Болезни Военный билет Призыв

Виды выделения метана. Механизм образования газа из органического сырья. Состав биогазовой смеси

Изобретение относится к способу выделения метана из газовых смесей путем контактирования смеси с водным раствором циклического простого эфира концентрацией не выше 20% мол. при температуре не выше 20°C и давлении до 3,0 МПа с получением конденсированной фазы, содержащей смешанные гидраты метана и циклического простого эфира, и газовой фазы, отделения газовой фазы, извлечения из конденсированной фазы метана с последующей рециркуляцией водного раствора циклического простого эфира на выделение. Предлагаемый способ позволяет эффективно выделять метан из газовых смесей эффективным образом за счет упрощения технологии процесса, в частности снижения давления разделения. 1 з.п. ф-лы, 8 табл., 8 пр., 1 ил.

Изобретение относится к химической, нефтяной и газовой промышленности и может быть использовано в процессах разделения и очистки углеводородных газовых смесей, а также для утилизации шахтного метана, выделяющегося при отработке газоносных пластов полезных ископаемых.

Известен способ выделения метана из газовых смесей - подготовки углеводородного газа (RU 2460759, 2012), включающий ступенчатую сепарацию, охлаждение газа между ступенями сепарации, отделение углеводородного конденсата начальных ступеней сепарации, охлаждение его конденсатом последней низкотемпературной ступени сепарации и использованием в качестве абсорбента. Недостатками данного способа являются многоступенчатость процесса выделения метана, повышенные энергозатраты, связанные с поддержанием низких температур, необходимость предварительной осушки газовой смеси и использования термодинамического ингибитора - триэтиленгликоля для предотвращения образования гидратов.

Известен способ подготовки газа для беструбопроводного транспортирования (RU 2277121, 2006), включающий предварительную очистку газа от тяжелых углеводородов, получение газовых гидратов путем смешения очищаемого газа с водой в реакторе, непрерывного охлаждения и поддержания требуемых температур полученной смеси с одновременным поддержанием давления не ниже равновесного, необходимого для гидратообразования, подачу природного газа в реактор получения гидрата ведут из магистрали транспорта газа высокого давления, а непрерывное охлаждение осуществляют за счет пониженной температуры газа, прошедшего редуцирование, который после теплообмена возвращают в магистраль низкого давления. Главным недостатком данного метода является необходимость поддержания в реакторе повышенных давлений ≥3 МПа для протекания гидратообразования. В связи с этим данный способ неприемлем для извлечения метана из низконапорных газов.

Известен способ очистки природного газа (RU 2288774, 2006). Способ очистки природного газа от примесей включает контактирование в реакторе очищаемого природного газа с водной средой при начальных термобарических условиях, характеризующихся давлением, обеспечивающим образование гидратов основного компонента природного газа - метана и смешанных гидратов природного газа, обогащенных примесными углеводородными компонентами. После выпадения первых гидратов снижают начальное давление в реакторе до значения, ниже равновесного давления гидратообразования метана, но выше равновесного давления гидратообразования для очищаемого природного газа. Недостатками данного метода являются технические сложности, связанные с созданием в реакторе повышенных давлений для инциирования процесса образования гидратов, а также невысокая селективность процесса очистки, связанная с образованием смешанных гидратов, в состав которых входят не только примесные компоненты (C 2 H 6 , C 3 H 8 , i-C 4 H 10 n-C 4 H 10), но и целевой компонент - CH 4 .

Наиболее близким к заявляемому способу является способ извлечения метана из метановоздушной смеси (RU 2302401, 2007), при котором компримированную метановоздушную смесь пропускают через водный раствор гидрохинона при давлении не менее 3 МПа и температуре не выше +2°C, где отделяют воздух с образованием клатратов метана с гидрохиноном, которые затем нагревают, после чего выделившийся из них метан направляют на утилизацию, а водный раствор гидрохинона повторно используют в цикле. Недостатком известного способа является необходимость поддержания повышенного давления. Таким образом, данный способ недостаточно эффективен.

Задачей изобретения является повышение эффективности способа выделения метана из газовых смесей.

Поставленная задача решается описываемым способом выделения метана из газовых смесей путем контактирования смеси с водным раствором циклического простого эфира (ЦПЭ) концентрацией не выше 20% мол. при температуре не выше 20°C и давлении до 3,0 МПа с получением конденсированной фазы, содержащей смешанные гидраты метана и циклического простого эфира, и газовой фазы, отделения газовой фазы, извлечения из конденсированной фазы метана с последующей рециркуляцией водного раствора циклического простого эфира на выделение.

Предпочтительно в качестве циклического простого эфира используют тетрагидрофуран, фуран, оксетан (триметиленоксид), 1,3-диоксан, 1,4-диоксан, пиран, тетрагидропиран, 1,3,5-триоксан.

Достигаемый технический результат заключается в повышении эффективности способа за счет упрощения технологии процесса, в частности снижения давления разделения.

Способ заключается в следующем.

Разделение газовой смеси происходит в результате процесса гидратоообразования. При этом используют водный раствор ЦПЭ (например, тетрагидрофуран, фуран, оксетан, 1,3-диоксан, 1,4-диоксан, пиран, тетрагидропиран, 1,3,5-триоксан), являющихся термодинамическими промоторами, которые участвуют в образовании смешанных гидратов и, которые в отличие от термодинамических ингибиторов смещают равновесные условия образования гидратов в сторону более низких давлений и более высоких температур. В присутствии указанных соединений наблюдается образование смешанных гидратов с кристаллической структурой КС-II. Элементарная ячейка такой структуры состоит из малых D-полостей и больших H-полостей молекулярного размера. Максимальной степени заполнения полостей в такой структуре отвечает формула гидрата 8X·16Y·136H 2 O (X - число молекул-гидратообразователей в больших полостях, Y - число молекул гидратообразователей в малых полостях). При этом малые полости занимают молекулы газов с максимальным размером молекулы от 0,39 до 0,55 нм (CH 4). Большие полости заполняются молекулами термодинамических промоторов, размер которых находится в диапазоне от 0,58 до 0,72 нм. При их недостаточном содержании в водном растворе большие полости могут быть заполнены молекулами газов (C 2 H 6 , C 3 H 8 , i-C 4 H 10). При мольной доле в водном растворе вспомогательных веществ ≥1/18=0,0556 H-полости практически полностью заняты последними. Поэтому, несмотря на то, что вспомогательные вещества сдвигают равновесие в сторону более мягких условий (низкие давления, высокие температуры), в то же самое время они являются селективными ингибиторами гидратообразования по отношению к газам с размером молекул от 0,58 до 0,72 нм, в частности к углеводородам C 2 -C 4 . Таким образом, при образовании гидратов в присутствии указанных кислородсодержащих соединений в состав смешанного гидрата входят исключительно молекулы метана и молекулы вспомогательных веществ.

Способ осуществляется следующим образом.

В реактор, снабженный охлаждающей рубашкой, датчиком давления, температуры, и перемешивающим устройством (например, лопастная мешалка, малорасходный компрессор, система распыления жидкости в газе или газа в жидкости) заливают водный раствор циклического простого эфира (ЦПЭ). В предпочтительном варианте реализации способа концентрация ЦПЭ в растворе составляет 5,6% мол. В зависимости от состава исходного газа и требований к конечному продукту концентрация вспомогательного вещества в растворе составляет до 20% мол. Далее производят охлаждение реактора до температуры не выше 20°C, затем в него подают разделяемую газовую смесь, содержащую гидратообразующие компоненты, например газообразные углеводороды C 1 -C 4 до давления не более 3,0 МПа. После выполнения указанных операций осуществляют перемешивание газо-жидкостной среды помощью лопатной мешалки или с помощью барботирования разделяемого газа через водный раствор. Для интенсификации массообменных процессов и увеличения площади межфазной поверхности может также использоваться распыление водного раствора вспомогательного вещества в газовую фазу через форсунку. В этом случае последовательность операций изменяется: сначала в реактор подается газовая смесь, затем происходит распыление жидкой фазы. Также может использоваться комбинация указанных вариантов перемешивания.

При заданной температуре начинается процесс образования смешанного гидрата кислородсодержащего соединения и компонента газовой фазы - метана. Со временем концентрация CH 4 в газовой фазе уменьшается. Степень разделения газовой смеси контролируют с помощью газовой хроматографии или другого физико-химического метода анализа. При достижении необходимой степени разделения останавливают процесс гидратообразования, отделяют газовую фазу и производят извлечение метана из конденсированной фазы, содержащей смешанные гидраты метана и ЦПЭ. Газовую смесь после гидратообразования подают в другую емкость и при необходимости подвергают повторному процессу гидратообразования.

Конденсированная фаза в зависимости от условий процесса представляет собой либо твердую фазу - смешанный гидрат метана и ЦПЭ, либо жидкую фазу, содержащую смешанные гидраты метана и ЦПЭ во взвешенном состоянии в растворе ЦПЭ. Извлечение метана из конденсированной фазы в случае, когда она представляет собой только смешанные гидраты или взвесь смешанного гидрата в растворе ЦПЭ проводят путем ее нагрева до температуры выше 20°C. Перед разложением смешанного гидрата повышением температуры конденсированная фаза, представляющая собой взвесь смешанного гидрата в растворе ТГФ может быть подвергнута предварительной сепарации (без разложения гидрата) с получением жидкой фазы (водный раствор ТГФ) и твердой фазы (смешанный гидрат метана и ТГФ). В этом случае последующему нагреву подвергают только твердую гидратную фазу.

При разложении гидрата за счет нагрева в газовую фазу происходит выделение целевого компонента - газообразного метана, который после полного разложения гидрата перемещают из реактора в отдельную емкость. Образовавшийся в результате разложения гидрата водный раствор ЦПЭ используют повторно. Кроме периодического режима, описанного выше, процесс разделения может быть реализован в непрерывном режиме, который предполагает непрерывную подачу в реактор разделяемого газа и извлечение из реактора образовавшегося гидрата.

Процесс разделения газовых смесей в присутствии ЦПЭ может протекать при умеренных температурах 0-20°C и давлениях вплоть до атмосферного поэтому становится возможным использование данного процесса для одностадийного извлечения метана из различных углеводородных газовых смесей, утилизации низконапорных газов, выделения метана из его смесей с азотом, воздухом.

На фигуре показаны линии трехфазного равновесия газ-жидкость-гидрат в системе газовая смесь 78,90% CH 4 , 12,30% C 2 H 6 , 7,44% C 3 H 8 , 0,93% i-C 4 H 10 , 0,46% н-C 4 H 10 - вода - тетрагидрофуран (ТГФ) при различной концентрации эфира.

Из данной фигуры следует, что использование ТГФ позволяет сместить трехфазное равновесие газ-жидкость-гидрат в сторону меньших давлений.

В вакуумированный реактор, имеющий внутренний объем 400 см 3 , подают 200 см 3 водного раствора ТГФ концентрацией 5,6% мол. Реактор охлаждают и термостатируют при температуре 1°C и подают в него газовую смесь вышеуказанного состава до начального давления 0,121 МПа. Содержимое реактора перемешивают путем его отклонения на угол ±45° со скоростью 10 мин -1 , при этом происходит образование смешанного гидрата, что приводит к изменению состава газовой фазы.

В результате гидратообразования была получена газовая фаза, обедненная метаном и конденсированная фаза, содержащая смешанный гидрат метана и ТГФ. Давление после гидратообразования в реакторе составляет 0,050 МПа. Конденсированную фазу отделяют от газовой и нагревают до температуры 21°C. При нагревании она разлагается с образованием газообразного метана и водного раствора ТГФ. Полученный газообразный метан помещают в другую емкость. Водный раствор ТГФ рециркулируют в процесс выделения метана.

Результаты хроматографических анализов состава газовой фазы приведены в таблице 1.

Таблица 1
Состав
CH 4 C 2 H 6 C 3 H 8 i-C 4 H 10 n-C 4 H 10
Исходный 78,90 12,30 7,44 0,93 0,46
Конечный 49,25 29,54 17,87 2,23 1,10

Как видно из таблицы 1, газовая фаза в результате разделения обогащается компонентами C 2 -C 4 . В результате проведения описываемого способа образуется смешанный газовый гидрат, в состав которого входят только ТГФ и метан. Степень извлечения метана, рассчитанная на основании экспериментальных данных составляет 74%.

Способ проводят по примеру 1 за исключением того, что начальное давление в реакторе составляет 0,559 МПа, реактор охлаждают и термостатируют при температуре 3°C. Давление в реакторе после гидратообразования составляет 0,177 МПа. Результаты хроматографического анализа состава газовой фазы до и после гидратообразования приведены в таблице 2.

Таблица 2
Состав газовой фазы до и после гидратообразования.
Состав Концентрация компонентов в газовой фазе, % мол.
CH 4 C 2 H 6 C 3 H 8 i-C 4 H 10 n-C 4 H 10
Исходный 78,90 12,30 7,44 0,93 0,46
Конечный 32,67 39,19 23,71 2,96 1,47

Степень извлечения метана, рассчитанная на основании экспериментальных данных, составляет 87%.

Способ проводят по примеру 1 за исключением того, что используют 10,0% мол. водный раствор тетрагидрофурана, начальное давление в реакторе составляет 0,3 МПа, реактор охлаждают и термостатируют при температуре 3°C. Давление в реакторе после гидратообразования составляет 0,120 МПа. Результаты хроматографических анализов состава газовой фазы приведены в таблице 3.

Таблица 3
Состав газовой фазы до и после гидратообразования.
Состав Концентрация компонентов в газовой фазе, % мол.
CH 4 C 2 H 6 C 3 H 8 i-C 4 H 10 n-C 4 H 10
Исходный 78,90 12,30 7,44 0,93 0,46
Конечный 47,25 30,71 18,57 2,32 1,15

Степень извлечения метана, рассчитанная на основании экспериментальных данных, составляет 76%.

Способ проводят по примеру 1 за исключением того, что используют 15% мол. водный раствор тетрагидрофурана, начальное давление в реакторе составляет 1,0 МПа, реактор охлаждают и термостатируют при температуре 3°C. Давление в реакторе после гидратообразования составляет 0,357 МПа. Результаты хроматографических анализов состава газовой фазы приведены в таблице 4.

Таблица 4
Состав газовой фазы до и после гидратообразования.
Состав Концентрация компонентов в газовой фазе, % мол.
CH 4 C 2 H 6 C 3 H 8 i-C 4 H 10 n-C 4 H 10
Исходный 78,90 12,30 7,44 0,93 0,46
Конечный 40,18 34,82 21,06 2,63 1,30

Степень извлечения метана, рассчитанная на основании экспериментальных данных, составляет 82%.

Способ проводят по примеру 1 за исключением того, что используют 5,6% мол. водный раствор тетрагидропирана, начальное давление в реакторе составляет 1,0 МПа, температура термостатирования составляет 3°C. Давление в реакторе после гидратообразования составляет 0,460 МПа. Результаты хроматографических анализов состава газовой фазы приведены в таблице 5.

Таблица 5
Состав газовой фазы до и после гидратообразования.
Состав Концентрация компонентов в газовой фазе, % мол.
CH 4 C 2 H 6 C 3 H 8 i-C 4 H 10 n-C 4 H 10
Исходный 78,90 12,30 7,44 0,93 0,46
Конечный 53,64 26,99 16,32 2,04 1,01

Степень извлечения метана, рассчитанная на основании экспериментальных данных, составляет 69%.

Способ проводят по примеру 1 за исключением того, что используют 5,6% мол. водный раствор 1,3,5-триоксана, начальное давление в реакторе составляет 1,5 МПа, температура термостатирования составляет 3°C. Давление в реакторе после гидратообразования составляет 0,717 МПа. Результаты хроматографических анализов состава газовой фазы приведены в таблице 6.

Таблица 6
Состав газовой фазы до и после гидратообразования.
Состав Концентрация компонентов в газовой фазе, % мол.
CH 4 C 2 H 6 C 3 H 8 i-C 4 H 10 n-C 4 H 10
Исходный 78,90 12,30 7,44 0,93 0,46
Конечный 55,19 26,08 15,78 1,97 0,98

Степень извлечения метана, рассчитанная на основании экспериментальных данных, составляет 67%.

Способ проводят по примеру 1 за исключением того, что используют 15% мол. водный раствор тетрагидрофурана, начальное давление в реакторе составляет 1,0 МПа, реактор охлаждают и термостатируют при температуре 5°C. Давление в реакторе после гидратообразования составляет 0,397 МПа. Результаты хроматографических анализов состава газовой фазы приведены в таблице 7.

Таблица 7
Состав газовой фазы до и после гидратообразования.
Состав Концентрация компонентов в газовой фазе, % мол.
CH 4 C 2 H 6 C 3 H 8 i-C 4 H 10 n-C 4 H 10
Исходный 78,90 12,30 7,44 0,93 0,46
Конечный 46,19 31,32 18,95 2,37 1,17

Степень извлечения метана, рассчитанная на основании экспериментальных данных, составляет 77%.

Разделение проводят так же, как и в примере 1, за исключением того, что в качестве исходной используют газовую смесь состава 90,01% N 2 + 9,99% CH 4 , начальное давление в реакторе составляет 0,12 МПа, температура термостатирования составляет 1°C. Давление в реакторе после гидратообразования составляет 0,11 МПа. Результаты хроматографического анализа состава газовой фазы до и после гидратообразования приведены в таблице 8.

Степень извлечения метана, рассчитанная на основании экспериментальных данных, составляет 80%.

Использование в описываемом способе других ЦПЭ приводит к аналогичным результатам.

Проведение процесса в условиях, выходящих за заявленные пределы, не приводят к желаемым результатам. Так, концентрация ЦПЭ выше 20% является неэффективной вследствие неоправданно высокого расхода ЦПЭ, увеличение температуры контактирования выше 20°C приводит к превышению необходимого давления, при котором происходит процесс гидратообразования.

Таким образом, способ согласно изобретению позволяет выделять метан из различных газовых смесей при значительно меньшем давлении и высокой степени его извлечения.

Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

Поэтому в нашем материале речь пойдет о технологии получения биогаза, также мы расскажем о том, как соорудить биоэнергетическую установку.

Механизм образования газа из органического сырья

Биогаз – это летучее вещество без цвета и какого-либо запаха, в котором содержится до 70% метана. По своим качественным показателям он приближается к традиционному виду топлива – природному газу. Отличается хорошей теплотворной способностью, 1м 3 биогаза выделяет столько тепла, сколько получается при сгорании полутора килограмм угля.

Образованию биогаза мы обязаны анаэробным бактериям, которые активно трудятся над разложением органического сырья, в качестве которого используются навоз сельскохозяйственных животных, птичий помет, отходы любых растений.

В самостоятельном производстве биогаза может использоваться птичий помет и продукты жизнедеятельности мелкого и крупного домашнего скота. Сырье может применяться в чистом виде и в форме смеси с включением травы, листвы, старой бумаги

Для активизации процесса необходимо создать благоприятные условия для жизнедеятельности бактерий. Они должны быть схожи с теми, в которых микроорганизмы развиваются в естественном резервуаре – в желудке животных, где тепло и отсутствует кислород.

Собственно, это и есть два основных условия, способствующих чудесному превращению гниющей навозной массы в экологически чистое топливо и ценные удобрения.

Для получения биогаза нужен герметичный реактор без доступа воздуха, где будет происходить процесс брожения навоза и разложения его на составляющие:

Образовавшиеся газы поднимаются кверху емкости, откуда их затем выкачивают, а вниз оседает остаточный продукт – высококачественное органическое удобрение, сохранившее в результате обработки все ценные вещества, имеющиеся в навозе – азот и фосфор, и потерявшее значительную часть патогенных микроорганизмов.

Реактор для получения биогаза должен иметь полностью герметичную конструкцию, в которой отсутствует кислород, в противном случае процесс разложения навоза будет проходить крайне медленно

Второе важное условие для эффективного разложения навоза и образования биогаза – соблюдение температурного режима. Бактерии, принимающие участие в процессе, активизируются при температуре от +30 градусов.

Причем в навозе содержится два вида бактерий:

  • мезофильные. Их жизнедеятельность происходит при температуре +30 – +40 градусов;
  • термофильные. Для их размножения необходимо соблюсти температурный режим +50 (+60) градусов.

Время переработки сырья в установках первого типа зависит от состава смеси и составляет от 12 до 30 суток. При этом 1 литр полезной площади реактора дает 2 л биотоплива. При использовании установок второго типа время выработки конечного продукта сокращается до трех дней, а количество биогаза возрастает до 4,5 л.

Эффективность термофильных установок видна невооруженным глазом, однако и цена их обслуживания очень высока, поэтому прежде чем выбрать тот или иной способ получения биогаза, необходимо очень тщательно все просчитать

Несмотря на то, что эффективность термофильных установок в десятки раз выше, применяются они гораздо реже, поскольку поддержание высоких температур в реакторе связано с большими расходами.

Обслуживание и содержание установок мезофильного типа дешевле, поэтому большинство фермерских хозяйств для получения биогаза используют именно их.

Биогаз по критериям энергетического потенциала немногим уступает привычному газовому топливу. Однако в его составе есть сернокислые испарения, наличие которых следует учесть при выборе материалов для сооружения установки

Расчеты эффективности применения биогаза

Оценить все преимущества использования альтернативного биотоплива помогут несложные расчеты. Одна корова весом 500 кг производит в сутки примерно 35-40 кг навоза. Этого количества хватит для получения около 1.5 м 3 биогаза, из которого в свою очередь можно выработать 3 кВт/ч электроэнергии.

Используя данные из таблицы, нетрудно рассчитать, сколько м 3 биогаза можно получить на выходе в соответствии с имеющимся в фермерском хозяйстве поголовьем скота

Для получения биотоплива можно использовать как один вид органического сырья, так и смеси из нескольких компонентов, имеющих влажность 85-90%. Важно, чтобы они не содержали посторонние химические примеси, отрицательно влияющие на процесс переработки.

Самый простой рецепт смеси придумал еще в 2000 году один русский мужик из Липецкой области, который построил своими руками простейшую установку для получения биогаза. Он смешивал 1500 кг коровьего навоза с 3500 кг отходов различных растений, добавлял воду (примерно 65% от веса всех ингредиентов) и разогревал смесь до 35 градусов.

Через две недели бесплатное топливо готово. Эта небольшая установка вырабатывала 40 м 3 газа в день, что вполне хватало для обогрева дома и хозпостроек в течение полугода.

Варианты установок для получения биотоплива

После проведения расчетов необходимо определиться, как изготовить установку, чтобы получить биогаз в соответствии с потребностями своего хозяйства. Если поголовье скота небольшое, то подойдет простейший вариант, который нетрудно изготовить из подручных средств своими руками.

Крупным фермерским хозяйствам, у которых есть постоянный источник большого количества сырья, целесообразно построить промышленную автоматизированную биогазовую систему. В этом случае вряд ли получится обойтись без привлечения специалистов, которые разработают проект и смонтируют установку на профессиональном уровне.

На схеме наглядно показано, как работает промышленный автоматизированный комплекс по получению биогаза. Строительство таких масштабов можно организовать сразу нескольким фермерским хозяйствам, расположенным поблизости

Сегодня существуют десятки компаний, которые могут предложить множество вариантов: от готовых решений, до разработки индивидуального проекта. Для удешевления строительства можно скооперироваться с соседними хозяйствами (если такие имеются поблизости) и построить одну на всех установку для получения биогаза.

Следует учесть, что для постройки даже небольшой установки необходимо оформить соответствующие документы, сделать технологическую схему, план размещения оборудования и вентиляции (если оборудование устанавливается в помещении), пройти процедуры согласования с СЭС, пожарной и газовой инспекцией.

Мини-завод по производству газа на покрытие нужд небольшого частного хозяйства можно сделать собственноручно, ориентируясь на конструкцию и специфику устройства установок, выпускаемых в промышленном масштабе.

Конструкции установок для переработки навоза и растительной органики в биогаз не отличаются сложностью. Выпущенный промышленностью оригинал вполне подойдет в качестве шаблона для сооружения собственного мини-завода

Самостоятельным мастерам, решившим заняться сооружением собственной установки, надо запастись емкостью для воды, водопроводными или канализационными пластиковыми трубами, угловыми отводами, уплотнителями и баллоном для хранения полученного в установке газа.

Галерея изображений

Особенности биогазовой системы

Полноценная биогазовая установка представляет собой сложную систему, состоящую из:

  1. Биореактора, где протекает процесс разложения навоза;
  2. Автоматизированной системы подачи органических отходов;
  3. Устройства для перемешивания биомассы;
  4. Оборудования для поддержания оптимального температурного режима;
  5. Газгольдера – емкости для хранения газа;
  6. Приемника отработанных твердых отходов.

Все вышеперечисленные элементы устанавливаются в промышленные установки, работающие в автоматическом режиме. Бытовые реакторы, как правило, имеют более упрощенную конструкцию.

На схеме представлены основные составляющие автоматизированной биогазовой системы. Объем реактора зависит от суточного поступления органического сырья. Для полноценного функционирования установки реактор должен быть заполнен на две трети объема

Принцип работы установки

Основным элементом системы является биореактор. Существует несколько вариантов его исполнения, главное – обеспечить герметичность конструкции и исключить попадание кислорода. Он может быть выполнен в виде металлической емкости различной формы (чаще цилиндрической), расположенной на поверхности. Нередко для этих целей используются 50-ти кубовые пустые топливные цистерны.

Можно приобрести готовые емкости разборной конструкции. Их преимущество – возможность быстрой разборки, и при необходимости – перевозки в другое место. Промышленные поверхностные установки целесообразно применять в крупных хозяйствах, где есть постоянный приток большого количества органического сырья.

Для небольших подворий больше подходит вариант подземного размещения резервуара. Поземный бункер строится из кирпича или бетона. Можно закопать в землю готовые емкости, например, бочки из металла, нержавеющей стали или ПВХ. Возможно также их поверхностное размещение на улице или в специально отведенном помещении с хорошей вентиляцией.

Для изготовления установки по производству биогаза можно приобрести готовые емкости из ПВХ и установить их в помещении, оборудованном системой вентиляции

Независимо от того, где и как размещается реактор, он снабжается бункером для загрузки навоза. Прежде чем загрузить сырье, оно должно пройти предварительную подготовку: его измельчают на фракции не больше 0,7 мм и разбавляют водой. В идеале влажность субстрата должна быть около 90%.

Автоматизированные установки промышленного типа оснащаются системой подачи сырья, включающей приемник, в котором смесь доводится до необходимого увлажнения, трубопровод для подачи воды и насосную установку для перекачки массы в биореактор.

В домашних установках для подготовки субстрата используются отдельные емкости, где отходы измельчаются и перемешиваются с водой. Затем масса загружается в приемный отсек. В реакторах, расположенных под землей, бункер для приема субстрата выводится наружу, подготовленная смесь самотеком по трубопроводу поступает в камеру для брожения.

Если реактор размещен на земле или в помещении, входная труба с приемным устройством могут располагаться в нижней боковой части емкости. Возможно также трубу вывести в верхнюю часть, а на ее горловину надеть раструб. В этом случае биомассу придется подавать при помощи насоса.

В биореакторе также необходимо предусмотреть выходное отверстие, которое делают практически на дне емкости с противоположной стороны от входного бункера. При подземном размещении выходная труба устанавливается косо вверх и ведет в приемник для отходов, по форме напоминающий ящик прямоугольной формы. Его верхний край должен находиться ниже уровня входного отверстия.

Входная и выходные трубы располагаются косо вверх на разных сторонах емкости, при этом компенсирующая емкость, в которую поступают отходы, должна быть ниже приемного бункера

Процесс протекает следующим образом: входной бункер принимает новую партию субстрата, которая стекает в реактор, одновременно такое же количество отработанной массы по трубе поднимается в приемник для отходов, откуда он в дальнейшем вычерпывается и используется в качестве высококачественного биоудобрения.

Хранение биогаза осуществляется в газгольдере. Чаще всего он находится прямо на крыше реактора и имеет форму купола или конуса. Он изготавливается из кровельного железа, а затем, чтобы предотвратить коррозийные процессы, окрашивается несколькими слоями масляной краски.

В промышленных установках, рассчитанных на получение большого количества газа, газгольдер нередко выполняется в виде отдельно стоящего резервуара, соединенного с реактором трубопроводом.

Газ, полученный в результате брожения, не подходит для использования, поскольку в нем содержится большое количество водяных паров, и в таком виде он не будет гореть. Чтобы очистить его от фракций воды, газ пропускают через гидрозатвор. Для этого из газгольдера выводится труба, по которой биогаз поступает в емкость с водой, а уже оттуда он по пластиковой или металлической трубе подается потребителям.

Схема установки, расположенной под землей. Входное и выходное отверстия должны располагаться на противоположных сторонах емкости. Над реактором находится водяной затвор, через который для осушения пропускается полученный газ

В некоторых случаях для хранения газа используются специальные мешки-газгольдеры, изготовленные из поливинилхлорида. Мешки помещаются рядом с установкой и постепенно заполняются газом. По мере наполнения, эластичный материал раздувается, и объем мешков увеличивается, позволяя при необходимости временно сохранить большее количество конечного продукта.

Условия эффективной работы биореактора

Для эффективной работы установки и интенсивного выделения биогаза необходимо равномерное брожение органического субстрата. Смесь должна находиться в постоянном движении. В противном случае на ней образуется корка, процесс разложения замедляется, в итоге газа получается меньше, чем изначально рассчитано.

Чтобы обеспечить активное перемешивание биомассы, в верхней или боковой части типового реактора устанавливаются мешалки погружного или наклонного вида, оборудованные электроприводом. В установках кустарного вида перемешивание производится механическим способом при помощи устройства, напоминающего бытовой миксер. Им можно управлять вручную или снабдить электроприводом.

При вертикальном расположении реактора рукоятка мешалки выводится в верхнюю часть установки. Если емкость установлена горизонтально, шнек также располагается в горизонтальной плоскости, и ручка находится сбоку биореактора

Одним из самых главных условий для получения биогаза является поддержание в реакторе необходимого температурного режима. Обогрев может осуществляться несколькими способами. В стационарных установках применяются автоматизированные системы подогрева, которые включаются в работу при падении температуры ниже заданного уровня, и отключаются при наборе необходимого температурного режима.

Для обогрева можно использовать , осуществлять прямой нагрев электрическими отопительными приборами или встроить в основание емкости нагревательный элемент.

Чтобы обустроить систему обогрева биомассы, можно провести трубопровод от домового отопления, которое питается от реактора

Определение требующегося объема

Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

Строительство подземного сооружения

Теперь поговорим о простейшей установке, позволяющей получить с наименьшими затратами. Рассмотрим строительство подземной системы. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном.

С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанной массы.

Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

Верхняя часть бункера – газгольдер, имеющий купольную или конусную форму. Он изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

Выводы и полезное видео по теме

Как сделать самую простейшую установку из обычной бочки, вы узнаете, если посмотрите видео:

Как происходит строительство подземного реактора, вы можете посмотреть в видеосюжете:

Установка по получению биогаза из навоза позволит существенно сэкономить на оплате тепла и электроэнергии, и пустить на благое дело органический материал, который в избытке имеется в каждом фермерском хозяйстве. Прежде чем начать строительство, необходимо все тщательно просчитать и подготовить.

Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам.

Борьба с выделениями и взрывами метана

В шахтах, опасных по газу (т. е. в таких, в которых хотя бы на одном пласте обнаружен метан), необходимо соблюдать специаль­ный режим, одно из основных требований которого заключается в разжижении выделяющегося метана до безопасных концентраций. Правилами безопасности установлены следующие предельные кон­центрации метана (в процентах по объему):

Исходящая вентиляционная струя из участка, очистных за­боев и подготовительных выработок........... 1,00

Общая исходящая струя из шахты, крыла......... 0,75

Поступающая струя в очистные или подготовительные забои……. 0,50 Местное (в отдельных местах) скопление в очистных ьабоях,

в подготовительных и других выработках........ 2,00

Запрещается приступать к заряжанию шпуров и производить взрывные работы при содержании в забое, а также в примыкающих к нему выработках на протяжении 20 м от него и в местах укрытия взрывника 1 % метана и более.

Если в отдельных местах образуются скопления метана, достига­ющие 2%, то работы прекращаются, и возобновлять их разрешается только после снижения содержания метана до 1%.

В течение целого ряда десятилетий разбавление метана до допу­стимых норм (хотя сами нормы неоднократно менялись) осуществля­лось главным образом вентиляционными средствами. Однако в по­следние годы в связи с переходом на разработку глубоких горизонтов и интенсификацией процессов добычи угля газообильность шахт так возросла, что обычные методы вентиляции не могут обеспечить сни­жения концентрации до установленных норм. Вследствие этого возникла необходимость управления газовыделением с целью умень­шения общего количества выделяющихся в выработки газов, регули­рования выделения во времени, а также предупреждения или умень­шения интенсивности суфлярных выделений и внезапных выбросов.

Дегазация.

Наиболее распространенным способом сниже­ния газообильности угольных шахт является дегазация разрабаты­ваемых и сближенных угольных пластов и выработанных прост­ранств, представляющая собой комплекс мероприятий по сбору и обособленной выдаче из шахты концентрированных метано-воздуш-ных смесей. Дегазацию начали применять в СССР с 1952 г., и она быстро получила распространение.

В настоящее время дегазация (или изолированный отвод метана) применяется практически на всех шах­тах, количество отсасываемого или отводимого метана достигает 1,4 млн. м 3 /сутки, а в 2010 г. составит около 2,5 млн. м 3 /сутки.

Отсасываемый метан используется пока явно недостаточно, всего на 10 -15%. Он применяется главным образом для нагрева паровых котлов в шахтных котельных.

В шахтах России применяются три основные группы способов дегазации:

а) дегазация угольных пластов и вмещающих пород без использования эффекта разгрузки от горного давления;

б) дегазация подрабатываемых и надрабатываемых смежных угольных пластов и вмещающих пород с использованном эффекта разгрузки от горного давления;

в) отсос метано-воздушных смесей из выработанных про­странств.

Каждая группа подразделяется на ряд схем и вариантов в зависимости от горнотехнических условий разработки, геологиче­ских особенностей месторождений, газопроницаемости пластов, нали­чия сближенных пластов и т. п.

Дегазация угольного пласта до начала очистных работ иногда производится путем отсасывания газа из предварительно проведен­ных и затем изолированных герметизирующими перемычками подго­товительных выработок. При этом для удаления газа через перемычки пропускается газопровод. Этот способ дегазации рекомендуется при­менять только при высокой газопроницаемости пласта. Срок дегаза­ции от 8 до 12 месяцев.

В настоящее время Московским горным институтом проведены

лабораторные и натурные исследования по предварительной дегаза­ции с

направленным гидравлическим расчленением пластов, осуще­ствляемой с

земной поверхности до проведения горных работ и без связи с ними.

Сущность этого метода заключается в том, что на участки дегазируемых

пластов проводятся на расстоянии 250-300 м одна от другой буровые

скважины (или используются скважины гео­логоразведочного бурения), через

которые производится гидрорасчле­нение пласта. Для направленного

введения рабочей жидкости в пласте абразивным гидроперфоратором

создается щель высотой 30-40 мм, радиусом от 1 до З м. Закачка жидкости

ведется с медленным нараста­нием расхода до 125 л/сек. При этом вокруг

скважины па расстоянии порядка 100 м происходит раскрытие трещин.

Общий расход жидкости при закачке достигает 900 м3, песка 30-40 т.

После откачки из скважины жидкости начинает выделяться газ, причем среднесуточный дебит равен 1000-4000 м 3 , а в отдельные сутки доходит до 6000 м 3 .

После дегазации таким способом пласта K 12 (Караганда) газо­обильность выработок при его выемке была в 4-6 раз меньше, чем ожидалось без дегазации, и в 2-3 раза меньше газообильности выра­боток в аналогичных условиях, но при дегазации с помощью восста­ющих скважин, пробуренных по пласту. Для сокращения срока дега­зации рассматриваемым способом рекомендуется применять испаря­ющиеся при атмосферных условиях и пластовых температурах жидкости (например. СО2). При дегазации с земной поверхности скважины дают почти чистый метан, что облегчает его рацио­нальное использование и способствует окупаемости дегазацион­ных работ.

С использованием эффекта разгрузки от горного давления осуще­ствляется дегазация сближенных угольных пластов, т. е. газонос­ных пластов, залегающих на таком расстоянии от разрабатываемого, на котором происходят обрушение пород, разгрузка дегазируемого пласта от горного давления и повышенная газоотдача. Выделя­ющийся газ отсасывается через специальные скважины, пробуренные с вентиляционного (иногда с откаточного) штрека. Скважины эти должны пересекать дегазируемый пласт на границе зоны обрушения, где оседание пород происходит с образованием пустот, которые за­полняются газом. Поскольку успех дегазации зависит от правильной ориентировки дегазационных скважин, азимут, угол наклона и про­ектная глубина скважин определяются на основании точных марк­шейдерских данных.

Дегазация угольных пластов позволяет вести очистные работы на пластах, отличающихся высокой метанообильностью. Однако в последнее время возникают большие трудности при проведении подготовительных выработок, так как работы эти ведутся в основном еще до начала дегазации и в ряде случаев газовыделение в выработки достигает 6,0-7,5 м 3 "мин. Разжижение таких количеств газа свежей вентиляционной струей требует подачи в выработки громадных количеств воздуха. С целью создания безопасных условий проходки в настоящее время применяется ограждающая дегазация.

При проведении выработок по углю часто в их подкровельной части

образуются так называемые слоевые скопления метана, содержа­ние которого в

смеси с воздухом достигает 2% и более. Границей между воздушной струей и

концентрацией СН 4 2%. Протяженность слоевых скоплений обычно 20-40 м.

но иногда достигает 100 м и более. Загазованию подвергаются обычно

призабойные части штре­ков, а также места геологических нарушений, зоны

трещиноватого угля и т. п.

Борьба со слоевыми скоплениями ведется путем увеличения скорости движения вентиляционной струи, прижа­тием воздушного потока к кровле выработки при помощи паруса, перекрывающего нижнюю часть выработки, и обеспечением деятель­ного перемешивания воздуха е кровле выработки. Последнее дости­гается при помощи сжатого воздуха, вытекающего из трубопровода через специальные отверстия.

Борьба с суфлярами. Суфлярные выделения часто вынуждают прекращать работу в забое и отводить газ по специаль­ному трубопроводу в исходящую струю шахты или по скважине на поверхность. После того как суфлярное выделение прекратится, работы возобновляются.

Если дебит суфляра невелик, то в ряде случаев возможно продол­жать проходческие работы при условии подачи достаточного коли­чества воздуха для разжижения выделяющегося метана и принятия мер против образования слоевых скоплений.

В тех случаях, когда на разрабатываемом месторождении суфляр­ные выделения связаны с тектоническими нарушениями или зонами трещиноватых, раздробленных пород, лучшей мерой борьбы с суфля­рами следует считать бурение специальных разведочных скважин при приближении забоя выработки к нарушению или к зоне трещиноватости. После вскрытия суфляра разведочными скважинами про­буриваются специальные дренажные скважины, через которые газ отводится на поверхность.

Вторичные суфляры вызываются производственными процессами, возникают неожиданно и к ним трудно заранее подготовиться. Спо­собы борьбы в этом случае зависят от характера выделения. Так, при возникновении суфляра и виде трещины, образовавшейся в ночве призабойного пространства лавы в результате разгрузки пород от горного давления, трещину закрывают швеллерами или рештаками, уплотняемыми бетонным покрытием. После этого выделяющийся метан отсасывается и выдается по трубам в исходящую струю или на поверхность.

Борьба с внезапными выбросами . Наиболее действенным способом борьбы с внезапными выбросами является разработка опасных и угрожаемых пластов после предварительной выемки защитных, т. е. залегающих выше или ниже выбросоопасных на таком расстоянии, при котором разработка их обеспечивает раз­грузку опасных и угрожаемых пластов. При пологом падении защит­ными являются пласты, залегающие выше опасных на расстоянии до 45 м по нормали и ниже опасных до 100 м. При крутом падении защитными считаются пласты, залегающие не более чем в 60 м по нормали выше или ниже опасного, если опытом не установлено защитное действие на большем расстоянии. Если имеются защитные пласты выше и ниже опасных, то в первую очередь разрабатывается вышележащий.

Правилами безопасности регламентированы порядок проведения откаточного штрека и величина опережения им очистного забоя на крутых пластах, опасных по выбросам; восстающие выработки разре­шается проходить только сверху вниз по предварительно пробурен­ным опережающим скважинам; установлен также порядок вскрытия опасных пластов квершлагами. В последнем случае опасность внезап­ного выброса особенно велика, вследствие чего при подходе забоем квершлага к пласту на расстояние 10 м обязательны бурение двух передовых скважин длиной не менее 6 м, уменьшение площади попе­речного сечения квершлага до 5 м 2 , предварительное проведение вы­работки, соединяющей квершлаг с вентиляционным горизонтом, для отвода газа при внезапном выбросе.

При проведении выработок по углю для предупреждения внезап­ных выбросов бурят опережающие скважины диаметром 250-300 мм; в некоторых случаях применяют опережающую крепь, предохрани­тельные щиты и другие меры защиты.

В соответствии с Правилами безопасности, взрывные работы по углю на пластах, опасных по внезапным выбросам угля и газа, при очистных работах и проведении горизонтальных и наклонных выра­боток должны вестись только в режиме сотрясательного взрывания, т. е. взрывания усиленным зарядом ВВ с соблюдением целого ряда установленных мер безопасности.

Поскольку сотрясательное взрывание может вызвать выброс большой интенсивности, нарушающий нормальную работу шахты, а иногда после него возникают запоздалые выбросы, в последние годы исследуется эффективность так называемого камуфлетного взрывания, которое лишь разрыхляет массив, увеличивает зону раз­грузки и предотвращает опасность развития внезапного выброса.

Чтобы предупредить внезапные выбросы пород, которые, как указывалось, возникают обычно при ведении проходческих работ по пластам песчаника, рекомендуется располагать выработки ближе к почве или кровле пласта, так как наиболее выбросоопасной яв­ляется его средняя часть. Для уменьшения опасности выброса реко­мендуется: производить предварительное увлажнение породного массива, которое уменьшает напряжения в призабойной части; при­менять разгрузочные щели, предварительную отработку защитных пластов (когда это возможно), охлаждать призабойную часть мас­сива, проводить выработки уменьшенным сечением с последующим расширением их до проектного.

СУФЛЯР (французским soufflard, от souffler — дышать, дуть * а. fumarole, puffing hole, spouting hole, blower, feeder; н. Gasblaser, Blaser; ф. soufflard, souffleur; и. escape instantaneo de grisu, escape instantaneo de gas) — локальные выделения из природных или эксплуатационных трещин в горных выработках с дебитом не менее 1 м 3 /мин. Выделяют суфляры природные и эксплуатационные.

Природные суфляры приурочены к зонам тектонических нарушений с широко развитой системой открытых трещин, распространённых на огромной площади (по падению и простиранию слоев). Эксплуатационные суфляры возникают в выработанном пространстве , в подготовительных выработках и очистных при возникновении трещин за счёт перераспределения горного давления . С увеличением глубины частота встречаемости суфляров возрастает. В зависимости от вида разрабатываемого полезного ископаемого газовый состав суфляров представлен: метаном (иногда с примесью тяжёлых углеводородов , азота , углекислого газа , ); углекислым газом — на угольных шахтах; углекислым, углеводородными и азотными газами — на рудных шахтах .

Глубина появления суфляров на угольных шахтах обычно приурочена к зоне метановых газов (верхней границе или несколько ниже). В зависимости от приуроченности к пластам с различной газоносностью или другим коллекторам газа суфляры проявляются по-разному. При небольших запасах газа суфляры действуют кратковременно, при значительных — десятки лет, выделяя при этом несколько млн. м 3 метана (угольные шахты). При невозможности снизить концентрацию суфлярных газов в шахтном воздухе до требуемых норм с помощью средств вентиляции производится каптаж суфляров. Заключается он в изоляции выходов газа специальными металлическими колпаками, заглубляемыми в поверхность выработки и герметизируемыми по периметру бетоном , глиной; продольными деревянными перекрытиями, герметизируемыми смесью жидкого стекла, извести и воды (при проявлении суфляров на протяжённом участке выработки); пенопластом или синтетической плёнкой. В первых двух случаях из перекрывающих конструкций газ отводится через специальные патрубки (и шланги) в трубопровод . При недостаточной эффективности вышеупомянутых способов каптажа отвод газов из очагов формирования суфляров осуществляется с помощью дренажных скважин. В случае невозможности локализации суфляров данный участок выработки изолируют герметизирующей перемычкой, а газ изолированного участка отводят.

В угольных шахтах в зависимости от регламентируемых условий выделяются пласты, опасные по суфлярам.

Выделение метана в шахтах.

В горные выработки метан выделяется с обнаженной поверхности угольных пластов, из отбитого угля, из выработанного пространства, с обнаженной поверхности пород.

Виды выделения метана - обыкновенное, суфлярное, внезапное.

Обыкновенное – метан выделяется с обнаженной поверхности угольного массива через мелкие, невидимые трещины. Величина этого газовыделения увеличивается с увеличением газоносности, газопроницаемости угля и газового давления. Максимальное газовыделение – сразу после вскрытия пласта.

Суфлярно е выделение метана – это выделение из крупных, видимых на глаз трещин и пустот в угле и породах. Возможный дебит суфляра – до десятков тысяч м 3 в сутки, продолжительность действия – от нескольких часов до нескольких лет.

Суфляры представляют опасность из-за неожиданности проявления и резкого повышения концентрации метана в горной выработке. Кроме того, суфляр может быть одной из причин возникновения слоевого скопления метана.

По происхождению встречаются природные и эксплуатационные. Природные суфляры встречаются в зонах геологических нарушений, а эксплуатационные – в процессе выемки угля.

Профилактика суфлярных выделений метана ведется с помощью предварительной дегазации массива, усилением проветривания опасных выработок, каптированием газа. При каптировании, устье суфляра окружается герметичным киоском, а газ по трубопроводу отводится на поверхность или в исходящую струю шахты (крыла шахты).

При внезапном выбросе в горную выработку за короткий промежуток времени выделяется большое количество метана и измельченного угля (породы). При этом в угольном пласте (массиве породы) образуются характерные полости.

При выбросе выделяется от сотен м 3 до 500 тыс. м 3 метана, количество угля до нескольких тыс. т .

Внезапные выбросы, чаще всего, происходят при вскрытии пластов, при пересечении зон геологических нарушений. Внезапные выбросы из пласта происходят на участках с пониженной прочностью и слабым контактом с вмещающими породами.

У внезапных выбросов есть предупредительные признаки: удары, толчки, гул в угольном массиве, осыпание и отскакивание угля на поверхности пласта в забое, выжимание угля, повышенное газовыделение.

Выброс может возникнуть после сотрясений массива в ходе выемочных работ или в результате образования зон повышенной концентрации напряжений (углы и уступы забоя).

Таким образом, основные причины возникновения выброса это горное давление, энергия газа в угле и физико-механические свойства угольного пласта.

Газовыделение из отбитого угля проявляется, в основном, в забое при отделении угля от массива и при погрузке на конвейер. Вместе с тем, при повышенной скорости продвигания забоя, концентрация метана возрастает по всей конвейерной цепочке.

Основное выделение метана из отбитого угля происходит в течении часа после его отделения от массива. Через 10-12 часов газовыделение практически прекращается. Оставшееся в угле некоторое количество газа называют остаточной газоносностью. Для большинства углей она может составить 2-5 м 3 /т.