Болезни Военный билет Призыв

Все бактерии способны к образованию спор. Вопросы для самопроверки

Бактерии в процессе эволюции приспособились к выживанию в самых неблагоприятных условиях окружающей среды и сохранили наследственную информацию путем образования спор. Споры бактерий образуются внутри клетки. Весь процесс прорастания (спорообразование) длится 18 — 20 часов. В ходе этого процесса в клетке бактерии изменяется целый ряд биохимических процессов. В спорообразном состоянии бактерии могут находиться длительное время — сотни лет. При благоприятных условиях внешней среды споры прорастают. Процесс прорастания длится 4 — 5 часов.

Спорообразование происходит, когда:

  • истощается питательный субстрат,
  • отмечается недостаток углерода и азота,
  • накапливается во внутренней среде клетки ионы калия и марганца,
  • изменяется уровень кислотности среды и др.

Рис. 1. На фото спора внутри бактериальной клетки (фото сделано в свете электронного микроскопа — ЭМ).

Какие бактерии способны к спорообразованию

Палочковидные бактерии, образующие споры, называются бациллами. Они относятся к семейству Bacillaceae и представлены родом клостридиум Clostricdium, родом бациллюс (Bacillus) и родом десульфотомакулум (Desulfotomaculum). Все они грамм положительные анаэробные бактерии.

Род клостридиум насчитывает более 93 видов бактерий. Все они образуют споры. рода клостридиум вызывают , легочную гангрену, являются виновниками осложнений после абортов и родов, тяжелых токсикоинфекций, в том числе ботулизма. Споры бактерий этого вида превышают диаметр вегетативной клетки.

Род бациллюс насчитывает более 217 видов бактерий. Патогенные бактерии рода бациллюс вызывают ряд заболеваний у человека и животных, в том числе пищевые токсикоинфекции и сибирскую язву. Споры бактерий этого вида не превышают диаметр вегетативной клетки.

Рис. 2. На фото бактерии рода клостридиум. Слева — клостридии перфингенс. Являются возбудителями пищевой токсикоинфекции и газовой гангрены. Справа — клостридии ботулинум. Бактерии вызывают тяжелую пищевую токсикоинфекцию — ботулизм.

Рис. 3. На фото возбудитель сибирской язвы. Bacillus anthracis род Bacillus – крупная, неподвижная, с обрубленными концами (слева) и бактерия в спорообразном состоянии (справа).

Спорообразование у бактерий

Подготовительный этап

Перед образованием самой споры в вегетативной бактериальной клетке снижается уровень метаболизма, прекращается репликация ДНК, в спорогенной зоне локализуется один из нуклеотидов, начинает синтезироваться дипиколиновая кислота.

Образование спорогенной зоны

Образование спорогенной зоны начинается с уплотнения участка цитоплазмы, в котором расположен нуклеотид (проспора ). Изолирование спорогенной зоны происходит с помощью цитоплазматической мембраны, которая начинает врастать внутрь клетки.

Образование проспоры и споры

Между внутренним и наружным слоем мембраны образуется кортекс. Один из его компонентов — дипиколиновая кислота, которая обуславливает термоустойчивость споры.

Сторона мембраны, обращенная наружу, покрывается оболочкой (экзоспорицей). Она состоит из белков, липидов и других соединений, которые не встречаются у вегетативной клетки. Оболочка толстая и рыхлая. Обладает гидрофобностью.

Созревание споры

В период созревания споры заканчивается формирование всех ее структур. Спора приобретает термоустойчивость. Она принимает определенную форму и занимает особое положение в клетке. После полного созревания споры происходит аутолизис клетки.

Рис. 4. На фото видна образованная спора, по периферии которой находятся остатки цитоплазмы.

Рис. 5. На фото слева видна только что образованная спора (А), по периферии которой находится остатки цитоплазмы. Далее цитоплазма отмирает. На фото справа (В) спора, очищенная в лабораторных условиях.

Рис. 6. На фото вверху стадии спорообразования — от образования спорогенной зоны до полного формирования и лизиса остатков клетки. На фото внизу спора с лентовидными выростами. О — ее внешняя оболочка, К — кортекс, С — внутренняя часть.

Кортекс

Кортекс защищает спору от ферментов, которые в большом количестве продуцируются клеткой на завершающем этапе спорообразования. Их предназначение — полностью разрушить материнскую вегетативную клетку. При отсутствии кортекса споры бактерий лизируются. Кортекс содержит диаминопимелиновую кислоту, которая обеспечивает термостабильность

Внутренняя сторона кортекса прилегает к внутренней стороне цитоплазматической мембраны. В период прорастания споры кортекс трансформируется в клеточную стенку вегетативной клетки.

Оболочка споры (экзоспориум)

Сторона цитоплазматической мембраны, обращенная наружу, при спорообразовании покрывается оболочкой (экзоспорицей). Она состоит из белков, липидов и других соединений, которые не встречаются у вегетативной клетки. Оболочка толстая и рыхлая. Составляет около 50% объема самой споры. Обладает гидрофобностью. Наружная стенка споры устойчива к воздействию ферментов. Она предохраняет спору от преждевременного прорастания.

Рис. 7. На фото спора с выростами. Ее сердцевина — покоящаяся вегетативная клетка.

Выросты на спорах

На некоторых спорах в процессе спорообразования образуются выросты. Они многообразны и специфичны. Этот признак для каждой бактерии наследственно закрепленен и постоянен. Выросты на спорах состоят в основном из белка. Аминокислоты белка сходны с таковыми у кератина и коллагена. Функция выростов на спорах окончательно еще не выяснена.

Рис. 8. Виды выростов на спорах: жгутики, трубки, ершиковидные палочки, широкие ленты, шипы, булавки, в виде оленьих рогов.

Рис. 9. На фото споры бактерий рода клостридиум. Выросты в виде трубок (1 и 5), выросты в виде жгутиков (2), лентовидные выросты(3), перистые выросты (4), споры, на поверхности которых имеются шипы (6).

Характеристика споры бактерий

В клетке, которая находится в спорообразном состоянии, отмечается:

  • полная репрессия генома,
  • почти полное отсутствие обмена веществ,
  • снижение количества воды в цитоплазме на 50% (значительная потеря воды клеткой приводит к ее гибели),
  • повышенное количество катионов кальция и магния в цитоплазме,
  • появление дипиколиновой кислоты и кортекса, отвечающих за термостабильность,
  • повышение количества белка цистеина и гидрофобных аминокислот,
  • сохраняет жизнеспособность сотни лет.

Устойчивость спор

В процессе спорообразования спора покрывается оболочками — внешней оболочкой и кортексом. Они защищают спору от неблагоприятных условий внешней среды.

Кортекс содержит диаминопимелиновую кислоту, которая отвечает за термостабильность. Внешняя оболочка предохраняет спору от преждевременного прорастания и негативных факторов внешней среды.

В спорообразном состоянии бактерия устойчива к повышенной температуре окружающей среды и высушиванию. Она способна выжить в растворах, с повышенным содержанием солей, перенести длительное кипячение и промораживание, радиацию и вакуум, ультрафиолетовое облучение. Спора проявляет устойчивость к целому ряду токсических веществ и дезинфицирующих препаратов.

Устойчивость спор патогенных бактерий во внешней среде способствует сохранению инфекции и развитию тяжелых инфекционных заболеваний.

Вид, форма и расположение спор у бактерий

Споры бактерий имеют овальную и шаровидную форму. Они могут располагаться на концах клетки (возбудители столбняка), ближе к центру (возбудители ботулизма и газовой гангрены) или в центральной части клетки (сибиреязвенная бацилла). Реже споры бактерий располагаются латерально.

Рис. 10. На фото терминальные эндоспоры C. difficile и Clostridium tetani.

Рис. 11. На фото центрально расположенные споры бактерий Bacillus cereus.

Рис. 12. На фото концевое расположение споры у бактерии Bacillus subtilis.

Колпачки на спорах

На спорах рода клостридиум и бациллюс в процессе спорообразования образуются колпачки. Они имеют конусовидную или серповидную форму и ячеистое строение. Ячейки напоминают мешочки, которые заполнены газообразным веществом. Они имеют форму палочек или овалов. Ячейки помогают споре сохранять в воде плавучесть. Даже при центрифугировании споры с колпачками невозможно осадить. Колпачки на спорах образуются у почвенных бактерий гидроморфных почв, которые сформировались в условиях застоя поверхностных вод или при наличии грунтовых вод.

Рис. 13. На фото колпачки на спорах — конусовидные (слева) и серповидные (справа).

Рис. 14. На фото строение колпачка споры бактерии. Видны отдельные газовые ячейки (вакуоли, мешочки) овальной формы.

Некоторые виды палочковидных бактерий (род Bacillus и род Clostridium) способны образовывать споры. Обычно спорообразование индуцируется неблагоприятными условиями среды: изменением температуры, недостатком питательных веществ, накоплением токсичных продуктов обмена, изменением рН, понижением содержания влаги и т.д. Таким образом, спорообразование не является обязательной стадией развития спорообразующих бактерий.

В клеткевсегда образуется толькоодна спора.

Основными стадиями спорообразования являются:

1. Подготовительная стадия. Процессу предшествует перестройка генетического аппарата клетки: ядерная ДНК вытягивается в виде нити и концентрируется у одного из полюсов клетки либо в центре в зависимости от вида бактерий. Эта часть клетки называется спорогенной зоной.

2. Образование проспоры. В спорогенной зоне происходит обезвоживание и уплотнение цитоплазмы и обосбление этой зоны с помощью перегородки, образующейся из цитоплазматической мембраны.

Проспора - структура, располагающаяся внутри клетки и отделенная от нее двумя мембранами.

3. Формирование оболочек споры. Между мембранами формируется кортикальный слой (кортекс), сходный по составу с клеточной стенкой вегетативной клетки. Помимо пептидогликана - муреина в кортексе содержится кальциевая соль дипиколиновой кислоты, которая синтезируется клеткой в процессе спорообразования. Затем сверху мембраны синтезируется оболочка споры, состоящая из нескольких слоев. Число и строение слоев различны у разных видов бактерий. Оболочка малопроницаема для воды и растворенных веществ и обеспечивает большую устойчивость спор к внешним воздействиям

4. Выход споры из клетки. После созревания споры разрушается оболочка и спора выходит наружу.

Процесс спорообразования длится несколько часов.

Таким образом, спора - это обезвоженная клетка, покрытая многослойной оболочкой, в состав которой входит кальциевая соль дипиколиновой кислоты. Основной особенностью бактериальных спор является их высокая термоустойчивость.

Попадая в благоприятные условия, спора прорастает. Процесс превращения споры в растущую (вегетативную) клетку начинается с поглощения воды и набухания. При этом происходят глубокие физиологические изменения: усиливается дыхание и активизируются ферменты. В этот же период спора теряет свою термоустойчивость. Затем внешняя оболочка ее разрывается и из образовавшейся структуры формируется вегетативная клетка.

Движение бактерий

Среди бактерий есть подвижные и неподвижные формы. Большинство подвижных бактерий активно передвигается только в жидкой среде.

Движение бактерий осуществляется:

· с помощью жгутиков;

Жгутики имеют палочковидные бактерии и некоторые извитые формы. Наличие жгутиков, их расположение являются постоянными для данного вида признаками и имеют диагностическое значение. Некоторые виды бактерий имеют один жгутик (монотрихи), у других жгутики располагаются пучками на одном или обоих концах клетки (политрихи), у третьих покрывают всю поверхность клетки (перитрихи).

Длина жгутиков может во много раз превышать длину клетки бактерий, достигая 10-30 мкм и более. Поперечный размер жгутиков составляет 0,01-0,03 мкм.

Скорость передвижения бактерий велика. За одну секунду клетка может пройти расстояние в 20-50 раз превышающее длину ее тела. Происходит движение при вращении жгутиков вокруг своей оси или за счет сокращения жгутиков.




Рис. 3.1 Расположение жгутиков:

1- монотрихиальное расположение;

2- политрихиальное расположение;

3- перитрихиапьное расположение

Путем скольжения;

Характерно для бактерий, имеющих слизистый чехол. За счет слизи клетка скользит по поверхности и передвигается.

Путем ползания;

Передвижение осуществляется за счет сокращения всей клетки. Такой тип движения осуществляют спирохеты.

Реактивное движение;

Некоторые бактерии для передвижения выбрасывают порции слизи и сами при этом отталкиваются.

Размножение бактерий

Для прокариот характерно деление клетки на 2 части (бинарное деление).

При делении кольцевая ДНК прикрепляется к цитоплазматической мембране, расшнуровывается. При этом образуется 2 цепочки нуклеотидов, которые комплементарно достраиваются, в результате чего образуется две кольцевые двухцепочных молекулы ДНК.

У подавляющего числа грамположительных бактерий деление происходит ровно пополам с помощью поперечной перегородки (сеты), которая образуется за счет выпячивания внутрь клетки цитоплазматической мембраны.

У грамотрицательных бактерий деление происходит путем образования перетяжки (цитоплазматическая мембрана и клеточная стенка прогибаются до слияния с противоположной поверхностью клетки).

Незначительная часть бактерий размножается почкованием (стебельковые бактерии).

Классификация прокариот

В настоящее время существует несколько классификаций бактерий. Наиболее известна и широко используетсяклассификация бактерий Берги. Составители «Краткого определителя бактерий Берги», девятое издание которого выпущено в 1980 г., преследовали цель создать руководство, позволяющее быстро идентифицировать бактерии по совокупности определенных признаков.

По этой классификации царство прокариот в зависимости от отношения к свету разделено на 2 отдела: отдел цианобактерий (фотосинтезирующие) и отдел скотобактерий (нефотосинтезирующие). В свою очередь отдел скотобактерий делится на 19 групп, каждая из которых делится на порядки, семейства, роды и виды в зависимости от формы, строения клеточной стенки, особенностей размножения, подвижности, способности образовывать споры, отношения к кислороду и т.д.

Например, группа 8 имеет название «Грамотрицательные факультативно-анаэробные палочки». Некоторые бактерии этой группы (семейство Enterobacteriacea) являются обычными обитателями кишечника (род Escherichia), другие - возбудителями пищевых инфекций (род Shigella, род Salmonella).

В некоторых группах виды объединены в роды, которые описаны в случайной последовательности, в других роды сгруппированы в семейства и порядки,

В последние годы получила также признаниеклассификация бактерий Мюррея, предложенная в 1978 г. В основу этой классификации положено строение клеточной стенки. Грам+ бактерии отнесены в отдел Firmacutes. Другой отдел - Gracilicutes - объединяет все бактерии, которые имеют клеточную стенку, характерную для Грам- бактерий. Третий отдел объединяет особые формы бактерий, лишенные настоящей клеточной стенки - отдел Mycoplasma.

К отделу Грам+ бактерий относятся четыре группы; в основу деления на группы положена форма клеток и способность образовывать споры. Это кокки, спорообразующие и неспорообразующие палочки, актиномицеты и родственные микроорганизмы. К неспорообразующим Грам+ палочкам относится род Lactobacillus. Это молочнокислые бактерии, которые используются в производстве кисломолочных продуктов, в сыроделии, при квашении овощей, в хлебопечении.

Все представители Грам- бактерий не образуют спор и резко различаются по способности развиваться на свету и без него. В пищевых производствах встречаются Грам- бактерии, которые безразличны к свету. Они различаются по форме клеток и способу движения. По числу представителей и значимости в природе и в жизни человека наибольший интерес из них представляют псевдомонады, энтеробактерии, уксуснокислые бактерии.

Вопросы для самопроверки

1. Каковы основные формы клеток у бактерий?

2. Чем отличаются стрептококки от стафилококков?

3. Какое взаимное расположение кокков имеют сарцины?

4. Каким образом дифференцируют палочковидные бактерии?

5. Как осуществляется движение у бактерий?

6. Что такое монотрихи и политрихи?

7. Как располагаются жгутики у подвижных форм бактерий?

8. Перечислите известные Вам извитые формы бактерий.

9. Как протекает процесс спорообразования у бактерий?

10. Какую функцию выполняет спорообразование у бактерий?

11. Какие признаки используются при определении вида бактерий?

12. Каким образом осуществляется размножение бактерий?

13. Какова роль нуклеоида в размножении бактерий?

14. Какие классификации бактерий Вам известны?

15. Охарактеризуйте следующие группы бактерий: стрептококки, диплобактерии, торроиды, спирохеты, вибрионы, простеки, актиномицеты.

16. Какие признаки положены в основу классификации бактерий по Берги?

17. В чем отличие цианобактерий от скотобактерий?

18. Какие признаки положены в основу классификации бактерий по Мюррею?

19. Что такое актиномицеты?

20. Что такое «бациллы» и «клостридии» и в чем их различия?

21. Что такое споры?

22. Все ли бактерии способны к спорообразованию?

23. Перечислите основные стадии спорообразования у бактерий.

24. Какие новые формы бактерий Вам известны?

25. Какие взаимные расположения палочковидных бактерий Вам известны?

Литература

1. Шлегель Г. Общая микробиология. -М.: Мир, 1987.- 500 с.

2. Мудрецова-Висс К.А. Микробиология. -М.: Экономика, 1985.- 400 .

3. Чурбанова И.Н. Микробиология. - М.: Высшая школа, 1987.- 240 с.

4. Чеботарев Л.Н., Богданова Л.В., Лузина Н.И. Техническая микробиология. Учебное пособие. - Кемерово, изд-во КузПИ, 1986.

5. Чеботарев Л.Н. Микробиология в иллюстрациях и схемах. Учебное пособие. - Кемерово, изд-во КузПИ, 1988.- 92 с.

6. Вербина Н.М., Каптерева Ю.В. Микробиология пищевых производств.- М.: Агропромиздат, 1988.- 256 с.

7. Асонов Н.Р. Микробиология.- 3-е издание, перераб. и доп.- М.: Колос, 1997.- 352 с.

Тема 4 ЭУКАРИОТЫ (грибы и дрожжи)

4.1 Микроскопические грибы, их особенности

4.2 Размножение грибов

4.3 Классификация грибов. Характеристика наиболее важных представителей различных классов

4.4 Дрожжи Их формы,размеры Размножениедрожжей. Принципы классификации дрожжей


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31

Бактерии – это обширная и разнообразная группа микроорганизмов.

Величина бактерий измеряется микронами и колеблется от 0,15 до 40 микрон.

Термин «бактерии» происходит от слова «bacterion » - палка. Этот термин может применяться в широком значении, как класс микроорганизмов, и в узком смысле – палочки, не образующие спор.

Термин «бацилла» означает, что палочка образует сору и по типу дыхания (биологического окисления) относится к факультативным анаэробам. Если же образующие спору бактерии, по типу дыхания относятся к облигатным (строгим) анаэробам, то они называются «клостридиями».

Большинство бактерий – это одноклеточные, лишенные хлорофилла, организмы шаровидной, палочковидной или извитой формы, относящиеся к прокариотам.

Самая распространенная форма бактерий – палочковидная. Палочковидные бактерии различаются по форме, величине в длину и ширину, по форме концов клетки, а также по взаимному расположению. Палочковидные бактерии бывают короткими тонкими (возбудитель туляремии – Francisella tularensis ), короткими толстыми, их называют коккобактериями (возбудитель бруцеллеза – Brucella melitensis ), длинными с обрубленными концами (возбудитель сибирской язвы – Bacillus anthracis ), с закругленными концами (возбудитель столбняка – Cl.tetani , возбудитель брюшного тифа – Salmonella typhi ) и с заостренными концами (возбудитель гнгойно – воспалительного процесса – Fusobacterium gonidiaformas). Встречаются также бактерии с булавовитдными утолщениями на концах (возбудитель дифтерии – Corinebacterium diphteriae ).

По взаимному расположению палочковидные бактерии распределяются на три подгруппы: располагающиеся по длине парно (Klebsiella pneumoniae –возбудитель пневмонии Фридлендера); образующие цепи различной длины (Bac.anthracis, Haemophilus ducrey – возбудитель мягкого шанкра) и располагающиеся без определенной системы (Salmonella typhi, Ps.aeruginosa - синегнойная палочка, E.coli – кишечная палочка, Pr.vulgaris – протей и многие другие).

Общее число палочковидных бактерий значительно больше, чем кокковидных.

Шаровидные бактерии (coccus – кокк, шарообразный организм) по форме бывают сферические, эллипсовидные, бобовидные и ланцетовидные.

По расположению особей а плоскости при делении кокки подразделяются на:

Сафилококки (Staphyle – виноградная гроздь) – кокки, которые размножаются в трех плоскостях в неограниченном количестве (Staphylococcus aureus ).

Стрептококки (Strepto – цепочка) – это такие кокки, которые делятся в одой плоскости и располагаются цепочками различной длины (Streptococcus pyogenes).

Диплококки (Diplos – двойной) – кокки, соединенные по две особи, делятся в одной плоскости (Streptococcus pneumoniae, Neisseria meningitides ).

Тетракокки (Tetra – четыре) – кокки, которые делятся в двух взаимно перпендикулярных направлениях одной плоскости и располагаются по четыре (Aerococcus virildans ). Среди тетракокков очень редко встречаются представители, способные вызвать у человека инфекционное заболевание.

Сарцины (Sarcio – связываю) – представляют собой кокковые формы, делящиеся в трех взаимно перпендикулярных плоскостях. Располагаются по 8, 16 и более клеток (Sarcina ureo ).

Микрококки (Micrococcus – маленький кокк) – характеризуются одиночным или беспорядочным расположением (Micrococcus aerogenes ).

К группе извитых бактерий относятся вибрионы – слегка изогнутые клетки, имеющие один завиток, не превышающий одной четверти оборота спирали. Среди вибрионов есть представители не патогенные для человека, обитающие во многих пресных водоемах, а также патогенные для человека, в том числе и возбудители холеры (Vibrio cholerae, Vibrio el Tor ).

Форма бактерий представляет определенное соотношение ее поверхности и объема. Форма не является абсолютной, неизменяемой, так же, как и размеры микробной клетки. Они изменяются под влиянием самых различных факторов.

Морфологические изменения повсеместно встречаются у многих видов бактерий в результате изменения среды их обитания, влияния различных факторов (температуры, питательных веществ, рН среды, концентрации солей, химических веществ, продуктов метаболизма, лекарственных препаратов, дезинфицирующих веществ, защитных сил макроорганизма и пр.).

Однако, при определенных относительно стабильных условиях, микробы сохраняют присущие данному роду и виду размеры и форму, приобретенные в процессе длительной эволюции.

Несмотря на внешнюю простоту устройства бактериальной клетки, она представляет собой очень сложный организм.

Разные методы исследований позволили выявить внешние и внутренние структуры у бактерий.

К поверхностным (внешним) структурам бактериальной клетки относятся капсула, жгутики, ворсинки, которые не являются обязательными структурами для всех клеток, а также обязательные – клеточная стенка и располагающаяся под ней цитоплазматическая мембрана .

Внутренняя структура бактериальной клетки представлена цитоплазмой , в которой находятся нуклеотид, рибосомы и мембранные образования – мезосомы . У многих бактерий в цитоплазме находятся включения . В цитоплазме некоторых бактерий происходит процесс спорообразования.

Жгутики – тонкие эластичные нити, достигающие значительной длины (иногда в 20 – 30 раз превосходящей длину тела микроба), являются органами движения бактерий. Жгутики имеются у многих грамположительных и грамотрицательных бактерий. В зависимости от количества и расположения жгутиков бактерии подразделяются на:

1.Монотрихи (Monotrichia ), имеющие один жгутик на одном из полюсов клетки (V.cholerae, Campylobacter fetus, Ps.aeruginosa ).

2.Лофотрихи (Lophotrichia ), у которых пучок жгутиков располагается на одном из полюсов клетки (V.buccalis ).

3. Амфитрихи (Amphitrichia ), у которых жгутики расположены на обеих полюсах клетки (Bact.alcaligenes ).

4.Перитрихи (Peritrichia ) – бактерии, имеющие жгутики, расположенные по всей поверхности клетки (Proteus vulgaris, Sal.typhi, E.coli, Cl.tetani ).

Активное движение бактерий происходит в результате вращательных движений жгутиков и обуславливается движением белка – флагеллина, содержащегося в жгутиках.

Характер движения бактерий зависит от числа и расположения жгутиков, возраста и свойств культуры, температуры среды, наличия химических веществ, физических факторов, рН среды и пр.

Ворсинки (реснички, фимбрии, пили) – тонкие полые нитевидные образования белковой природы (длиной 0,3 10 мкм, толщиной до 10 нм.), не являющиеся органами движения. Имеются у многих (но не у всех) бактерий и обеспечивают прилипание микробов к тканевой клетке. Выявлено девять разновидностей ворсинок.

Капсула – в большинстве случаев слизистое образование полисахаридной природы с большим содержанием воды. В зависимости от толщины и строения различают микро- и макрокапсулу. Микрокапсулу можно обнаружить только с помощью электронного микроскопа.

Макрокапсула не является обязательным структурным элементом микробной клетки. Ее образование зависит от среды, в которой находятся бактерии, и от свойств микроба, сформировавшихся в процессе эволюционного развития микроорганизма.

Некоторые из них образуют макрокапсулу только в организме человека или животного (Bac.anthracis, Str.pneumoniae, Cl.perfringens ), другие сохраняют ее постоянно (Kl.pneumoniae ). Для некоторых видов характерно образование капсулы общей для нескольких особей (Bac.anthracis, Kl.rhinoscleromatis, Azotobacter chroococcum ).

Благодаря тому, что капсула на 98% состоит из воды, она служит как бы защитным осмотическим барьером против притока большого количества жидкости и против высушивания. Капсула защищает бактерии от фагоцитоза, антител, бактериофагов, является фактором патогенности.

Капсула может быть утрачена клеткой без потери ее жизнеспособности, хотя роль ее в защите бактерий очень существенна.

Бактерии, образующие капсулу внутри макроорганизма, при выделении в окружающую среду, спустя два часа прекращают ее продуцировать.

Клеточная оболочка – тонкая отчетливо очерченная, относительно плотная и достаточно жесткая структура, располагающаяся непосредственно под слизистым слоем или капсулой. Выполняет очень важную роль. Нарушение ее целостности обуславливает глубокие нарушения физиологического состояния клетки.

Химический состав клеточной оболочки, прочность и толщина различны у разных видов бактерий.

Клеточная оболочка – это сложная структура, состоящая из клеточной стенки и цитоплазматической мембраны. Оболочка придает бактериальной клетке определенную форму, с ней связаны такие свойства клетки, как поверхностное натяжении, электрический заряд и осмотическое давление.

Клеточная стенка – структура, в состав которой входит муреин – гликопептид и тейхоевые кислоты. От особенностей структуры муреина зависит способность микробной клетки окрашиваться и удерживать анилиновый краситель, что и легло в основу методики окраски микроорганизмов по методу Грама.

Цитоплазматическая мембрана – ограничивает цитоплазму бактериальной клетки и представляет осмотический барьер, через который поступают питательные вещества и выделяются продукты обмена.

Цитоплазма – основная масса тела бактериальной клетки. Представляет собой сложное коллоидное вещество с высокой плотностью. Основные ее компоненты – вода, белки, ферменты, РНК и ДНК, органические и неорганические вещества. В цитоплазме содержатся нуклеоид, рибосомы, мезосомы, различные включения, плазмиды.

Нуклеоид под электронным микроскопом выглядит как структура неправильной формы. У нуклеоида нет ядерной мембраны, нет ядрышка, нет ядерных белков – гистонов. Нуклеоид состоит из одной хромосомы кольцевой структуры. Хромосома состоит из одной молекулы ДНК, участвующей в передаче наследственной генетической информации.

Рибосомы состоят из белка и РНК. В них происходит синтез белка клетки. В цитоплазме клетки содержится до 5 тысяч рибосом. При процессах синтеза белка рибосомы укрупняются, образуя полирибосомы.

Мезосомы бактерий являются производными цитоплазматической мембраны клетки, имеют различное строение и различную форму. Мезосомы участвуют в процессах деления клетки, спорообразования, синтеза материала для клеточной стенки, энергетического обмена.

В цитоплазме находятся также и гранулы различных веществ (гликоген, хроматин, крахмал, капельки жира, жидкая сера, волютин и пр.). Откладываются включения в цитоплазме при хорошем питании и замедленном размножении. В одних случаях включения являются продуктами обмена бактериальной клетки, в других – запасом питательных веществ.

Споры бактерий – это внутриклеточные образования круглой или овальной формы, устойчивые к высоким температурам, дезинфицирующим веществам, антибиотикам и другим факторам окружающей среды.

Образование споры для бактерий является фактором сохранения вида в неблагоприятных условиях (изменение температуры, рН среды, недостаток питательных веществ, присутствие токсинов и пр.).

Спорообразованием обладают многие палочковидные бактерии из семейства Bacillaceae , родов Bacillus и Clostridium (Bac.subtilis, Bac.anthracis, Cl.tetani, Cl.perfringens и др.). Спорообразование у кокков и извитых форм наблюдается крайне редко (Sarcina lutea, Planasarcina ureae, Vibrio desulfuricus, Spirillum amiliferum ).

Спорообразование у возбудителей, патогеннх для человека или животных, начинается спустя два часа после прекращения контакта микробов с живым макроорганизмом (гибель макроорганизма или выделение микроба из макроорганизма в окружающую среду).

При культивировании спорообразующих микробов в лабораторных условиях на питательных средах, процесс спорообразования начинается при старении культуры, накопления метаболитов, подсыхания питательной среды и истощения в ней питательных веществ.

Способность к спорообразованию учитывается при определении видовой принадлежности микроба, при выборе методов обеззараживания предметов окружающей среды, в пищевой и текстильной промышленности, в медицине и ветеринарии.

Процесс формирования споры длится 18 – 20 часов. Вместо вегетативной формы появляется спора, составляющая примерно 0,1 часть материнской клетки. Благодаря толщине оболочки и плотности содержимого, споры обладают повышенной устойчивостью к факторам внешней среды. Они выдерживают в сухом состоянии 1700 по Цельсию в течение двух часов. Споры могут годами сохраняться в неблагоприятных условиях. При попадании в благоприятные условия споры очень быстро (в течение 4 – 5 часов) прорастают в вегетативную клетку.

Споры различных видов бактерий различаются по форме, размерам и расположению в клетке.

По характеру и локализации в теле микробной клетки споры могут располагаться центрально (Bac.subtilis, Bac.mesentericus), терминально (Cl.tetani ) и субтерминально (Cl.botulinum ). У одних видов бактерий диаметр спор превышает поперечник бактериальной клетки (Cl.perfringens, Bac.subtili ), у других нет (Bac.anthracis ).

Систематическое распределение некоторых видов бактерий

Семейство

Enterobacteriaceae Escherichia E.coli
Salmonella S.typhi, S.paratyphi A, S.paratyphi B, S.typhimurium, S.enteritidis и другие, более 150 видов
Shigella Sh.dysenteriae, Sh.sonnei, Sh.flexneri, Sh.boydii
Yersinia Y.pestis, Y.enterocolitica, Y.pseudotuberculosis
Francisella F.tularensis
Klebsiella Kl.rhinoscleromatis, Kl.pneumoniae, Kl.ozaenae
Proteus P.vulgaris, P.infantum, P.morgani, P.mirabilis, P.rettgeri, P.diffluens
Bordetella B.pertussis, B.parapertussis, B.bronchiseptica и другие
Haemophilia H.influenzae, H.ducrey, H.haemoglobinophilus, H.haemolyticus и другие
Brucella Br.militensis, Br.suis, Br.abortus, Br.canis
Corinebacteriaceae Corinebacterium C.diphtheriae, C.xerosis, C.pyogenes, C.eque, C.paradiphthericum, C.haemolyticus и другие
Bacillus Clostridium Cl.tetani, Cl.botulinum, Cl.sporogene, Cl.novyi, Cl.histilyticum, Cl.septicum, Cl.perfringens, Cl.ramosum, Cl.sordelii
Bacillus Bac.anthracis, Bac.subtilis, Bac.antracoides, Bac.cereus, Bac.mesentericus и другие
Coccaceae Staphylococcus St.saprophyticus, St.epidermidis, St.aureus и другие
Streptococcus Str.pyogenes, Str.faecalis, Str.pneumoniae и другие
Neisseria N.meningitidis, N.sicca, N.subflava, N.gonorrhoeae, N.catarrhalis и другие
Pseudomonadaceae Pseudomonas Pseudomonas, Ps.mallei, Ps.maltophila, Ps.pseudomallei, Ps.aeruginosa, Ps.putida
Sperillacea Vibrio V.cholerae и другие
Campilobacter C.jejuni, C.coli, C.fetus, C.sputorum, C.consicus
Legionellaceae Legionella L.pneumophilla, L.gormanii, L.jordanis и другие
Mycobacteriaceae Mycobacterium M.tuberculosis, M.bovis, M.africanus, M.leprae, M.smegmatis и другие
Bacteroidaceae Bacteroides B.fragilis, B.oralis, B.melaninogenicus и другие

Грибы — древние гетеротрофные организмы, занимающие особое место в общей системе живой природы. Они могут быть как микроскопически малы, так и достигать нескольких метров. Поселяются на растениях, животных, человеке или на мёртвых органических остатках, на корнях деревьев и трав. Их роль в биоценозах велика и разнообразна. В цепи питания они являются редуцентами — организмами, питающимися мёртвыми органическими остатками, подвергающими эти остатки минерализации до простых органических соединений.

В природе грибы играют положительную роль: они пища и лекарства для животных; образуя грибокорень, помогают растениям всасывать воду; являясь компонентом лишайников, грибы создают среду обитания для водорослей.

Грибы — бесхлорофилльные низшие организмы, объединяющие около 100 000 видов, от мелких микроскопических организмов до таких великанов, как трутовики, гигантский дождевик и некоторые другие.

В системе органического мира грибы занимают особое положение, представляя отдельное царство, наряду с царствами животных и растений. Они лишены хлорофилла и поэтому требуют для питания готовое органическое вещество (принадлежат к гетеротрофным организмам). По наличию в обмене мочевины, в оболочке клеток — хитина, запасного продукта — гликогена, а не крахмала — они приближаются к животным. С другой стороны, способом питания (путём всасывания, а не заглатывания пищи), неограниченным ростом они напоминают растения.

Грибы имеют и признаки, свойственные только им: почти у всех грибов вегетативное тело представляет собой грибницу, или мицелий, состоящий из нитей — гиф.

Это тонкие, как нити, трубочки, заполненные цитоплазмой. Нити, составляющие гриб, могут туго или рыхло переплетаться, ветвиться, срастаться друг с другом, образуя плёнки наподобие войлока или видимые простым глазом жгуты.

У высших грибов гифы разделены на клетки.

В клетках грибов может быть от одного до нескольких ядер. Кроме ядер, в клетках имеются и другие структурные компоненты (митохондрии, лизосомы, эндоплазматическая сеть и пр.).

Строение

Тело подавляющего большинства грибов построено из тонких нитчатых образований — гиф. Совокупность их образует грибницу (или мицелий).

Разветвляясь, мицелий образует большую поверхность, что обеспечивает всасывание воды и питательных веществ. Условно грибы делятся на низшие и высшие. У низших грибов гифы не имеют поперечных перегородок и мицелий представляет собой одну сильно разветвлённую клетку. У высших грибов гифы разделены на клетки.

Клетки большинства грибов покрыты твёрдой оболочкой, её нет у зооспор и вегетативного тела некоторых простейших грибов. В цитоплазме гриба содержатся структурные белки и не связанные с органоидами клетки ферменты, аминокислоты, углеводы, липиды. Органоиды: митохондрии, лизосомы, вакуоли, содержащие запасные вещества — волютин, липиды, гликоген, жиры. Крахмала нет. В клетке гриба имеется одно или несколько ядер.

Размножение

У грибов различают вегетативное, бесполое и половое размножение.

Вегетативное

Размножение осуществляется частями мицелия, специальными образованиями — оидиями (образующимися в результате распадения гиф на отдельные короткие клетки, каждая из которых даёт начало новому организму), хламидоспорами (образуются примерно так же, но имеют более толстую тёмноокрашенную оболочку, хорошо переносят неблагоприятные условия), путём почкования мицелия или отдельных клеток.

Для бесполого вегетативного размножения специальные приспособления не нужны, но потомков появляется не много, а мало.

При бесполом вегетативном размножении клетки нити, ничем не отличаются от соседних, вырастают в целый организм. Иногда, животные или движение среды разрывают гифу на части.

Бывает при наступлении неблагоприятных условий нить сама распадается на отдельные клетки, каждая из которых может вырасти в целый гриб.

Порой на нити образуются наросты, которые разрастаются, отпадают и дают начало новому организму.

Часто некоторые клетки наращивают толстую оболочку. Они могут выдерживать высыхание и сохраняют жизнеспособность до десяти и более лет, а в благоприятных условиях прорастают.

При вегетативном размножении ДНК потомков не отличается от ДНК родителя. При таком размножении не нужны специальные устройства, но количество потомков невелико.

Бесполое

При бесполом споровом размножении нить гриба образует специальные клетки, создающие споры. Эти клетки выглядят как веточки, неспособные расти и отделяющие от себя споры, или как крупные пузыри, внутри которых образуются споры. Такие образования называют спорангиями.

При бесполом размножении ДНК потомков не отличается от ДНК родителя. На образование каждой споры тратится меньше веществ, чем на одного потомка при вегетативном размножении. Бесполым путём одна особь производит миллионы спор, поэтому у гриба больше шансов оставить потомство.

Половое

При половом размножении появляются новые сочетания признаков. При этом размножении ДНК потомков образуется из ДНК обоих родителей. У грибов объединение ДНК происходит по-разному.

Разные способы обеспечить объединение ДНК при половом размножении грибов:

В какой-то момент сливаются ядра, а затем и нити ДНК родителей, обмениваются кусочками ДНК и разделяются. В ДНК потомка оказываются участки, полученные от обоих родителей. Поэтому потомок чем-то похож на одного родителя, а чем-то — на другого. Новое сочетание признаков может уменьшить, и увеличить жизнеспособность потомства.

Размножение состоит в слиянии мужских и женских половых гамет, в результате чего образуется зигота. У грибов различают изо-, гетеро- и оогамию. Половой продукт низших грибов (ооспора) прорастает в спорангий, в котором развиваются споры. У аскомицетов (сумчатых грибов) в результате полового процесса образуются сумки (аски) — одноклеточные структуры, содержащие обычно 8 аскоспор. Сумки образующиеся непосредственно из зиготы (у низших аскомицетов) или на развивающихся из зиготы аскогенных гифах. В сумке происходит слияние ядер зиготы, затем мейотическое деление диплоидного ядра и образование гаплоидных аскоспор. Сумка активно участвует в распространении аскоспор.

Для базидиальных грибов характерен половой процесс — соматогамия. Он состоит в слиянии двух клеток вегетативного мицелия. Половой продукт — базидия, на которой образуются 4 базидиоспоры. Базидиоспоры гаплоидны, они дают начало гаплоидному мицелию, который недолговечен. Путём слияния гаплоидного мицелия образуется дикариотический мицелий, на котором образуются базидии с базидиоспорами.

У несовершенных грибов, а в некоторых случаях и у других половой процесс заменяется гетерокариозом (разноядерностью) и парасексуальным процессом. Гетерокариоз состоит в переходе генетически неоднородных ядер из одного отрезка мицелия в другой путём образования анастомозов или слияния гиф. Слияние ядер при этом не происходит. Слияние ядер после, перехода их в другую клетку называется парасексуальным процессом.

Нити гриба прирастают поперечным делением (вдоль клетки нити не делятся). Цитоплазма соседних клеток гриба составляет единое целое — в перегородках между клетками есть отверстия.

Питание

Большинство грибов имеет вид длинных нитей, всасывающих питательные вещества всей поверхностью. Грибы всасывают нужные вещества из живых и мёртвых организмов, из почвенной влаги и воды природных водоёмов.

Грибы выделяют наружу вещества, разрывающие молекулы органических веществ на такие части, которые гриб может впитать.

Но в определённых условиях организму полезнее быть нитью (как гриб), а не комочком (циста) как бактерия. Проверим, так ли это.

Проследим за бактерией и растущей нитью гриба. Крепкий раствор сахара показан коричневым цветом, слабый — светло-коричневый, вода без сахара — белым.

Можно сделать вывод: нитевидный организм, разрастаясь, может оказаться в местах богатых пищей. Чем длиннее нить, тем больше запас веществ, который насытившиеся клетки могут расходовать на рост гриба. Все гифы ведут себя, как части одного целого, и участки гриба, оказавшись в богатых пищей местах, питают весь гриб.

Плесневые грибы

Плесневые грибы поселяются на увлажнённых остатках растений, реже животных. Одним из наиболее распространённых плесневых грибов является мукор, или головчатая плесень. Грибницу этого гриба в виде тончайших белых гифов можно обнаружить на залежавшемся хлебе. Гифы мукора не разделены перегородками. Каждая гифа представляет собой одну сильно разветвлённую клетку с несколькими ядрами. Одни ответвления клетки проникают в субстрат и поглощают питательные вещества, другие поднимаются вверх. На верхушке последних образуются чёрные округлые головки — спорангии, в которых образуются споры. Созревшие споры распространяются воздушными потоками или при помощи насекомых. Попав в благоприятные условия, спора прорастает в новую грибницу (мицелий).

Вторым представителем плесневых грибов является пеницилл, или сизая плесень. Грибница пеницилла состоит из гифов, разделённых поперечными перегородками на клетки. Некоторые гифы поднимаются вверх, и на конце их образуются разветвления, напоминающие кисточки. На конце этих разветвлений образуются споры, с помощью которых пеницилл размножается.

Дрожжевые грибы

Дрожжи — одноклеточные неподвижные организмы овальной или удлинённой формы, размером 8-10 мкм. Настоящего мицелия не образуют. В клетке имеется ядро, митохондрии, в вакуолях накапливается много веществ (органических и неорганических), в них происходят окислительно-восстановительные процессы. Дрожжи накапливают в клетках волютин. Вегетативное размножение почкованием или делением. Спорообразование наступает после многократного размножения почкованием или делением. Оно совершается легче при резком переходе от обильного питания к незначительному, при поступлении кислорода. В клетке число спор парное (чаще 4-8). У дрожжей известен и половой процесс.

Дрожжевые грибы, или дрожжи, встречаются на поверхности плодов, на содержащих углеводы растительных остатках. От других грибов дрожжи отличаются тем, что не имеют грибницы и представляют одиночные, в большинстве случаев овальные клетки. В сахаристой среде дрожжи вызывают спиртовое брожение, в результате которого выделяются этиловый спирт и углекислый газ:

С 6 Н 12 О 6 → 2С 2 Н 5 ОН + 2СО 2 + энергия.

Этот процесс ферментативный, протекает при участии комплекса ферментов. Освобождающаяся энергия используется дрожжевыми клетками на жизненные процессы.

Размножаются дрожжи почкованием (некоторые виды — путём деления). При почковании на клетке образуется выпуклость, напоминающая почку.

Ядро материнской клетки делится, и одно из дочерних ядер переходит в выпуклость. Выпуклость быстро растёт, превращается в самостоятельную клетку и отделяется от материнской. При очень быстром почковании клетки не успевают разъединяться и в результате получаются короткие непрочные цепочки.

Не менее ¾ всех грибов — сапрофиты. Сапрофитный способ питания связан преимущественно с продуктами растительного происхождения (кислая реакция среды и состав органических веществ растительного происхождения более благоприятны для их жизни).

Грибы-симбионты связаны преимущественно с высшими растениями, мохообразными, водорослями, реже — с животными. Примером могут быть лишайники, микориза. Микориза — это сожительство гриба с корнями высшего растения. Гриб помогает растению усваивать труднодоступные вещества гумуса, способствует поглощению элементов минерального питания, помогает своими ферментами в углеводном обмене, активизирует ферменты высшего растения, связывает свободный азот. От высшего растения гриб, очевидно, получает безазотные соединения, кислород и корневые выделения, способствующие прорастанию спор. Микориза очень распространена среди высших растений, она не обнаружена лишь у осоковых, крестоцветных и водных растений.

Экологические группы грибов

Почвенные грибы

Почвенные грибы участвуют в минерализации органического вещества, образовании гумуса и т.п. В этой группе выделяют грибы, попадающие в почву только в определённые периоды жизни, и грибы ризосферы растений, живущие в зоне их корневой системы.

Специализированные почвенные грибы:

  • копрофиллы - грибы, обитающие на почвах, богатых перегноем (навозные кучи, места скопления помёта животных);
  • кератинофиллы - грибы, обитающие на волосах, рогах, копытах;
  • ксилофиты - грибы, разлагающие древесину, среди них различают разрушителей живой и мёртвой древесина.

Домовые грибы

Домовые грибы — разрушители деревянных частей построек.

Водные грибы

К ним относится и группа микоризных грибов-симбионтов.

Грибы, развивающиеся на промышленных материалах (на металле, бумаге и изделиях из них)

Шляпочные грибы

Шляпочные грибы поселяются на богатой перегноем лесной почве и из неё получают воду, минеральные соли и некоторые органические вещества. Часть органических веществ (углеводы) они получают от деревьев.

Грибница — главная часть каждого гриба. На ней развиваются плодовые тела. Шляпка и ножка состоят из плотно прилегающих друг к другу нитей грибницы. В ножке все нити одинаковы, а в шляпке они образуют два слоя — верхний, покрытый кожицей, окрашенной разными пигментами, и нижний.

У одних грибов нижний слой состоит из многочисленных трубочек. Такие грибы называют трубчатыми. У других нижний слой шляпки состоит из радиально расположенных пластинок. Такие грибы называют пластинчатыми. На пластинках и на стенках трубочек образуются споры, с помощью которых грибы размножаются.

Гифы грибницы оплетают корни деревьев, проникают в них и распространяются между клетками. Между грибницей и корнями растений устанавливается полезное для обоих растений сожительство. Гриб снабжает растения водой и минеральными солями; заменяя на корнях корневые волоски, дерево уступает ему часть своих углеводов. Только при такой тесной связи грибницы с определёнными породами деревьев возможно образование плодовых тел у шляпочных грибов.

Образование спор

В трубочках или на пластинках шляпки образуются особые клетки — споры. Созревшие мелкие и лёгкие споры высыпаются, их подхватывает и разносит ветер. Разносят их насекомые и слизни, а также белки и зайцы, поедающие грибы. Споры не перевариваются в пищеварительных органах этих животных и выбрасываются наружу вместе с помётом.

Во влажной, богатой перегноем почве споры грибов прорастают, из них развиваются нити грибницы. Грибница, возникающая из одной споры, может образовывать новые плодовые тела лишь в редких случаях. У большинства видов грибов плодовые тела развиваются на грибницах, образованных слившимися клетками нитей, берущих начало от разных спор. Поэтому клетки такой грибницы двухъядерные. Грибница растёт медленно, лишь накопив запасы питательных веществ, она образует плодовые тела.

Большинство видов этих грибов — сапрофиты. Развиваются на перегнойной почве, отмерших растительных остатках, некоторые на навозе. Вегетативное тело состоит из гиф, образующих находящуюся под землёй грибницу. В процессе развития на грибнице вырастают зонтикоподобные плодовые тела. Пенёк и шляпка состоят из плотных пучков нитей грибницы.

У части грибов на нижней стороне шляпки от центра к периферии радиально расходятся пластинки, на которых развиваются базидии, а в них споры — это гименофор. Такие грибы называют пластинчатыми. У отдельных видов грибов имеется покрывало (плёночка из неплодных гиф), защищающее гименофор. При дозревании плодового тела покрывало разрывается и остаётся в виде бахромы по краям шляпки или кольца на ножке.

У некоторых грибов гименофор имеет трубчатую форму. Это трубчатые грибы. Их плодовые тела мясистые, быстро загнивают, легко повреждаются личинками насекомых, поедаются слизнями. Размножаются шляпочные грибы спорами и частями мицелия (грибницы).

Химический состав грибов

В свежих грибах вода составляет 84-94% общей массы.

Белки грибов усваиваются только на 54-85% — хуже, чем белки других растительных продуктов. Усвоению препятствует плохая растворимость белков. Жиры, углеводы усваиваются очень хорошо. Химический состав зависит от возраста гриба, его состояния, вида, условий произрастания и др.

Роль грибов в природе

Многие грибы срастаются с корнями деревьев и трав. Их сотрудничество взаимовыгодно. Растения дают грибам сахар и белки, а грибы разрушают находящиеся в почве мёртвые остатки растений и всасывают всей поверхностью гиф воду с растворёнными в ней минеральными веществами. Корни, сросшиеся с грибами, называют микоризой. Большинство деревьев и трав образуют микоризу.

Грибы играют в экосистемах роль разрушителей. Они уничтожают мёртвую древесину и листья, корни растений и трупы животных. Все мёртвые остатки они превращают в углекислый газ, воду и минеральные соли — в то, что могут усвоить растения. Питаясь, грибы набирают вес и становятся пищей животных и других грибов.

Некоторые палочковидные бактерии, попав в неблагоприятные условия, образуют внутри своих клеток тельца округлой или эллиптической формы, получившие название спор. На образование их затрачивается почти всё содержимое протоплазмы . Сначала образуется проспора , которая затем превращается в спору. Процесс образования споры занимает от 40-50 мин. до нескольких часов, а иногда затягивается на целые сутки. Спороносные клетки теряют способность к размножению. После созревания споры остатки вегетативной клетки отмирают и разрушаются. Наружная оболочка – экзина становится малопроницаемой для воды и растворённых в ней веществ. Внутренняя оболочка – интина играет важную роль в прорастании споры. Из неё строится оболочка для новой вегетативной клетки. Вода в споре находится в особом состоянии, ферменты малоактивны, оболочка ограничивает обмен спор с внешней средой – всё это позволяет спорам сохраняться в жизнеспособном состоянии десятки и сотни лет. Следовательно, спора является устойчивой формой бактерии к неблагоприятным условиям внешней среды . Например, при кипячении речной воды погибают все бактериальные клетки, кроме спорообразующих. Споры не погибают при высушивании, замораживании, действии прямых солнечных лучей и сильных химических ядов. Погибают споры при стерилизации их в автоклавах (120-140˚С). Однако одни и те же бактерии образуют споры различной устойчивости, и часть спор можно убить длительным кипячением. Когда спора попадает в благоприятные условия, она начинает прорастать. При этом она набухает, становится богаче водой, увеличиваясь почти в два раза. Наружная оболочка разрывается и через образовавшееся отверстие выходит проросток. У некоторых бацилл активизация ферментов и формирование вегетативной клетки завершается за 40-50 минут. Иногда при накапливании в среде ядовитых веществ, спороносные бациллы могут утратить способность к спорообразованию.