Болезни Военный билет Призыв

Волновая функция квантовой системы определяется как. Зависимое от времени уравнение. Математические требования к волновой функции для стационарных состояний

Постулаты Бора

Планетарная модель атома позволила объяснить результаты опытов по рассеянию альфа-частиц вещества, однако возникли принципиальные трудности при обосновании устойчивости атомов.
Первая попытка построить качественно новую – квантовую – теорию атома была предпринята в 1913 г. Нильсом Бором. Он поставил цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил ядерную модель Резерфорда. Он предположил, что электроны движутся вокруг ядра по круговым орбитам. Движение по окружности даже с постоянной скоростью обладает ускорением. Такое ускоренное движение заряда эквивалентно переменному току, который создает в пространстве переменное электромагнитное поле. На создание этого поля расходуется энергия. Энергия поля может создаваться за счет энергии кулоновского взаимодействия электрона с ядром. В результате электрон должен двигаться по спирали и упасть на ядро. Однако опыт показывает, что атомы – очень устойчивые образования. Отсюда следует вывод, что результаты классической электродинамики, основанной на уравнениях Максвелла, неприменимы к внутриатомным процессам. Необходимо найти новые закономерности. В основу своей теории атома Бор положил следующие постулаты.
Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.
Этот постулат находится в противоречии с классической теорией. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса.
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

равной разности энергий соответствующих стационарных состояний (Еn и Еm – соответственно энергии стационарных состояний атома до и после излучения/поглощения).
Переходу электрона со стационарной орбиты под номером m на стационарную орбиту под номером n соответствует переход атома из состояния с энергией Еm в состояние с энергией Еn (рис. 4.1).

Рис. 4.1. К пояснению постулатов Бора

При Еn > Еm происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т. е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при Еn < Еm – его поглощение (переход атома в состояние с большей энергией, т. е, переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот

квантовых переходов и определяет линейчатый спектр атома.
Теория Бора блестяще объяснила экспериментально наблюдаемый линейчатый спектр водорода.
Успехи теории атома водорода были получены ценой отказа от фундаментальных положений классической механики, которая на протяжении более 200 лет остается безусловно справедливой. Поэтому большое значение имело прямое экспериментальное доказательство справедливости постулатов Бора, особенно первого – о существовании стационарных состояний. Второй постулат можно рассматривать как следствие закона сохранения энергии и гипотезы о существовании фотонов.
Немецкие физики Д. Франк и Г. Герц, изучая методом задерживающего потенциала столкновение электронов с атомами газов (1913г.), экспериментально подтвердили существование стационарных состояний и дискретность значений энергии атомов.
Несмотря на несомненный успех концепции Бора применительно к атому водорода, для которого оказалось возможным построить количественную теорию спектра, создать подобную теорию для следующего за водородом атома гелия на основе представлений Бора не удалось. Относительно атома гелия и более сложных атомов теория Бора позволила делать лишь качественные (хотя и очень важные) заключения. Представление об определенных орбитах, по которым движется электрон в атоме Бора, оказалось весьма условным. На самом деле движение электронов в атоме имеет мало общего с движением планет по орбитам.
В настоящее время с помощью квантовой механики можно ответить на многие вопросы, касающиеся строения и свойств атомов любых элементов.

5. основные положения квантовой механики:

Волновая функция и ее физический смысл.

Из содержания предыдущих двух параграфов следует, что с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, поэтому состояние частицы в квантовой механике описывают волновой функцией , которая зависит от координат и времени y(x,y,z,t). Конкретный вид y -функции определяется состоянием частицы, характером действующих на нее сил. Если силовое поле, действующее на частицу, является стационарным, т.е. не завися­щим от времени, то y -функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой – от координат:

В дальнейшем будем рассматривать только стационарные состояния. y-функция является вероятностной характеристикой состояния частицы. Чтобы пояснить это, мысленно выделим достаточно малый объем , в пределах которого значения y-функции будем считать одинаковыми. Тогда вероятность нахождения dW частицы в данном объ­еме пропорциональна ему и зависит от квадрата модуля y-функции (квадрата модуля амплитуды волн де Бройля):

Отсюда следует физический смысл волновой функции:

Квадрат модуля волновой функции имеет смысл плотности вероят­ности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z.

Интегрируя выражение (3.2) по объему, определяем вероятность нахождения частицы в этом объеме в условиях стационарного поля:

Если известно, что частица находится в пределах объема V, то инте­грал выражения (3.4), взятый по объему V, должен быть равен единице:

условие нормировки y-функции.

Чтобы волновая функция являлась объективной характеристикой со­стояния микрочастиц, она должна быть конечной, однозначной, непре­рывной , так как вероятность не может быть больше единицы, не может быть неоднозначной величиной и не может изменяться скачками. Таким образом, состояние микрочастицы полностью определяется волновой функцией. Частица может быть обнаружена в любой точке пространства, в которой волновая функция отлична от нуля.

3. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ

3.1.Волновая функция

Всякая микрочастица – это образование особого рода, сочетающее в себе свойства и частицы, и волны. Отличие микрочастицы от волны состоит в том, что она обнаруживается как неделимое целое. Например, никто не наблюдал полэлектрона. В тоже время волну можно разделить на части и затем воспринимать каждую часть в отдельности.

Отличие микрочастицы в квантовой механике от обычной микрочастицы заключается в том, что она не обладает одновременно определенными значениями координат и импульса, поэтому понятие траектории для микрочастицы утрачивает смысл.

Распределение вероятности нахождения частицы в данный момент времени в некоторой области пространства будем описывать волновой функцией (x , y , z , t ) (пси-функция). Вероятность dP того, что частица находится в элементе объема dV , пропорциональная
и элементу объемуdV :

dP =
dV .

Физический смысл имеет не сама функция
, а квадрат ее модуля – это плотность вероятности. Она определяет вероятность пребывания частицы в данной точке пространства.

Волновая функция
является основной характеристикой состояния микрообъектов (микрочастиц). С ее помощью в квантовой механике могут быть вычислены средние значения физических величин, которые характеризуют данный объект, находящийся в состоянии, описываемом волновой функцией
.

3.2. Принцип неопределенности

В классической механике состояние частицы задают координатами, импульсом, энергией и т.п. Это динамические переменные. Микрочастицу описывать такими динамическими переменными нельзя. Особенность микрочастиц состоит в том, что не для всех переменных получаются при измерениях определенные значения. Например, частица не может иметь одновременно точных значений координаты х и компоненты импульсар х . Неопределенность значенийх ир х удовлетворяет соотношению:

(3.1)

– чем меньше неопределенность координаты Δх , тем больше неопределенность импульса Δр х , и наоборот.

Соотношение (3.1) называется соотношением неопределенности Гейзенберга и было получено в 1927 г.

Величины Δх и Δр х называются канонически сопряженными. Такими же канонически сопряженными являются Δу и Δр у , и т.п.

Принцип неопределенности Гейзенберга гласит: произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка ħ.

Энергия и время тоже являются канонически сопряженными, поэтому
. Это означает, что определение энергии с точностью ΔЕ должно занять интервал времени:

Δt ~ ħ/ ΔЕ .

Определим значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Δх , расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель ее составляющая импульсар х имеет точное значение,р х = 0 (щель перпендикулярна к вектору импульса), поэтому неопределенность импульса равна нулю, Δр х = 0, зато координатах частицы является совершенно неопределенной (рис.3.1).

Вмомент прохождения частицы через щель положение меняется. Вместо полной неопределенности координатых появляется неопределенность Δх , и появляется неопределенность импульса Δр х .

Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла 2φ , гдеφ – угол, соответствующий первому дифракционному минимуму (максимумами высших порядков пренебрегаем, т.к. их интенсивность мала по сравнению с интенсивностью центрального максимума).

Таким образом, появляется неопределенность:

Δр х =р sinφ ,

но sinφ = λ / Δх – это условие первого минимума. Тогда

Δр х ~рλ/ Δх ,

Δх Δр х ~рλ = 2πħ ħ/ 2.

Соотношение неопределенностей указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Движение по траектории характеризуется определенными значениями скорости частицы и ее координат в каждый момент времени. Подставив в соотношение неопределенностей вместо р х выражение для импульса
, имеем:

чем больше масса частицы, тем меньше неопределенности ее координаты и скорости, тем с большей точностью применимы к ней понятия траектории.

Например, для микрочастицы размером 1·10 -6 м неопределенности Δх и Δ выходят за пределы точности измерения этих величин, и движение частицы неотделимо от движения по траектории.

Соотношение неопределенностей является фундаментальным положением квантовой механики. Оно, например, позволяет объяснить тот факт, что электрон не падает на ядро атома. Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона Δr и неопределенность импульса Δр удовлетворяли соотношению

Δr Δp ħ/ 2,

и значение r = 0 невозможно.

Энергия электрона в атоме будет минимальна при r = 0 и р = 0, поэтому для оценки наименьшей возможной энергии положим Δr r , Δp p . Тогда Δr Δp ħ/ 2, и для наименьшего значения неопределенности имеем:

нас интересует только порядок величин, входящих в это соотношение, поэтому множитель можно отбросить. В этом случае имеем
, отсюдар = ħ/ r . Энергия электрона в атоме водорода

(3.2)

Найдем r , при котором энергия Е минимальна. Продифференцируем (3.2) и приравняем производную к нулю:

,

численные множители в этом выражении мы отбросили. Отсюда
- радиус атома (радиус первой боровской орбиты). Для энергии имеем

Можно подумать, что с помощью микроскопа удастся определить положение частицы и тем самым ниспровергнуть принцип неопределенности. Однако микроскоп позволит определить положение частицы в лучшем случае с точностью до длины волны используемого света, т.е. Δх ≈ λ , но т.к. Δр = 0, то Δр Δх = 0 и принцип неопределенности не выполняется?! Так ли это?

Мы пользуемся светом, а свет, согласно квантовой теории, состоит из фотонов с импульсом р = k . Чтобы обнаружить частицу, на ней должен рассеяться или поглотиться хотя бы один из фотонов пучка света. Следовательно, частице будет передан импульс, по крайней мере достигающей h . Таким образом, в момент наблюдения частицы с неопределенностью координаты Δх ≈ λ неопределенность импульса должна быть Δр ≥ h .

Перемножая эти неопределенности, получаем:

принцип неопределенности выполняется.

Процесс взаимодействия прибора с изучаемым объектом называется измерением. Этот процесс протекает в пространстве и во времени. Существует важное различие между взаимодействием прибора с макро- и микрообъектами. Взаимодействие прибора с макрообъектом есть взаимодействие двух макрообъектов, которое достаточно точно описывается законами классической физики. При этом можно считать, что прибор не оказывает на измеряемый объект влияния, либо это влияние мало. При взаимодействии прибора с микрообъектами возникает иная ситуация. Процесс фиксации определенного положения микрочастицы вносит в ее импульс изменение, которое нельзя сделать равным нулю:

Δр х ≥ ħ/ Δх.

Поэтому воздействие прибора на микрочастицу нельзя считать малым и несущественным, прибор изменяет состояние микрообъекта – в результате измерения определенные классические характеристики частицы (импульс и др.) оказываются заданными лишь в рамках, ограниченных соотношением неопределенностей.

3.3.Уравнение Шредингера

В 1926 г. Шредингер получил свое знаменитое уравнение. Это основное уравнение квантовой механики, основное предположение, на котором основана вся квантовая механика. Все вытекающие из этого уравнения следствия согласуются с опытом – в этом его подтверждение.

Вероятностное (статистическое) истолкование волн де Бройля и соотношение неопределенностей указывают, что уравнение движения в квантовой механике должно быть таким, чтобы оно позволило объяснить наблюдаемые на опыте волновые свойства частиц. Положение частицы в пространстве в данный момент времени определяется в квантовой механике заданием волновой функции
(x , y , z , t ), а точнее квадратом модуля этой величины.
– это вероятность нахождения частицы в точкеx , y , z в момент времени t . Основное уравнение квантовой механики должно быть уравнением относительно функции
(x , y , z , t ). Далее, это уравнение должно быть волновым, из него должны получить свое объяснение эксперименты по дифракции микрочастиц, подтверждающие их волновую природу.

Уравнение Шредингера имеет следующий вид:

. (3.3)

где m – масса частицы, i – мнимая единица,
– оператор Лапласа,
,U – оператор потенциальной энергии частицы.

Вид Ψ-функции определяется функцией U , т.е. характером сил, действующих на частицу. Если силовое поле стационарно, то решение уравнения имеет вид:

, (3.4)

где Е – полная энергия частицы, она остается постоянной при каждого состояния, Е= const .

Уравнение (3.4) называется уравнением Шредингера для стационарных состояний. Его еще можно записать в виде:

.

Это уравнение применимо к нерелятивистским системам при условии, что распределение вероятностей не меняется во времени, т.е. когда функции ψ имеют вид стоячих волн.

Уравнение Шредингера можно получить следующим образом.

Рассмотрим одномерный случай – свободно движущуюся частицу по оси х . Ей соответствует плоская волна де Бройля:

,

но
, поэтому
. Продифференцируем это выражение поt :

.

Найдем теперь вторую производную от пси-функции по координате

,

В нерелятивистской классической механике энергия и импульс связаны соотношением:
где Е – кинетическая энергия. Частица движется свободно, ее потенциальная энергия U = 0, и полная Е=Е k . Поэтому

,

– это уравнение Шредингера для свободной частицы.

Если частица движется в силовом поле, то Е – вся энергия (и кинетическая, и потенциальная), поэтому:

,

тогда получим
, или
,

и окончательно

Это уравнение Шредингера.

Приведенные рассуждения – не вывод уравнения Шредингера, а пример того, как это уравнение можно установить. Само же уравнение Шредингера постулируется.

В выражении

левая часть обозначает оператор Гамильтона– гамильтониан – это сумма операторов
иU . Гамильтониан – это оператор энергии. Подробно об операторах физических величин будем говорить в дальнейшем. (Оператор выражает некоторое действие под функцией ψ , которая стоит под знаком оператора). С учетом сказанного имеем:

.

Физический смысл имеет не сама ψ -функция, а квадрат ее модуля, определяющий плотность вероятности нахождения частицы в данном месте пространства. Квантовая механика имеет статистический смысл. Она не позволяет определить местонахождение частицы в пространстве или траекторию, по которой движется частица. Пси-функция лишь дает вероятность, с какой частица может быть обнаружена в данной точке пространства. В связи с этим пси-функция должна удовлетворять следующим условиям:

Она должна быть однозначной, непрерывной и конечной, т.к. определяет состояние частицы;

Она должна иметь непрерывную и конечную производную;

Функция Iψ I 2 должна быть интегрируема, т.е. интеграл

должен быть конечным, так как он определяет вероятность обнаружения частицы.

Интеграл

,

Это условие нормировки. Оно означает, что вероятность того, что частица находится в какой-нибудь из точек пространства, равна единице.

Для описания корпускулярно-волновых свойств электрона в квантовой механике используют волновую функцию, которая обозначается греческой буквой пси (Т). Главные свойства волновой функции таковы:

  • в любой точке пространства с координатами х, у, z она имеет определенные знак и амплитуду: ЧДд:, у , г);
  • квадрат модуля волновой функции | ЧДх, y,z) | 2 равен вероятности нахождения частицы в единице объема, т.е. плотности вероятности.

Плотность вероятности обнаружения электрона на различных расстояниях от ядра атома изображают несколькими способами. Часто ее характеризуют числом точек в единице объема (рис. 9.1, а). Точечное изображение плотности вероятности напоминает облако. Говоря об электронном облаке, следует иметь в виду, что электрон - это частица, проявляющая одновременно и корпускулярные, и волновые

Рис. 9.1.

свойства. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность его обнаружения велика или даже максимальна.

На рис. 9.1, а штриховой линией обозначена сферическая поверхность, внутри которой вероятность обнаружения электрона составляет 90%. На рис. 9.1, б приведено контурное изображение электронной плотности в атоме водорода. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона 10%, вероятность же обнаружения электрона внутри второго от ядра контура составляет 20%, внутри третьего - 30% и т.д. На рис. 9.1, в электронное облако изображено в виде сферической поверхности, внутри которой вероятность обнаружения электрона составляет 90%.

Наконец, на рис. 9.1, г и б двумя способами показана вероятность обнаружения электрона Is на разных расстояниях г от ядра: вверху показан «разрез» этой вероятности, проходящий через ядро, а внизу - сама функция 4лг 2 |У| 2 .

Уравнение Шрёдингсра. Это фундаментальное уравнение квантовой механики было сформулировано австрийским физиком Э. Шрёдингером в 1926 г. Оно связывает полную энергию частицы Е, равную сумме потенциальной и кинетической энергий, потенциальную энергию?„, массу частицы т и волновую функцию 4*. Для одной частицы, например электрона массой т е, оно имеет следующий вид :

С математической точки зрения это уравнение с тремя неизвестными: У, Е и?„. Решить его, т.е. найти эти неизвестные, можно, если решать его совместно с двумя другими уравнениями (для нахождения трех неизвестных требуется три уравнения). В качестве таких уравнений используют уравнения для потенциальной энергии и граничных условий.

Уравнение потенциальной энергии не содержит волно- вую функцию У. Оно описывает взаимодействие заряженных частиц по закону Кулона. При взаимодействии одного электрона с ядром, имеющим заряд +z, потенциальная энергия равна

где г = У* 2 + у 2 + z 2 .

Это случай так называемого одноэлектронного атома. В более сложных системах, когда заряженных частиц много, уравнение потенциальной энергии состоит из суммы таких же кулоновских членов.

Уравнением граничных условий является выражение

Оно означает, что волновая функция электрона стремится к нулю на больших расстояниях от ядра атома.

Решение уравнения Шрёдингера позволяет найти волновую функцию электрона? = (х, у , z) как функцию координат. Это распределение называется орбиталью.

Орбиталь - это заданная в пространстве волновая функция.

Система уравнений, включающая уравнения Шрёдингера, потенциальной энергии и граничных условий, имеет не одно, а много решений. Каждое из решений одновременно включает 4 х = (х, у , г) и Е , т.е. описывает электронное облако и соответствующую ему полную энергию. Каждое из решений определяется квантовыми числами.

Физический смысл квантовых чисел можно понять, рассмотрев колебания струны, в результате которых образуется стоячая волна (рис. 9.2).

Длина стоячей волны X и длина струны b связаны уравнением

Длина стоячей волны может иметь лишь строго определенные значения, отвечающие числу п, которое принимает только целочисленные неотрицательные значения 1,2,3 и т.д. Как очевидно из рис. 9.2, число максимумов амплитуды колебаний, т.е. форма стоячей волны, однозначно определяется значением п.

Поскольку электронная волна в атоме представляет собой более сложный процесс, чем стоячая волна струны, значения волновой функции электрона определяются не одним, а че-


Рис. 9.2.

тырьмя числами, которые называются квантовыми числами и обозначаются буквами п, /, т и s. Данному набору квантовых чисел п, /, т одновременно отвечают определенная волновая функция Ч"лДл, и полная энергия E„j. Квантовое число т при Е не указывают, так как в отсутствие внешнего поля энергия электрона от т не зависит. Квантовое число s не влияет ни на 4* п хт, ни на E n j.

  • , ~ elxv dlxv 62*p
  • Символы --, --- означают вторые частные производные от fir1 дуг 8z2 Ч"-функции. Это производные от первых производных. Смысл первой производной совпадает с тангенсом угла наклона функции Ч" от аргумента х, уили z на графиках? = j(x), Т =/2(у), Ч" =/:!(z).

· Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая запутанность · Смешанное состояние · Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

См. также: Портал:Физика

Волнова́я фу́нкция , или пси-фу́нкция \psi - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

\left|\psi(t)\right\rangle=\int \Psi(x,t)\left|x\right\rangle dx

где \left|x\right\rangle = \left|x_1, x_2, \ldots , x_n\right\rangle - координатный базисный вектор, а \Psi(x,t)= \langle x\left|\psi(t)\right\rangle - волновая функция в координатном представлении .

Нормированность волновой функции

Волновая функция \Psi по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

{\int\limits_{V}{\Psi^\ast\Psi}dV}=1

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями \Psi_1 и \Psi_2, то она может пребывать и в состоянии, описываемом волновой функцией

\Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 при любых комплексных c_1 и c_2.

Очевидно, что можно говорить и о суперпозиции (наложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 + \ldots + {c}_N{\Psi}_N=\sum_{n=1}^{N} {c}_n{\Psi}_n.

В таком состоянии квадрат модуля коэффициента {c}_n определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией {\Psi}_n.

Поэтому для нормированных волновых функций \sum_{n=1}^{N}\left|c_{n}\right|^2=1.

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

  1. Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл (1) станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией, т.е принадлежала гильбертовому пространству L^2. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.
  2. Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.
  3. Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции \frac{\partial \Psi}{\partial x}, \frac{\partial \Psi}{\partial y}, \frac{\partial \Psi}{\partial z}. Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода .

Волновая функция в различных представлениях

Набор координат, которые выступают в роли аргументов функции , представляет собой полную систему коммутирующих наблюдаемых . В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении , то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении , то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс .

Матричная и векторная формулировки

Волновая функция одного и того же состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

Философский смысл волновой функции

Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать оператором типа матрицы плотности . То есть, некая обобщённая функция от двух аргументов должна описать корреляцию нахождения частицы в двух точках.

Следует понимать, что проблема, которую решает квантовая механика, - это проблема самой сути научного метода познания мира.

См. также

Напишите отзыв о статье "Волновая функция"

Литература

  • Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. Ред. кол. Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. - М.: Сов. Энциклопедия, 1984. - 944 с.

Ссылки

  • Квантовая механика - статья из Большой советской энциклопедии .

Как известно, основная задача классической механики заключается в определении положения макрообъекта в любой момент времени. Для этого составляется система уравнений, решение которой позволяет выяснить зависимость радиус-вектора от времени t . В классической механике состояние частицы при ее движении в каждый момент задается двумя величинами: радиус-вектором и импульсом . Таким образом, классическое описание движения частицы правомерно, если оно происходит в области с характерным размером, много большим, чем длина волны де Бройля . В противном случае (например, вблизи ядра атома) следует принимать во внимание волновые свойства микрочастиц. Об ограниченной применимости классического описания микрообъектов, имеющих волновые свойства, и говорят соотношения неопределенностей.

С учетом наличия у микрочастицы волновых свойств ее состояние в квантовой механике задается с помощью некоторой функции координат и времени (x, y, z, t ) , называемой волновой или - функцией . В квантовой физике вводится комплексная функция, описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности).

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения решения в частных физических задачах. Таким уравнением является уравнение Шрёдингера .

Теория, описывающая движение малых частиц с учетом их волновых свойств, называется квантовой , или волновой механикой . Многие положения этой теории кажутся странными и непривычными с точки зрения представлений, сложившихся при изучении классической физики. Следует всегда помнить, что критерием правильности теории, какой бы странной она не казалась поначалу, является совпадение ее следствий с опытными данными. Квантовая же механика в своей области (строение и свойства атомов, молекул и отчасти атомных ядер) прекрасно подтверждается опытом.

Волновая функция описывает состояние частицы во всех точках пространства и для любого момента времени. Для понимания физического смысла волновой функции обратимся к опытам по дифракции электронов. (Опыты Томсона и Тартаковского по пропусканию электронов через тонкую металлическую фольгу). Оказывается, что четкие дифракционные картины обнаруживаются даже в том случае, если направлять на мишень одиночные электроны, т.е. когда каждый последующий электрон испускается после того, как предыдущий достигнет экрана. После достаточной продолжительной бомбардировки картина на экране будет в точности соответствовать той, которая получается при одновременном направлении на мишень большого числа электронов.


Из этого можно сделать вывод о том, движение любой микрочастицы по отдельности, в том числе и место ее обнаружения, подчиняется статистическим (вероятностным) закономерностям, и при направлении на мишень одиночного электрона точку на экране, в которой он будет зафиксирован, заранее со 100%-й уверенностью предсказать невозможно.

В дифракционных опытах Томсона на фотопластинке образовывалась система темных концентрических колец. Можно с уверенностью сказать, что вероятность обнаружения (попадания) каждого испущенного электрона в различных местах фотопластинки неодинакова. В области темных концентрических колец эта вероятность больше, чем в остальных местах экрана. Распределение электронов по всему экрану оказывается таким же, каким является распределение интенсивности электромагнитной волны в аналогичном дифракционном опыте: там, где интенсивность рентгеновской волны велика, частиц в опыте Томсона регистрируется много, а там, где интенсивность мала - частицы почти не появляются.

С волновой точки зрения наличие максимума числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волны де Бройля. Это послужило основанием для статистического (вероятностного) истолкования волны де Бройля . Волновая функция как раз и является математическим выражением, которое позволяет описать распространение какой-либо волны в пространстве. В частности, вероятность найти частицу в данной области пространства пропорциональна квадрату амплитуды волны, связанной с частицей.

Для одномерного движения (например, в направлении оси Ox ) вероятность dP обнаружения частицы в промежутке между точками x и x + dx в момент времени t равна

dP = , (6.1)

где | (x,t )| 2 = (x,t ) *(x,t ) - квадрат модуля волновой функции (значок * обозначает комплексное сопряжение).

В общем случае при движении частицы в трехмерном пространстве вероятность dP обнаружения частицы в точке с координатами (x,y,z) в пределах бесконечно малого объема dV задается аналогичным уравнением: dP = | (x,y,z,t) | 2 dV . Впервые вероятностную интерпретацию волновой функции дал Борн в 1926г.

Вероятность обнаружить частицу во всем бесконечном пространстве равна единице. Отсюда следует условие нормировки волновой функции:

. (6.2)

Величина является плотностью вероятности , или, что то же самое, плотностью распределение координат частиц. В простейшем случае одномерного движения частицы вдоль оси ОX среднее значение ее координаты вычисляется следующим соотношением:

<x(t )>= . (6.3)

Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной), непрерывной (вероятность не может меняться скачком) и гладкой (без изломов) во всем пространстве.

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Ψ1, Ψ2 , Ψn , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:

, (6.4)

где Cn (n = 1, 2, 3) - произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовуютеорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Ψ является основной характеристикой состояниямикрообъектов.

Например, среднее расстояние <r > электрона отядра вычисляется по формуле:

,

где вычисления проводятся, как и в случае (6.3). Таким образом, точно предсказать в дифракционных опытах, в каком месте экрана будет зафиксирован тот или иной электрон, невозможно, даже заранее зная его волновую функцию. Можно лишь с определенной вероятностью предположить, что электрон будет зафиксирован в определенном месте. В этом отличие поведения квантовых объектов от классических. В классической механике при описании движения макротел мы со 100%-й вероятностью знали заранее, в каком месте пространства будет находиться материальная точка (например, космическая станция) в любой момент времени.

Де Бройль использовал представление о фазовых волнах (волнах вещества или волнах де Бройля) для наглядного толкования правила квантования орбит электрона в атоме по Бору в случае одноэлектронного атома. Он рассмотрел фазовую волну, бегущую вокруг ядра по круговой орбите электрона. Если на длине орбиты укладывается целое число этих волн , то волна при обходе вокруг ядра будет всякий раз возвращаться в исходную точку с той же фазой и амплитудой. В этом случае орбита становится стационарной и не возникает излучения. Де Бройль записал условие стационарности орбиты или правило квантования в виде:

где R - радиус круговой орбиты, п - целое число (главное квантовое число). Полагая здесь и учитывая, что L = RP есть момент импульса электрона, получим:

что совпадает с правилом квантования орбит электрона в атоме водорода по Бору.

В дальнейшем условие (6.5) удалось обобщить и на случай эллиптических орбит, когда длина волны меняется вдоль траектории электрона. Однако, в рассуждениях де Бройля предполагалось, что волна распространяется не в пространстве, а вдоль линии - вдоль стационарной орбиты электрона. Этим приближением можно пользоваться в предельном случае, когда длина волны пренебрежимо мала по сравнению с радиусом орбиты электрона.