Болезни Военный билет Призыв

Второй закон кеплера утверждает что. Первый закон кеплера. Законы кеплера и их связь с законами ньютона

Известный датский астроном Тихо Браге (1546-1601), ознакомившись с работой Кеплера "Тайны мира", оценил хорошее знание автором астрономии, его оригинальное мышление и значительный объём выполненных вычислений. Вскоре Тихо Браге встретился с Кеплером, которому тогда было только 24 года от роду, и предложил ему работу в Праге в качестве своего помощника в астрономических наблюдениях и вычислениях. Совместная работа Кеплера с Браге была кратковременной - всего около полутора лет. В 1601 году Тихо Браге умер. После смерти Браге Кеплер принял его должность придворного астронома и астролога у императора Рудольфа II . В Праге Кеплер работал в течение десяти лет. Это был самый плодотворный период в его научной деятельности. Тихо Браге оставил Кеплеру огромное количество материалов с результатами астрономических наблюдений, собранных за долгие годы. Судьба распорядилась так, что на основе этих материалов, проявив выдающиеся математические способности и удивительное трудолюбие, Кеплер открыл свои знаменитые законы. Без этих материалов, без их осмысления открытия Кеплера были бы невозможны.

Несколько слов о научных взглядах знаменитого астронома-наблюдателя Тихо Браге. Этот астроном не был сторонником учения Коперника. Он считал, что является центром Вселенной, а Солнце, Луна и обращаются вокруг Земли. Планеты Браге считал спутниками Солнца. Современный читатель, конечно, может улыбнуться "наивности" исследователя, который в течение четверти века внимательно наблюдал за небом. Но не надо торопиться с выводами. Ведь речь идёт о последней четверти 16-го (!) века, когда астрономам не был известен даже простейший телескоп, когда господствовали идеи геоцентризма, а католическая церковь запрещала даже мысли о гелиоцентрической картине мира. Зато Тихо Браге оставил богатейший наблюдательный материал, в частности, по планете Марс, а также подробные таблицы движения Солнца, по которым можно было найти положение светила на эклиптике в любой момент времени с точностью до одной угловой минуты.

Уже в 1600 году Кеплер начал изучать движения Марса с целью уточнить теорию Коперника. А необходимость уточнения была очевидной, т.к. таблицы движения планет, составленные на основе этой теории, предсказывали положения планет лишь с небольшой точностью, а для объяснения видимой неравномерности движения планет Коперник ввёл в свои модели движения сложные системы эпициклов.

Предпочтение Марсу в изучении движения планет Кеплер отдал потому, что именно в видимом обнаруживались наибольшие отклонения от равномерного движения по окружности.

Из расчётов орбиты Марса в 1605 году Кеплер вывел уравнение, определяющее положение небесных тел (в современной астрономии оно называется уравнением Кеплера). Это уравнение описывает движение небесного тела по эллипсу. Но сначала Кеплер не понимал этого. Он предпринимал попытки проверить свои формулы на кривой овала, затем на кривой яйцеобразного овала. Продолжая размышления и расчёты, он писал в 1604 году: "Правда лежит между кругом и овалом, как будто орбита Марса есть точный эллипс". Но в это время Кеплер ещё не рассматривал даже вариант эллипса в качестве орбиты Марса. Наконец, в 1605 г. он проверил вариант эллипса, и всё сошлось в его расчетах: он понял, что Марс движется по орбите, представляющей эллипс, а Солнце находится в фокусе этого эллипса.

Напомним, что эллипсом называется кривая, для любой точки которой сумма расстояний от двух заданных точек, называемых фокусами эллипса, постоянна (равна большой оси эллипса).

В 1609 году в Праге вышла из печати книга Кеплера "Новая астрономия" ("Astronomia Nova"). В этой книге Кеплер излагает свои два эмпирических закона, открытых прежде всего на основе изучения движения Марса и Земли.

Закон 1. Планеты обращаются вокруг Солнца по эллиптическим орбитам. При этом Солнце располагается не в центре эллипса, а в одном из фокусов эллипса. Следовательно, расстояние планеты от Солнца не всегда одинаковое.

Закон 2. Радиус-вектор планеты (т.е. отрезок, соединяющий Солнце и планету) описывает равные площади за равные промежутки времени. Этот закон указывает, что скорость движения планеты по её орбите непостоянна: при приближении к Солнцу планета движется быстрее, при удалении от него - медленнее. Второй закон движения планет обычно называют законом площадей.

Закон 3. (Сформулирован в книге "Гармония мира" ("Harmonice mundi"), опубликованной по частям в 1618-1621 гг.). Квадраты периодов обращения любых двух планет относятся между собой как кубы их средних расстояний от Солнца.

Не все учёные - современники Кеплера восприняли его законы движения планет. Например, не признавал факт неравномерного движения планет. С течением времени правильность законов Кеплера подтвердилась полностью. Работы Кеплера подготовили почву для открытия Ньютоном закона всемирного тяготения. До настоящего времени законы Кеплера остаются основой небесной механики.

С высоты современных знаний о космосе не следует удивляться тому, что Кеплер имел своеобразные, иногда мистические представления , например, он считал, что Солнце подобно магниту притягивает планеты и, вращаясь вокруг своей оси, сообщает им энергию движения. Кеплер считал, что Солнце не перемещается в пространстве. Кеплер не верил в бесконечность Вселенной, а небесную сферу, на которой видны звёзды, он считал границей мира. В то же время Кеплер "убрал" из своей модели мира некоторые элементы, которые были в модели Коперника, в частности, вращающиеся круговые сферы, якобы несущие на себе планеты, а также отказался от эпициклов, заменив их орбитами в форме эллипсов.

Обнаруженные Галилеем при помощи телескопа в 1610 году четыре "медичейские планеты" (название дано Галилеем в честь герцога Медичи), обращающиеся вокруг Юпитера, Кеплер позднее назвал спутниками Юпитера. Термин "спутник" сохранился в астрономии с тех далёких времён и, как мы теперь знаем, применяется не только в отношении природных небесных тел, но и в отношении аппаратов, создаваемых человеком.

Последней крупной работой Кеплера в области астрономии были так называемые "Рудольфовы таблицы" движения планет, опубликованные в 1627 году. Таблицы были задуманы ещё Тихо Браге, и Кеплер работал над ними почти 22 года. Эти астрономические таблицы были значительно более точными, чем все предыдущие таблицы, в том числе и "Прусские таблицы", составленные в 1551 г. немецким математиком и астрономом Рейнгольдом на основе гелиоцентрической системы Коперника. "Рудольфовы таблицы" использовались астрономами, моряками и путешественниками на протяжении почти двух столетий.

Помимо исследований, связанных с движением планет, Кеплер занимался также изучением комет. Он первым высказал правильную догадку о том, что хвосты комет образуются под действием солнечных лучей, а потому всегда направлены в сторону от Солнца.

Кеплер работал не только в области астрономии. Как и многие , он не замыкался в одной узкой области деятельности. Например, Кеплер разработал теорию логарифмов на арифметической основе и составил весьма точные таблицы логарифмов, опубликованные в 1624 году и неоднократно переиздававшиеся.

Кеплер занимался также проблемами астрономической оптики. Оптика как часть физической науки обязана своим возникновением в значительной степени трудам Кеплера, в частности, его книге "Диоптрика". Интересно, что Кеплер занимался не только технической оптикой, что нашло своё выражение в разработке оптической схемы телескопа, но и подробно изучил и правильно изложил в своих работах действие физиологического механизма зрения и его такие дефекты как близорукость и дальнозоркость.

Методы, которые Кеплер разработал для вычисления объёмов различных тел вращения и площадей плоских фигур, образуемых кривыми второго порядка (овал, эллипс, сечения конуса и др.), были по своей сути начальными элементами дифференциального и интегрального исчисления.

Кеплер вслед за Галилеем дал определение понятия инерции тела, а также вплотную подошел к пониманию тяготения и его роли в движении планет.

Кеплер выдвинул гипотезу о том, что причиной океанских приливов на Земле является воздействие Луны на водную поверхность. Через сто лет эту гипотезу подтвердил .

Кеплер жил в сложный исторический период, когда в Европе почти непрерывно происходили войны между группировками стран, в том числе между многочисленными германскими государствами. В 1618 году в Германии началась , вскоре превратившаяся в общеевропейскую войну, которая продолжалась и после смерти Кеплера и привела к опустошению и обезлюдению Западной Европы.

Средневековый религиозный дурман, в котором продолжала находиться вся Европа, был причиной больших трудностей в научной работе Кеплера и принёс много горя в его личную жизнь.

Иоганн Кеплер родился 27 декабря 1571 года в небольшом городке Вейле близ Штутгарта (ныне федеральная земля Баден-Вюртемберг). Когда Иоганну было 18 лет, он остался без отца, который служил наёмником в испанской армии и погиб на войне. Мать Иоганна, Катарина Кеплер, владела небольшим баром. Семья жила небогато, и поэтому Кеплеру нелегко было после окончания школы при монастыре поступить в 1589 году в Тюбингенский университет. Здесь он изучал математику, астрономию, а потом теологию. Но от первоначального плана стать священником он отказался. Поскольку Кеплер открыто поддерживал учение Коперника, университетские власти, по требованию местных богословов, ещё до окончания учёбы в университете посылают Кеплера в 1594 г. преподавать математику в протестанском училище города Граца (земля Штирия, Австрия).

В Граце Кеплер прожил 6 лет. Уже в 1596 году здесь выходит в свет его первая книга "Тайна мира", которую он переиздал в 1621 году, продолжая верить в наличие скрытой математической гармонии Вселенной.

В 1600-1601 гг. он работает в Праге с известным датским астрономом-наблюдателем Тихо Браге в качестве его помощника в астрономических наблюдениях и вычислениях. После смерти Браге (1601г.) Кеплер принимает должность Браге - придворного астронома и астролога у императора Рудольфа II . В Праге Кеплер продуктивно работает над законами движения планет. В 1609 г. в книге "Новая астрономия" Кеплер формулирует два первых своих закона.

В Пражский период жизни Кеплер наблюдает появление сверхновой и в 1604 году публикует результаты своих наблюдений за ней. В дальнейшем этой сверхновой было присвоено имя Кеплера.

В 1612 году Кеплер переезжает в Линц, где за ним сохраняется должность придворного математика и астронома. Несмотря на высокую должность, Кеплер постоянно нуждался, потому что жалование ему платили нерегулярно и неполностью: из-за бесконечных войн императорская казна была пуста. А Кеплер в этот период (в Линце он жил с 1612 по 1626 год) имел многодетную семью. Кстати, семейная жизнь его сложилась очень драматично. В 1597 году в Граце Кеплер женится на вдове Барбаре Мюллер. Здесь у них рождается двое детей, которые умирают в младенческом возрасте, а жена заболевает падучей болезнью, как раньше называли эпилепсию. Но, как говорит немецкая пословица, беда редко приходит одна. В Граце католическое большинство начинает гонение на протестантов. Мало того, что Кеплер лютеранин по вероисповеданию, что уже неприемлемо для католиков, он ещё занесён в списки "еретиков" за свои научные взгляды. Это уже по-настоящему опасно, и Кеплер покидает в 1600 г. Грац, приняв предложение Тихо Браге о переезде в Прагу (в те времена Чехия была владением Австрийской империи).

В Праге у Кеплера родились два сына и дочь, но в 1611 году умирает его старший сын, а вскоре умирает долго болевшая жена Кеплера Барбара.

В 1613 году Кеплер женится вторично. Его женой становится 24-летняя Сюзанна из рабочей семьи. В этом браке родилось семеро детей, из которых выжили четверо.

В 1615 году на Кеплера обрушивается новое несчастье: его мать Катарина обвиняется церковной инквизицией в колдовстве, а это значит, что ей грозит смертельная опасность. Гадание и траволечение, которыми мать Кеплера иногда подрабатывала, не прошли мимо внимания католических мракобесов. Чего только ни инкриминировалось ей: и связь с дьяволом, и богохульство, и порчу, и даже некромантию... Следствие тянулось пять лет. Защитником матери на суде выступал сам Кеплер. В 1621 году измученную женщину наконец освободили, но силы её были надломлены, и в следующем году она скончалась.

В 1626 году, в разгар Линц был осаждён и захвачен. Кеплер вынужден переехать в Ульм. В 1628 году Кеплер принимает приглашение полководца Валленштейна и переходит к нему на службу в качестве астронома и астролога. Кстати, астрологией Кеплер занимался долгие годы, но относился к этому занятию, конечно, не как к основному виду своей деятельности. Как и следовало ожидать, его гороскопы далеко не всегда предсказывали события, происходившие в действительности.

Умер Кеплер 15 ноября 1630 года в Регенсбурге, куда он прибыл, чтобы получить хотя бы часть денег, которые ему задолжала императорская казна. Но он не успел ничего добиться, т.к. по пути в Регенсбург простудился и вскоре умер.

Коль скоро на сайте завелись "разоблачители", утверждающие, что математика - это ересь, а гравитационного притяжения между планетами вообще не существует, давайте посмотрим, как закон всемирного тяготения позволяет описать явления, установленные эмпирическим путем. Ниже представлено математическое обоснование первого закона Кеплера.

1. Исторический экскурс

Для начала вспомним, как вообще этот закон появился на свет. В 1589 году некто Иоганн Кеплер (1571 - 1630) - выходец из бедной немецкой семьи - заканчивает школу и поступает в Тюбингенский университет. Там он занимается математикой и астрономией. Причем его учитель профессор Местлин, будучи тайным поклонником идей Коперника (гелиоцентрическая система мира), преподает в университете "правильную" теорию - систему мира Птолемея (т.е. геоцентрическую). Что, впрочем, не мешает ему познакомить своего ученика с идеями Коперника, и вскоре тот сам становится убежденным сторонником этой теории.

В 1596 году Кеплер издает свою "Космографическую тайну". Хотя работа представляет сомнительную научную ценность даже по тем временам, тем не менее она не остается незамеченной для датского астронома Тихо Браге, который вел астрономические наблюдения и вычисления уже на протяжении четверти века. Тот замечает самостоятельность мышления молодого ученого и знания им астрономии.

С 1600 года Иоганн работает помощником Браге. После его смерти в 1601 году Кеплер начинает изучать результаты трудов Тихо Браге - данные многолетних астрономических наблюдений. Дело в том, что к концу XVI века прусские таблицы (таблицы движения небесных тел, вычисленные на основе учений Коперника) стали давать существенные расхождения с наблюдаемыми данными: ошибка в положении планет доходила до 4-5 0 .

Для решения проблемы Кеплер был вынужден усложнить теорию Коперника. Он отказывается от идеи о том, что планеты движутся по круговым орбитам, что в конечном итоге позволяет ему решить проблему с расхождением теории с наблюдаемыми данными. Согласно его выводам, планеты движутся по орбитам, имеющим форму эллипса, причем Солнце находится в одном из его фокусов. Так что расстояние между планетой и Солнцем периодически меняется. Этот вывод известен как первый закон Кеплера .

2. Математическое обоснование

Посмотрим теперь, как первый закон Кеплера согласуется с законом всемирного тяготения. Для этого выведем закон движения тела в гравитационном поле, обладающем сферической симметрией. В этом случае выполняется закон сохранения момента импульса тела $\vec{L}=[\vec{r},\vec{p}]$. Это значит, что тело будет двигаться в плоскости, перпендикулярной вектору $\vec{L}$, причем ориентация этой плоскости в пространстве неизменна. В таком случае удобно использовать полярную систему координат $(r, \phi)$ с началом в источнике гравитационного поля (т.е. вектор $\vec{r}$ перпендикулярен вектору $\vec{L}$). Т.е. одно из тел (Солнце) мы помещаем в начало координат, и ниже выведем закон движения второго тела (планеты) в этом случае.

Нормальная и тангенциальная составляющие вектора скорости второго тела в выбранной системе координат выражаются следующими соотношениями (здесь и далее точка означает производную по времени):

$$ V_{r}=\dot{r}; V_{n}=r\dot{\phi} $$

Закон сохранения энергии и момента импульса в этом случае имеют следующий вид:

$$E = \frac{m\dot{r}^2}{2}+\frac{m(r\dot{\phi})^2}{2}-\frac{GMm}{r}=const \hspace{3cm}(2.1)$$ $$L = mr^2\dot{\phi}=const \hspace{3cm}(2.2)$$

Здесь $G$ - гравитационная постоянная, $M$ - масса центрального тела, $m$ - масса "спутника", $E$ - полная механическая энергия "спутника", $L$ - величина его момента импульса.

Выражая $\dot{\phi}$ из (2.2) и подставляя его в (2.1), получаем:

$$ E = \frac{m\dot{r}^2}{2}+\frac{L^2}{2mr^2}-\frac{GMm}{r} \hspace{3cm}(2.3) $$

Перепишем полученное соотношение следующим образом:

$$ dt=\frac{dr}{\sqrt{\frac{2}{m}(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.4)$$

Из соотношения (2.2) следует:

$$ d\phi=\frac{L}{mr^2}dt $$

Подставляя вместо $dt$ выражение (2.4), получаем:

$$ d\phi=\frac{L}{r^2}\frac{dr}{\sqrt{2m(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.5) $$

Чтобы проинтегрировать полученное выражение, перепишем выражение, стоящее под корнем в скобках, в следующем виде:

$$ E-((\frac{GMm^{3/2}}{\sqrt{2}L})^2 - \frac{GMm}{r} + \frac{L^2}{2mr^2}) + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =E-(\frac{GMm^{3/2}}{\sqrt{2}L}-\frac{L}{r\sqrt{2mr}})^2 + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =\frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2) $$

Введем следующее обозначение:

$$ \frac{GMm^2}{L^2}\equiv\frac{1}{p} $$

Продолжая преобразования, получаем:

$$ \frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{2mE}{L^2} + \frac{1}{p^2}-(\frac{1}{p}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{1}{p^2}(1+\frac{2EL^2}{(GM)^2m^3})-(\frac{1}{p}-\frac{1}{r})^2) $$

Введем обозначение:

$$ 1+\frac{2EL^2}{(GM)^2m^3} \equiv e^2 $$

В этом случае преобразуемое выражение принимает следующий вид:

$$ \frac{L^2e^2}{2mp^2}(1-(\frac{p}{e} (\frac{1}{p}-\frac{1}{r}))^2) $$

Введем для удобства следующую переменную:

$$ z=\frac{p}{e} (\frac{1}{p}-\frac{1}{r}) $$

Теперь уравнение (2.5) принимает вид:

$$ d\phi=\frac{p}{er^2}\frac{dr}{\sqrt{1-z^2}}=\frac{dz}{\sqrt{1-z^2}}\hspace{3cm}(2.6) $$

Проинтегрируем полученное выражение:

$$ \phi(r)=\int\frac{dz}{\sqrt{1-z^2}}=\arcsin{z}-\phi_0 $$

Здесь $\phi_0$ - конатснта интегрирования.

Наконец, получаем закон движения:

$$ r(\phi)=\frac{p}{1-e\sin{(\phi+\phi_0)}} $$

Положив константу интегрирования $\phi_0=\frac{3\pi}{2}$ (данное значение соответствует экстремуму функции $r(\phi)$), окончательно получаем:

$$r(\phi)=\frac{p}{1+e\cos{\phi}} \hspace{3cm}(2.7)$$ $$p=\frac{L^2}{GMm^2}$$ $$e=\sqrt{1+\frac{2EL^2}{(GM)^2m^3}}$$

Из курса аналитической геометрии известно, что выражение, полученное для функции $r(\phi)$, описывает кривые второго порядка: эллипс, параболу и гиперболу. Параметры $p$ и $e$ называют, соответственно, фокальным параметром и эксцентриситетом кривой. Фокальный параметр может принимать любое положительное значение, а величина эксцентриситета определяет вид траектории: если $e\in}