая информация о магн. и квадрупольных моментах имеется только для осн. состояний ядер. Они могут быть измерены радиоспектроскопич. методами (см. Ядерный магнитный резонанс ).Спец. методами (м е т о д в о з м ущ ё н н ы х у г л о в ы х к о р р е л я ц и й) можно измерять также статич. магн. и квадрупольные моменты возбуждённых состояний ядер. Данные по магн. и квадруполь-ным моментам ядер содержат важную информацию о структуре и форме ядер и используются для построения и проверки ядерных моделей. Есть нек-рые данные о высших мультипольных моментах ядер (напр., гексадека-польных - Е 4) .

Структура и модели ядер

Я. а. представляет собою квантовую систему мн. тел, сильно взаимодействующих друг с другом. Теоретич. описание свойств такой системы (спектров энергетич. уровней, распадов, ядерных реакций и квантовых переходов) является трудной задачей. Число нуклонов А в ядре не столь велико, чтобы можно было без оговорок использовать методы статистич. механики (см. Гиббса распределения ),успешно применяемой в физике конденсир. сред (жидкости, твёрдые тела). В то же время точное решение в квантовой механике возможно лишь для задачи двух тел (дейтрон ).Успехи, достигнутые в решении задачи 3-4 тел гл. обр. с помощью ур-ний Фаддеева и Фаддеева-Якубовского, позволяют получать строгие количеств. результаты лишь для самых лёгких ядер 3 Н, 3 Не, 4 Не. Ситуация осложняется недостаточной определённостью наших знаний о ядерных силах. Наконец, установление составной природы нуклонов превращает систему А нуклонов в систему, по крайней мере, 3А кварков, что ещё более усложняет задачу описания структуры и свойств ядер. Последовательное решение этой задачи может быть достигнуто только в рамках (непертурбативной) квантовой хромодинамики , но она ещё далека от разрешения.

Понимание структуры ядра основано на использовании разл. ядерных моделей , каждая из к-рых имеет целью описание определ. совокупности ядерных свойств и характеристик. Нек-рые модели, на первый взгляд, являются взаимоисключающими. Поэтому важными являются микро-скопич. подходы в теории ядра, позволяющие установить пределы применимости разл. моделей, степень их совместимости друг с другом, а также оценить или вычислить, исходя из первых принципов, значения параметров, к-рые используются в моделях как феноменологические и извлекаются из данных эксперимента.

Оболочечная модель ядра предполагает, что в результате взаимодействия нуклонов друг с другом в ядре формируется общее среднее (самосогласованное) поле, описываемое оболочечным потенциалом V o6 (r ), в к-ром нуклоны движутся как независимые (в первом приближении) частицы. Каждый из нуклонов заполняет одну из орбит, характеризуемую орбитальным моментом l (в случае сферически симметричного ср. поля), полным угл. моментом j =l + 1 / 2 и чётностью p = (- 1) l . Энергия нуклона на орбите lj не зависит от проекции т полного момента нуклона j (-j<=m<=j) . Поэтому в соответствии с принципом Паули на каждом уровне с энергией(nlj )может находиться 2j +1 нуклонов одного сорта, образующих протонную (или нейтронную) подоболочку (nlj) , где п= 1, 2,...- гл. квантовое число (радиальное).

Неск. близких по энергии подоболочек группируются в оболочки, отделённые друг от друга большими энерге-тич. интервалами. Полный момент I для k нуклонов в оболочке получается путём сложения моментов j отд. нуклонов. В заполненной оболочке моменты всех нуклонов компенсируют друг друга и допустимо только одно значение полного момента I = 0. Подобно атомам благородных газов, обладающих заполненными электронными оболочками, ядра, состоящие из заполненных нуклонных оболочек, также характеризуются особой устойчивостью (большой уд. энергией связи). В основном и низколежащих возбуждённых состояниях ядер низшие одночастичные орбиты заполнены и образуют "инертный" остов ядра, сверх к-рого есть нек-рое число нуклонов в ближайшей незаполненной оболочке. Подобно тому как валентные электроны определяют хим. свойства атомов, спектры низших уровней и их свойства в большинстве ядер определяются "валентными" нуклонами из незаполненных оболочек.

Простейший вариант модели оболочек (одночастичная модель) представляет нечётное ядро как совокупность четно-чётного остова в состоянии 0 + и нечётного нуклона на орбите nlj . Тогда спин нечётного ядра в осн. состоянии равен j , а чётность p = (- 1) l . Систематика спинов и чёт-ностей нечётных ядер позволяет определить последовательность заполнения орбит в ядрах, а также энергии этих орбит. Это дало возможность установить осн. характеристики и форму оболочечного потенциала V o6 (r ). В частности, М. Гёпперт-Майер (М. Goeppert-Mayer, США) и И. X. Йенсеном (J. H. Jensen, ФРГ) в 1949-50 была установлена необходимость включения в оболочечный потенциал спин-орбитального взаимодействия V co (r) (ls) . Только при учёте сильного спин-орбитального расщепления одночастичных состояний удаётся объяснить систематику спинов ядер и последовательность заполнения орбит, а также магич. числа протонов или нейтронов, отвечающие заполненным оболочкам (см. Магические ядра ).Магич. числа (2, 8, 20, 28, 50, 82, 126) соответствуют после-доват. заполнению нуклонами одного сорта оболочек:


В скобках указана совокупность близких по энергии одно-частичных состояний, образующих одну оболочку. Оболочки отделены друг от друга энергетич. щелью, значительно превышающей расстояние между уровнями в пределах одной оболочки (рис. 1).

Центр. часть оболочечного потенциала представляет собою потенц. яму конечной глубины, форма к-рой повторяет распределение ядерной плотности. Чаще всего в качестве оболочечного потенциала используют т. н. потенциал Саксона - Вудса:


с V 0 50 МэВ. При описании связанных состояний нуклонов его можно приближённо заменить потенциалом гар-монич. осциллятора или прямоуг. ямой и использовать при описании свойств ядерных состояний волновые ф-ции нуклонов для этих простых оболочечных потенциалов.

Рис. 1. Схема заполнения ядерных оболочек протонами (слева) и нейтронами (справа). Справа от уровней указаны полные угловые моменты ядра; слева - спектроскопические символы: буква отвечает определённому значению l [l =0 (s) , 1(p) , 2(d ), 3(f ), 4(g ), 5(h ), 6(i )]; цифра-главное квантовое число. Пунктиром отмечены магические числа заполнения оболочек .

Модель оболочек удовлетворительно описывает магн. моменты нечётных ядер, к-рые, согласно опытным данным, лежат между т. н. линиями Шмидта. Линиями Шмидта наз. зависимости магн. дипольных моментов нуклонов М от угл. момента j при данном l=jb 1 / 2 (рис. 2). Несколько хуже описываются электрич. квадрупольные моменты ядерных состояний. Последнее связано с тем, что потенциал V o6 (r ) предполагался первоначально сферически симметричным.


Рис. 2. Линии Шмидта для ядер с нечётным числом протонов Z .

Несферичность ядер. Ротационная модель . Особенно велики квадрупольные моменты Q ядер с I> 1 / 2 в области редких земель (150<A <190) и актинидов (А> 200 ). Они превышают значения, предсказываемые моделью оболочек со сферич. потенциалом V об, в 10-100 раз. Энергии низших уровней этих ядер удовлетворяют "вращательному закону":

к-рый описывает спектр вращат. уровней жёсткого симметричного волчка с моментом инерции J (см. Вращательное движение ядра ).Состояния такого волчка с угл. моментами I=K, K+ 1, К+ 2, ... образуют вращат. полосу, характеризуемую определ. значением проекции угл. момента на ось симметрии волчка I 3 = К . Исключение составляют полосы с К= 0, для к-рых допустимы только чётные или только нечётные значения угл. момента I . В частности, на осн. состояниях четно-чётных ядер базируются вращат. полосы с К= 0 и значениями I p = 0 + , 2 + , 4 + , ... Между соседними уровнями вращат. полос имеют местo сильные электрич. квадрупольные (Е 2 )g-переходы.

Эти факты послужили основой для построения коллективной модели ядра, предложенной в 50-х гг. Дж. Рейнуотером, О. Бором и Б. Моттельсоном (J. Rainwater, A. Bohr, В. R. Mottelson). Согласно этой модели, ядра в указанных выше областях имеют форму эллипсоида вращения с полуосями


где параметр деформации Р характеризует степень несферичности ядра. Он определяет значения статических ква-друпольных моментов ядер, вероятности эл--магн. E 2-пе-реходов между вращат. уровнями и значения момента инерции ядра (см. Деформированные ядра) . Согласно данным эксперимента, величина b у большинства деформированных ядер находится в пределах 0,1-0,3 (нормальная деформация). С помощью ядерных реакций с тяжёлыми ионами обнаружены возбуждённые вращат. состояния у нек-рых ядер (152 Dy) с большими угл. моментами I ~40-60 (высокоспиновые состояния ядер) , к-рые характеризуются чрезвычайно большой деформацией, когда отношение полуосей ядра а 1 : а 2 = 2:1 или 3:2 (супердефор-мир. полосы). Нек-рые деформир. ядра (изотопы Os, Pt) не имеют осевой симметрии. Их низшие уровни представляют собою вращат. состояния асимметричного волчка (модель неаксиального ротатора Давыдова-Филиппова). Масштаб вращат. энергий ( 2 / 2J~= 100 кэВ) в тяжёлых деформир. ядрах таков, что момент инерции ядра в состояниях с нормальной деформацией J ~10 -27 г. см 2 . Он в 2- 3 раза меньше момента инерции твёрдого эллипсоида соответствующей формы. Это означает, что не вся масса ядра участвует во вращат. движении. В супердеформир. полосах момент инерции близок к твердотельному.

Внутр. структура деформир. ядер описывается моделью оболочек с деформир. потенциалом V oб (r )(модель Нильс-сона). Изучение зависимости энергии одночастичных орбит нуклонов от деформации в этой модели показывает, что в нек-рых областях периодич. системы элементов ядрам энергетически выгодно быть не сферическими, а деформированными. Величина деформации, предсказываемая теорией, в целом согласуется с экспериментом. На базе колебательных возбуждений деформир. ядра (см. Колебательные возбуждения ядер )возникают новые вращат. полосы (b-полоса с К= 0 и g-полоса с К= 2) . Перестройка заполнения одночастичных орбит в деформир. потенциале порождает возбуждённые вращат. полосы. В результате в спектрах ряда ядер можно выделить значит. число вращат. полос (до 9 в ядре 235 U). Отд. полосы прослежены до весьма высоких значений угл. момента I~ 25-30. Значит. деформацию, а также вращат. спектры имеют нек-рые относительно лёгкие ядра (напр., 20 Ne, 4 Mg). При изменении параметра деформации ядра b меняется структура оболочек. При больших b (a 1 :a 2 = 2:1 )одночастичные орбиты группируются в оболочки иначе, чем при нормальных деформациях, появляются новые магич. числа. Ядра, близкие к магическим (напр., 152 Dy), с такой деформацией относительно устойчивы и могут порождать вращат. полосы. Они были обнаружены экспериментально в виде супердеформир. полос.

Структура вращат. спектров реальных ядер отклоняется от идеального вращат. закона ( 5 )за счёт центробежных эффектов (увеличение момента инерции ядра при возрастании вращат. момента), а также за счёт Кориолиса сил и др. неадиабатич. поправок. Связь движения отд. нуклонов с вращением ядра как целого сказывается на структуре вращат. состояний нечётных ядер уже при небольших значениях b и К , приводя к тому, что их энергии вместо (5) описываются ф-лой

Здесь d K ,1/2 =0 при К 1 / 2 и d К, 1/2 =1 при К= 1 / 2 , константа а -эмпирически подбираемый "параметр развязывания", характеризующий связь угл. момента нуклона и вращат. момента ядра.

Сверхтекучая модель ядра . Парные корреляции сверх-проводящего типа возникают в ядре за счёт т.н. о с т ат о ч н о г о в з а и м о д е й с т в и я между нуклонами, той части реального нуклон-нуклонного взаимодействия, к-рая не включена в самосогласованный потенциал ср. поля V об (r ). Эмпирически отмечалась энергетич. выгодность двум нуклонам на орбите nlj образовать пару со скомпен-сир. спинами, т.е. с полным моментом I= 0. Такая пара подобна куперовской паре электронов с противоположными импульсами в сверхпроводнике . Притяжение между нуклонами в указанных состояниях вблизи поверхности Ферми обусловливает сверхтекучесть атомных ядер .

Детально сверхтекучая модель ядра разработана независимо С. Т. Беляевым и В. Г. Соловьёвым с помощью методов, аналогичных методам теории сверхпроводимости. Одним из проявлений сверхтекучести ядерного вещества может служить наличие энергетич. щели D между сверхтекучим и нормальным состоянием ядерного вещества. Она определяется энергией разрушения куперовской пары и составляет в тяжёлых ядрах ~ 1 МэВ. Со сверхтекучестью ядерного вещества связано также и отличие моментов инерции ядер от твердотельных значений. Сверхтекучая модель ядра удовлетворительно описывает моменты инерции ядер, изменение параметра деформации ядра b по мере заполнения валентной оболочки нуклонами. Сверхтекучесть ядерного вещества, приводящая к размытию ферми-поверхности, существенным образом сказывается на эл--магн. переходах, вероятностях реакций однонуклон-ной (срыв, подхват) и двухнуклонной передачи (см. Прямые ядерные реакции ).

Сверхтекучая модель предсказывает разрушение парных корреляций в ядре при достаточно больших спинах (I >>1). Это явление, аналогичное разрушению сверхпроводимости сильным магн. полем, проявляется в скачкообразном возрастании момента инерции J в данной вращат. полосе при нек-ром критич. значении спина I кр ~60. Отчётливо это пока не обнаружено, однако при изучении высокоспиновых состояний ядер (I <=20-30), возбуждаемых в реакциях с тяжёлыми ионами, наблюдалось немонотонное изменение J при возрастании I (о б р а т н ы й з а г и б). В районе значений спина I B (~12-16) увеличение угл. момента I приводит не к увеличению угл. скорости вращения w, а к её уменьшению вследствие того, что резко увеличивается момент инерции ядра J . Это изменение связано с тем, что вблизи точки I B происходит пересечение основной вращат. полосы ядра (К= 0 + )с возбуждённой полосой, построенной на внутр. состоянии ядра, в к-ром одна из куперовских пар на нейтронной орбите h 11/2 разрушается и спины этих двух нуклонов уже не компенсируют друг друга, а оба выстраиваются параллельно вращат. моменту. При этом меняется деформация ядра, увеличивается момент инерции, изменяются магн. характеристики ядра.

Разрушение пары обусловлено силами Кориолиса, эффект к-рых максимален для нуклонов в оболочках с большими моментами нуклонов j . Обнаружено выстраивание протонов на орбите h 11/2 и нейтронов на орбите i 13/2 . Выстраивание двух пар нуклонов приводит ко второму обратному загибу и т. д. Вопрос о характере сверхтекучести ядерного вещества в супердеформир. состояниях находится в стадии исследования.

Другие модели ядра . Наряду с осн. моделями ядра используются более специализир. модели. К л а с т е р н а я м о д е л ь трактует структуру нек-рых ядер как своего рода молекулу, состоящую из a-частиц, дейтронов (d), тритонов (t) и др. Напр., l2 C = 3a, 16 O = 4a, 6 Li = a+d, 7 Li = a + t и т.д. (см. Нуклонных ассоциаций модель). Статистическая модель ядра описывает свойства и характеристики высоковозбуждённых состояний ядер, такие, как плотность уровней, темп-ра и т. п.

В м о д е л и в з а и м о д е й с т в у ю щ и х б о з о н о в предполагается, что в низших состояниях четно-чётного ядра нуклоны объединяются в S - и D -пары (с моментами 0 и 2), к-рые приближённо можно трактовать как идеальные s - и d -бозоны. Число этих бозонов равно половине числа валентных нуклонов. В этой модели спектр низших коллективных состояний ядра формируется в результате взаимодействия между бозонами. Более рафинированные варианты данной модели включают в себя s-, d-, g- ,... бозоны, а также сопоставляют разные бозоны протонным и нейтронным парам. Модель взаимодействующих бозонов позволяет описывать наряду с вращат. и колебат. спектрами также спектры более сложной структуры, характерные для ядер, переходных от сферических ядер к деформированным. Обоснование ядерных моделей и более детальные расчёты свойств ядер производятся с помощью т. н. мик-роскопич. методов (Х а р т р и - Ф о к а м е т о д, метод случайной фазы, теория конечных ферми-систем и т. д.).

Лит.: Давыдов А. С., Теория атомного ядра, М., 1958; Му-хин К. Н., Экспериментальная ядерная физика, 5 изд., кн. 1-2, М., 1993; Мигдал А. Б., Теория конечных ферми-систем и свойства атомных ядер, 2 изд., М., 1983; Бор О., Моттельсон Б., Структура атомного ядра, пер. с англ., т. 1-2, М., 1971-77; Ситенко А. Г., Тартаковский В. К., Лекции по теории ядра, М., 1972; Широков Ю. М., Юдин Н. П., Ядерная физика, 2 изд., М., 1980; Айзенберг И., Грайнер В., Модели ядер, коллективные и одночастичные явления, пер. с англ., М., 1975; их же, Микроскопическая теория ядра, пер. с англ., М., 1976; Рейн-уотер Дж., Как возникла модель сфероидальных ядер, пер. с англ., "УФН", 1976, т. 120, в. 4, с. 529; Бор О., Вращательное движение в ядрах, пер. с англ., там же, с. 543; Моттельсон Б., Элементарные виды возбуждения в ядрах, пер. с англ., там же, с. 563; Соловьев В. Г., Теория атомного ядра. Ядерные модели, М., 1981; Михайлов В. М., Крафт О. Е., Ядерная физика, Л., 1988; Немец О. Ф. и др., Нуклонные ассоциации в атомных ядрах и ядерные реакции многонуклонных передач, К., 1988.

Ю. Ф. Смирнов .

Исследуя прохождение α-частицы через тонкую золотую фольгу (см. п. 6.2), Э. Резерфорд пришёл к выводу о том, что атом состоит из тяжёлого положительного заряженного ядра и окружающих его электронов.

Ядром называется центральная часть атома , в которой сосредоточена практически вся масса атома и его положительный заряд .

В состав атомного ядра входят элементарные частицы : протоны и нейтроны (нуклоны от латинского слова nucleus – ядро ). Такая протонно-нейтронная модель ядра была предложена советским физиком в 1932 г. Д.Д. Иваненко. Протон имеет положительный заряд е + =1,06·10 –19 Кл и массу покоя m p = 1,673·10 –27 кг = 1836m e . Нейтрон (n ) – нейтральная частица с массой покоя m n = 1,675·10 –27 кг = 1839m e (где масса электрона m e , равна 0,91·10 –31 кг). На рис. 9.1 приведена структура атома гелия по представлениям конца XX - начала XXI в.

Заряд ядра равен Ze , где e – заряд протона, Z – зарядовое число , равное порядковому номеру химического элемента в периодической системе элементов Менделеева, т.е. числу протонов в ядре. Число нейтронов в ядре обозначается N . Как правило Z > N .

В настоящее время известны ядра с Z = 1 до Z = 107 – 118.

Число нуклонов в ядре A = Z + N называется массовым числом . Ядра с одинаковым Z , но различными А называются изотопами . Ядра, которые при одинаковом A имеют разные Z , называются изобарами .

Ядро обозначается тем же символом, что и нейтральный атом , где X – символ химического элемента. Например: водород Z = 1 имеет три изотопа: – протий (Z = 1, N = 0), – дейтерий (Z = 1, N = 1), – тритий (Z = 1, N = 2), олово имеет 10 изотопов и т.д. В подавляющем большинстве изотопы одного химического элемента обладают одинаковыми химическими и близкими физическими свойствами. Всего известно около 300 устойчивых изотопов и более 2000 естественных и искусственно полученных радиоактивных изотопов .

Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра. Ещё Э. Резерфорд, анализируя свои опыты, показал, что размер ядра примерно равен 10 –15 м (размер атома равен 10 –10 м). Существует эмпирическая формула для расчета радиуса ядра:

, (9.1.1)

где R 0 = (1,3 – 1,7)·10 –15 м. Отсюда видно, что объём ядра пропорционален числу нуклонов.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протоны и нейтроны являются фермионами , т.к. имеют спин ħ /2.

Ядро атома имеет собственный момент импульса спин ядра :

, (9.1.2)

где I внутреннее (полное ) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения 0, 1/2, 1, 3/2, 2 и т.д. Ядра с четными А имеют целочисленный спин (в единицах ħ ) и подчиняются статистике Бозе Эйнштейна (бозоны ). Ядра с нечетными А имеют полуцелый спин (в единицах ħ ) и подчиняются статистике Ферми Дирака (т.е. ядра – фермионы ).

Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон μ яд:

. (9.1.3)

Здесь e – абсолютная величина заряда электрона, m p – масса протона.

Ядерный магнетон в m p /m e = 1836,5 раз меньше магнетона Бора, отсюда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов .

Между спином ядра и его магнитным моментом имеется соотношение:

, (9.1.4)

где γ яд – ядерное гиромагнитное отношение .

Нейтрон имеет отрицательный магнитный момент μ n ≈ – 1,913μ яд так как направление спина нейтрона и его магнитного момента противоположны. Магнитный момент протона положителен и равен μ р ≈ 2,793μ яд. Его направление совпадает с направлением спина протона.

Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения от сферически симметричного является квадрупольный электрический момент ядра Q . Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так, для эллипсоида вращения

, (9.1.5)

где b – полуось эллипсоида вдоль направления спина, а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b > а и Q > 0. Для ядра, сплющенного в этом направлении, b < a и Q < 0. Для сферического распределения заряда в ядре b = a и Q = 0. Это справедливо для ядер со спином, равным 0 или ħ /2.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Заряд ядра

Ядро любого атома заряжено положительно. Носителем положительного заряда является протон. Поскольку заряд протона численно равен заряду электрона $e$, то можно записать что заряд ядра равен $+Ze$ ($Z$ -- целое число, которое указывает на порядковый номер химического элемента в периодической системе химических элементов Д. И. Менделеева). Число $Z$ также определяет количество протонов в ядре и количество электронов в атоме. Поэтому его называют атомным номером ядра. Электрический заряд является одной с основных характеристик атомного ядра, от которой зависят оптические, химические и другие свойства атомов.

Масса ядра

Другой важной характеристикой ядра является его масса. Массу атомов и ядер принято выражать в атомных единицах массы (а.е.м.). за атомную единицу массы принято считать $1/12$ массы нуклида углерода $^{12}_6C$:

где $N_A=6,022\cdot 10^{23}\ моль^-1$ -- число Авогадро.

Согласно соотношению Эйнштейна $E=mc^2$, массу атомов также выражают в единицах энергии. Поскольку:

  • масса протона $m_p=1.00728\ а.е.м.=938,28\ МэВ$,
  • масса нейтрона $m_n=1.00866\ а.е.м.=939,57\ МэВ$,
  • масса электрона $m_e=5,49\cdot 10^{-4}\ а.е.м.=0,511\ МэВ$,

Как видно масса электрона пренебрежительно мала в сравнении с массой ядра, то масса ядра почти совпадает с массой атома.

Масса отличается от целых чисел. Масса ядра, выражена в а.е.м. и округлена до целого числа называется массовым числом, обозначается буквой $A$ и определяет количество нуклонов в ядре. Число нейтронов в ядре равно $N=A-Z$.

Для обозначения ядер применяется символ $^A_ZX$, где под $X$ подразумевается химический символ данного элемента. Атомные ядра с одинаковым количеством протонов но разными массовыми числами называют изотопами. В некоторых элементов число стабильных и нестабильных изотопов достигает десятков, например, уран имеет $14$ изотопов: от $^{227}_{92}U\ $до $^{240}_{92}U$.

Большинство химических элементов существующих в природе, представляют собой смесь нескольких изотопов. Именно наличие изотопов объясняет тот факт, что некоторые природные элементы имеют массу, которая отличается от целых чисел. Например, природный хлор состоит с $75\%$ $^{35}_{17}Cl$ и $24\%$ $^{37}_{17}Cl$, а его атомная масса равна $35,5$ а.е.м. в большинства атомов, кроме водорода, изотопы имеют почти одинаковые физические и химические свойства. Но за своими исключительно ядерными свойствами изотопы существенно разнятся. Одни с них могут быть стабильными, другие -- радиоактивными.

Ядра с одинаковыми массовыми числами, но разными значениями $Z$ называют изобарами, например, $^{40}_{18}Ar$, $^{40}_{20}Ca$. Ядра с одинаковым количеством нейтронов называют изотонами. Среди легких ядер встречаются так называемые «зеркальные» пары ядер. Это такие пары ядер в которых числа $Z$ и $A-Z$ меняются местами. Примерами таких ядер могут быть $^{13}_6C\ $и $^{13_7}N$ или $^3_1H$ и $^3_2He$.

Размер атомного ядра

Считая атомное ядро приблизительно сферическим, можно ввести понятия его радиуса $R$. Отметим, что в некоторых ядрах есть небольшое отклонение от симметрии в распределении электрического заряда. Кроме того, атомные ядра не статические, а динамические системы, и понятие радиуса ядра не можно представлять как радиус шара. По этой причине, за размеры ядра необходимо брать ту область, в которой проявляются ядерные силы.

При создании количественной теории рассеивания $\alpha $ -- частиц Э. Резерфорд исходил с предположений, что атомное ядро и $\alpha $ -- частица взаимодействуют по закону Кулона, т.е. что электрическое поле вокруг ядра имеет сферическую симметрию. Рассеивание $\alpha $ -- частицы происходит в полном соответствии с формулой Резерфорда:

Это имеет место для $\alpha $ -- частиц энергия которых $E$ достаточно мала. При этом частица не способна преодолеть кулоновский потенциальный барьер и в последствии не достигает области действия ядерных сил. С увеличением энергии частицы до некоторого граничного значения $E_{гр}$ $\alpha $ -- частица достигает этой границы. Тога в рассеивании $\alpha $ -- частиц наблюдается отклонение от формулы Резерфорда. Из соотношения

Опыты показывают, что радиус $R$ ядра зависит от количества нуклонов, которые входят до состава ядра. Эта зависимость может выражаться эмпирической формулой:

где $R_0$ -- постоянная, $A$ -- массовое число.

Размеры ядер определяют экспериментально по рассеиванию протонов, быстрых нейтронов или электронов высоких энергий. Существует ряд других непрямых методов определения размеров ядер. Они обоснованы на связи время жизни $\alpha $ -- радиоактивных ядер с энергией выпущенных ими $\alpha $ -- частиц; на оптических свойствах, так называемых, мезоатомов, в которых один с электронов временно захвачен мюоном; на сравнении энергии связи пары зеркальных атомов. Эти методы подтверждают эмпирическую зависимость $R=R_0A^{1/3}$, а также с помощью этих измерений установлено значение постоянной $R_0=\left(1,2-1,5\right)\cdot 10^{-15}\ м$.

Отметим также, что за единицу расстояний в атомной физике и физике элементарных частиц берут единицу измерения «ферми», который равняется ${10}^{-15}\ м$ (1 ф=${10}^{-15}\ м)$.

Радиусы атомных ядер зависят от их массового числа и находятся в промежутке от $2\cdot 10^{-15}\ м\ до\ 10^{-14}\ м$. если с формулы $R=R_0A^{1/3}$ выразить $R_0$ и записать его в виде $\left(\frac{4\pi R^3}{3A}\right)=const$, то можно увидеть что на каждый нуклон припадает приблизительно одинаковый объем. Это значит, что плотность ядерного вещества для всех ядер так же приблизительно одинакова. Выходя с существующих ведомостей о размерах атомных ядер, найдем среднее значение плотности вещества ядра:

Как видим, плотность ядерного вещества очень большая. Это обусловлено действием ядерных сил.

Энергия связи. Дефект масс ядер

При сравнении суммы масс покоя нуклонов, которые образуют ядро с массой ядра было замечено, что для всех химических элементов справедливо неравенство:

где $m_p$ -- масса протона, $m_n$ -- масса нейтрона, $m_я$ -- масса ядра. Величину $\triangle m$, что выражает разницу масс между массой нуклонов, которые образуют ядро, и массой ядра, называют дефектом массы ядра

Важные сведения о свойствах ядра можно получить не вникая в подробности взаимодействия между нуклонами ядра, на основании закона сохранения энергии и закона пропорциональности массы и энергии. По сколько в результате любого изменения массы $\triangle m$ происходит соответствующее изменение энергии $\triangle E$ ($\triangle E=\triangle mc^2$), то при образовании ядра выделяется определенное количество энергии. По закону сохранения энергии такое же количество энергии необходимо, чтоб разделить ядро на составляющие частицы, т.е. отдалить нуклоны один от одного на такие же расстояния, при которых отсутствует взаимодействие между ними. Эту энергию называют энергией связи ядра.

Если ядро имеет $Z$ протонов и массовое число $A$, то энергия связи равна:

Замечание 1

Отметим, что этой формулой не совсем удобно пользоваться, т.к. в таблицах приводиться не массы ядер, а массы, которые определяют массы нейтральных атомов. Поэтому для удобства вычислений формулу преобразуют таким образом, чтобы в нее входили массы атомов, а не ядер. С этой целью в правой части формулы добавим и отнимем массу $Z$ электронов $(m_e)$. Тогда

\c^2==\leftc^2.\]

$m_{{}^1_1H}$ -- масса атома водорода, $m_a$ -- масса атома.

В ядерной физике энергию часто выражают в мегаэлектрон-вольтах (МэВ). Если речь идет о практическом применении ядерной энергии, то ее измеряют в джоулях. В случае сравнения энергии двух ядер используют массовую единицу энергии -- соотношение между массой и энергией ($E=mc^2$). Массовая единица энергии ($le$) равняется энергии, что соответствует массе в одну а.е.м. Она равняется $931,502$ МэВ.

Рисунок 1.

Кроме энергии, важное значение имеет удельная энергия связи -- энергия связи, которая припадает на один нуклон: $w=E_{св}/A$. Эта величина меняется сравнительно медленно по сравнению со сменой массового числа $A$, имея почти постоянную величину $8.6$ МэВ в средней части периодической системы и уменьшается до ее краев.

Для примера рассчитаем дефект массы, энергию связи и удельную энергию связи ядра атома гелия.

Дефект массы

Энергия связи в МэВ: $E_{св}=\triangle m\cdot 931,502=0,030359\cdot 931,502=28,3\ МэВ$;

Удельная энергия связи: $w=\frac{E_{св}}{A}=\frac{28,3\ МэВ}{4\approx 7.1\ МэВ}.$