Болезни Военный билет Призыв

Виды монотонности функции. Монотонные функции, определение. Достаточное условие монотонности функции

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее название – экстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

Урок и презентация по алгебре в 10 классе на тему: "Исследование функции на монотонность. Алгоритм исследования"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Убывающие и возрастающие функции.
2. Связь производной и монотонности функции.
3. Две важные теоремы о монотонности.
4. Примеры.

Ребята, ранее мы с вами рассмотрели множество различных функций и строили их графики. Теперь давайте введем новые правила, которое работают для всех функций, которые мы рассматривали и еще будем рассматривать.

Убывающие и возрастающие функции

Давайте рассмотрим понятие возрастающей и убывающей функции. Ребята, а что такое функция?

Функцией называется соответствие y= f(x), в котором каждому значению x ставится в соответствие единственное значение y.

Посмотрим на график некоторой функции:


На нашем графике видно: чем больше x, тем меньше y. Итак, давайте дадим определение убывающей функции. Функция называется убывающей, если большему значению аргумента соответствует меньшее значение функции.

Если x2 > x1, то f(x2) Теперь давайте рассмотрим график такой функции:
На этом графике видно: чем больше x, тем больше y. Итак, давайте дадим определение возрастающей функции. Функция называется возрастающей, если большему значению аргумента соответствует большее значения функции.
Если x2 > x1, то f(x2 > f(x1) или: чем больше x, тем больше y.

Если функция возрастает или убывает на некотором промежутке, то говорят, что она монотонна на данном промежутке .

Связь производной и монотонности функции

Ребята, а теперь давайте подумаем, как можно применять понятие производной при исследовании графиков функций. Нарисуем график возрастающей дифференцируемой функции и проведем пару касательных к нашему графику.

Если посмотреть на наши касательные или зрительно провести любую другую касательную, то можно заметить, что угол между касательной и положительным направлением оси абсцисс будет острым. Значит, касательная имеет положительный угловой коэффициент. Угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, значение производной положительно во всех точках нашего графика. Для возрастающей функции выполняет следующее неравенство: f"(x) ≥ 0, для любой точки x.

Ребята, теперь давайте посмотрим на график некоторой убывающей функции и построим касательные к графику функции.

Посмотрим на касательные и зрительно проведем любую другую касательную. Мы заметим, что угол между касательной и положительным направлением оси абсцисс - тупой, а значит касательная имеет отрицательный угловой коэффициент. Таким образом, значение производной отрицательно во всех точках нашего графика. Для убывающей функции выполняет следующее неравенство: f"(x) ≤ 0, для любой точки x.


Итак, монотонность функции зависит от знака производной:

Если функция возрастает на промежутке и имеет производную на этом промежутке, то эта производная будет не отрицательна.

Если функция убывает на промежутке и имеет производную на этом промежутке, то эта производная будет не положительна.

Важно , чтобы промежутки, на которых мы рассматриваем функцию были открытыми!

Две важные теоремы о монотонности

Теорема 1. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≥ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) возрастает на промежутке Х.

Теорема 2. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≤ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) убывает на промежутке Х.

Теорема 3. Если во всех точках открытого промежутка Х выполняется равенство
f’(x)= 0, то функция y= f(x) постоянна на этом промежутке.

Примеры исследования функции на монотонность

1) Доказать, что функция y= x 7 + 3x 5 + 2x - 1 возрастает на всей числовой прямой.

Решение: Найдем производную нашей функции: y"= 7 6 + 15x 4 + 2. Т.к. степень при x четная, то степенная функция принимает только положительные значения. Тогда y" > 0 для любого x, а значит по теореме 1, наша функция возрастает на всей числовой прямой.

2) Доказать, что функция убывает: y= sin(2x) - 3x.

Найдем производную нашей функции: y"= 2cos(2x) - 3.
Решим неравенство:
2cos(2x) - 3 ≤ 0,
2cos(2x) ≤ 3,
cos(2x) ≤ 3/2.
Т.к. -1 ≤ cos(x) ≤ 1, значит наше неравенство выполняется для любых x, тогда по теореме 2 функция y= sin(2x) - 3x убывает.

3) Исследовать на монотонность функцию: y= x 2 + 3x - 1.

Решение: Найдем производную нашей функции: y"= 2x + 3.
Решим неравенство:
2x + 3 ≥ 0,
x ≥ -3/2.
Тогда наша функция возрастает при x ≥ -3/2, а убывает при x ≤ -3/2.
Ответ: При x ≥ -3/2 - функция возрастает, при x ≤ -3/2 - функция убывает.

4) Исследовать на монотонность функцию: y= $\sqrt{3x - 1}$.

Решение: Найдем производную нашей функции: y"= $\frac{3}{2\sqrt{3x - 1}}$.
Решим неравенство: $\frac{3}{2\sqrt{3x - 1}}$ ≥ 0.

Наше неравенство больше либо равно нуля:
$\sqrt{3x - 1}$ ≥ 0,
3x - 1 ≥ 0,
x ≥ 1/3.
Решим неравенство:
$\frac{3}{2\sqrt{3x-1}}$ ≤ 0,

$\sqrt{3x-1}$ ≤ 0,
3x - 1 ≤ 0.
Но это невозможно, т.к. квадратный корень определен только для положительных выражений, значит промежутков убывания у нашей функции нет.
Ответ: при x ≥ 1/3 функция возрастает.

Задачи для самостоятельного решения

а) Доказать, что функция y= x 9 + 4x 3 + 1x - 10 возрастает на всей числовой прямой.
б) Доказать, что функция убывает: y= cos(5x) - 7x.
в) Исследовать на монотонность функцию: y= 2x 3 + 3x 2 - x + 5.
г) Исследовать на монотонность функцию: y = $\frac{3x-1}{3x+1}$.

Мы впервые познакомились в курсе алгебры 7-го класса. Глядя на график функции, мы снимали соответствующую информацию: если двигаясь по графику слева направо мы в то же время движемся снизу вверх (как бы поднимаемся в горку), то мы объявляли функцию возрастающей (рис. 124); если же мы движемся сверху вниз (спускаемся с горки), то мы объявляли функцию убывающей (рис. 125).

Однако математики не очень жалуют такой способ исследования свойств функции. Они считают, что определения понятий не должны опираться на рисунок, - чертеж должен лишь иллюстрировать то или иное свойство функции на ее графике . Дадим строгие определения понятий возрастания и убывания функции.

Определение 1. Функцию у = f(x) называют возрастающей на промежутке X, если из неравенства х 1 < х 2 - где хг и х2 - любые две точки промежутка X, следует неравенство f(x 1) < f(x 2).

Определение 2. Функцию у = f(x) называют убывающей на промежутке X, если из неравенства х 1 < х 2 , где х 1 и х 2 - любые две точки промежутка X, следует неравенство f(x 1) > f(x 2).

На практике удобнее пользоваться следующими формулировками:

функция возрастает, если большему значению аргумента соответствует большее значение функции;
функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Используя эти определения и установленные в § 33 свойства числовых неравенств, мы сможем обосновать выводы о возрастании или убывании ранее изученных функций.

1. Линейная функция у = kx +m

Если k > 0, то функция возрастает на всей (рис. 126); если k < 0, то функция убывает на всей числовой прямой (рис. 127).

Доказательство. Положим f(х) = kx +m. Если х 1 < х 2 и k > О, то, согласно свойству 3 числовых неравенств (см. § 33), kx 1 < kx 2 . Далее, согласно свойству 2, из kx 1 < kx 2 следует, что kx 1 + m < kx 2 + m, т. е. f(х 1) < f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) < f(x 2). Это и означает возрастание функции у = f(х), т.е. линейной функции у = kx+ m.

Если же х 1 < х 2 и k < 0, то, согласно свойству 3 числовых неравенств, kx 1 > kx 2 , а согласно свойству 2, из kx 1 > kx 2 следует, что kx 1 + m> kx 2 + т.

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2). Это и означает убывание функции у = f(x), т. е. линейной функции у = kx + m.

Если функция возрастает (убывает) во всей своей области определения, то ее можно называть возрастающей (убывающей), не указывая промежутка. Например, про функцию у = 2х - 3 можно сказать, что она возрастает на всей числовой прямой, но можно сказать и короче: у = 2х - 3 - возрастающая
функция.

2. Функция у = х2

1. Рассмотрим функцию у = х 2 на луче . Возьмем два неположительных числа х 1 и х 2 , таких, что х 1 < х 2 . Тогда, согласно свойству 3 числовых неравенств, выполняется неравенство - х 1 > - х 2 . Так как числа - х 1 и - х 2 неотрицательны, то, возведя в квадрат обе части последнего неравенства, получим неравенство того же смысла (-х 1) 2 > (-х 2) 2 , т.е. Это значит, что f(х 1) >f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2).

Поэтому функция у = х 2 убывает на луче (- 00 , 0] (рис. 128).

1. Рассмотрим функцию на промежутке (0, + 00).
Пусть х1 < х 2 . Так как х 1 и х 2 - , то из х 1 < x 2 следует (см. пример 1 из § 33), т. е. f(x 1) > f(x 2).

Итак, из неравенства х 1 < х 2 следует, что f(x 1) > f(x 2). Это значит, что функция убывает на открытом луче (0, + 00) (рис. 129).


2. Рассмотрим функцию на промежутке (-оо, 0). Пусть х 1 < х 2 , х 1 и х 2 - отрицательные числа. Тогда - х 1 > - х 2 , причем обе части последнего неравенства - положительные числа, а потому (мы снова воспользовались неравенством, доказанным в примере 1 из § 33). Далее имеем , откуда получаем .

Итак, из неравенства х 1 < х 2 следует, что f(x 1) >f(x 2) т.е. функция убывает на открытом луче (- 00 , 0)

Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция, а исследование функции на возрастание и убывание называют исследованием функции на монотонность.



Решение.

1) Построим график функции у = 2х 2 и возьмем ветвь этой параболы при х < 0 (рис. 130).

2) Построим и выделим его часть на отрезке (рис. 131).


3) Построим гиперболу и выделим ее часть на открытом луче (4, + 00) (рис. 132).
4) Все три «кусочка» изобразим в одной системе координат - это и есть график функции у = f(x) (рис. 133).

Прочитаем график функции у = f(x).

1. Область определения функции - вся числовая прямая.

2. у = 0 при х = 0; у > 0 при х > 0.

3. Функция убывает на луче (-оо, 0], возрастает на отрезке , убывает на луче , выпукла вверх на отрезке , выпукла вниз на луче , ограничена на этом отрезке;

· сумма возрастающих (убывающих) функций является возрастающей (убывающей) функцией;

· если функция f возрастает (убывает) и n – нечетное число, то также возрастает (убывает);

· если f"(x)>0 для всех xÎ(a,b), то функция y=f(x) является возрастающей на интервале (a,b);

· если f"(x)<0 для всех xÎ(a,b), то функция y=f(x) является убывающей на интервале (a,b);

· если f(x) – непрерывная и монотонная функция на множестве Х , то уравнение f(x)=C , где С – данная константа, может иметь на Х не более одного решения;

· если на области определения уравнения f(x)=g(x) функция f(x) возрастает, а функция g(x) убывает, то уравнение не может иметь более одного решения.

Теорема. (достаточное условие монотонности функции). Если непрерывная на отрезке [а, b ] функция у = f (х ) в каждой точке интервала (а, b ) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b ].

Доказательство. Пусть >0 для всех хÎ (а,b ). Рассмотрим два произвольных значения x 2 > x 1 , принадлежащих [а, b ]. По формуле Лагранжа х 1 <с < х 2 . (с ) > 0 и х 2 – х 1 > 0, поэтому >0, откуда > , то есть функция f(х) возрастает на отрезке [а, b ]. Аналогично доказывается вторая часть теоремы.

Теорема 3. (необходимый признак существования экстремума функции). Если дифференцируемая в точке c функция у = f (х ) имеет в этой точке экстремум, то .

Доказательство. Пусть, например, функция у = f (х ) имеет в точке c максимум. Это означает, что существует такая проколотая окрестность точки c, что для всех точек x этой окрестности выполняется f (x ) < f (c ), то есть f (c ) – наибольшее зна­чение функции в этой окрестности. Тогда по теореме Ферма .

Аналогично доказывается случай минимума в точке c.

Замечание. Функция может иметь экстремум в точке, в которой ее производная не существует. Например, функция имеет минимум в точке x = 0, хотя не существует. Точки, в которых производная функции равна нулю или не сущест­вует, называются критическими точками функции. Однако не во всех критиче­ских точках функция имеет экстремум. Например, функция у = x 3 не имеет экс­тремумов, хотя ее производная =0.

Теорема 4. (достаточный признак существования экстремума). Если непрерывная функция у = f (x ) имеет производную во всех точках некоторого интервала, содержащего критическую точку С (за исключением, может быть, самой этой точки), и если производная при переходе аргумента слева направо через критическую точку С меняет знак с плюса на минус, то функция в точке С имеет максимум, а при перемене знака с минуса на плюс – минимум.

Доказательство. Пусть c – критическая точка и пусть, например, при переходе аргумента через точку c меняет знак с плюса на минус. Это означает, что на некотором интервале(c–e; c) функция возрастает, а на интервале (c; c+e) – убывает (при e >0). Следовательно, в точке с функция имеет максимум. Аналогично доказывается случай минимума.

Замечание. Если производная не меняет знака при переходе аргумента через критическую точку, то функция в этой точке не имеет экстремума.

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12