Болезни Военный билет Призыв

Вероятность и статистика – основные факты

Лекция 11. Неравенство Чебышева. Теорема Чебышева. Центральная предельная теорема.

Несмотря на то, что заранее нельзя предсказать, какое из возможных значений примет случайная величина в результате опыта, при некоторых условиях суммарное поведение достаточно большого числа случайных величин становится закономерным. Иными словами, при очень большом числе случайных явлений их средний результат практически перестает быть случайным и может быть предсказан с большой степенью определенности.

Для практики очень важно знание условий, при выполнении которых это может происходить. Эти условия указываются в теоремах, носящих общее название закона больших чисел , важнейшей из которых является теорема Чебышева. Для доказательства теоремы Чебышева используется неравенство Чебышева , которое мы сейчас рассмотрим.

Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа e, не меньше, чем , т.е.

Пример .

Номинальное значение диаметра втулки равно 5 мм, а дисперсия, из-за погрешностей изготовления, не превосходит 0,01. Оценить вероятность того, что размер втулки будет отличаться от номинала не более чем на 0,5 мм.

Решение:

По неравенству Чебышева

Неравенство Чебышева дает только верхнюю границу вероятности данного отклонения. Выше этой границы вероятность не может быть ни при каком законе распределения . Например, если мы захотим выяснить, какова вероятность того, что случайная величина X отклонится от своего математического ожидания не меньше, чем на 3 среднеквадратических отклонения, то неравенство Чебышева даст нам верхнюю границу этого значения 1/9 @ 0,111. В то же время, например для нормального распределения вероятность такого отклонения намного меньше - 0,0027 (правило трех сигм).

Теорема Чебышева .

Если - попарно независимые случайные величины, причем их дисперсии ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число e, вероятность выполнения неравенства

будет как угодно близка к единице при достаточно большом числе n. Иначе говоря

Таким образом, теорема Чебышева утверждает, что для достаточно большого числа независимых случайных величин, имеющих ограниченные дисперсии, почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым.

Доказательство . Введем в рассмотрение новую случайную величину – среднее арифметическое случайных величин



Найдем математическое ожидание . Пользуясь свойствами математического ожидания, получим

Применяя к величиненеравенство Чебышева, имеем

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых), получим

Так как по условию дисперсии всех случайных величин ограничены постоянным числом С, то

Таким образом

Подставляя правую часть последнего неравенства в (1) (отчего оно может быть только усилено), получим

Отсюда, переходя к пределу при и учитывая, что вероятность не может превосходить единицы, получим доказательство:

В важном частном случае, когда случайные величины имеют одно и то же математическое ожидание (обозначим его a) формула, выражающая теорему Чебышева, принимает вид

Сущность теоремы Чебышева такова: хотя отдельные независимые случайные величины могут принимать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случайных величин с большой вероятностью принимает значения, близкие к определенному

постоянному числу

или – в частном случае, к числу . Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеяно мало. Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются .

Пусть производится процесс измерения некоторой величины. Будем рассматривать результаты каждого измерения как случайные величины . Если результат каждого измерения не зависит от результатов остальных (т.е. величины попарно независимы), а случайные величины имеют одинаковое математическое ожидание и их дисперсии ограничены, то, применяя теорему Чебышева, получим, что при достаточно большом n среднее арифметическое результатов измерений сколь угодно мало отличается от истинного значения измеряемой величины (математического ожидания a).

На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов.

Теорема. Если СВ Х принимает только неотрицательные значения и имеет математическое ожидание, то для любого положительного числа А верно неравенство:

☺ Доказательство проведем для дискретной СВ Х. Расположим ее значения в порядке возрастания, из которых часть значений
будут не более числа А, а другая часть -
будут больше А, т.е.

Запишем выражение для математического ожидания М(Х): ,

где
- вероятности того, что СВ Х примет значения соответственно
.

Отбрасывая первые k неотрицательных слагаемых (напомним, что все
), получим:.

Заменяя в неравенстве значения
меньшим числом А, получим более сильное неравенство:или
.

Cумма вероятностей в левой части полученного неравенства представляет собой сумму вероятностей событий
, т.е. вероятность события Х>А. Поэтому
.☻

Т.к. события Х > А и Х ≤ А противоположные, то заменяя Р(Х > А) выражением 1 - Р(Х ≤ А), придем к другой форме неравенства Маркова:

.

Неравенство Маркова применимо к любым неотрицательным случайным величинам.

Пример . Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор: а) превысит 400; б) будет не более 500.

Решение . а) По условию М(Х) = 300. По формуле
:
т.е. вероятность того, что число вызовов превысит 400, будетне более 0,75.

б) По формуле
:
т.е. вероятность того, что число вызовов не более 500, будетне менее 0,4.

  1. Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному за­кону, и для частости события.

Теорема . Для любой случайной величины, имеющей математическое ожидание и дисперсию, справедливо неравенство Чебышева:
,

где а = М(Х), е > 0.

☺ Применим неравенство Маркова в форме
к случайной величине
, взяв в качестве положительного числа
. Получим:
.

Т.к. неравенство
равносильно неравенству
, а
есть дисперсия случайной величины Х, то из неравенства получаем доказываемое неравенство. ☻

Учитывая, что события
и
противоположны, неравенство Чебышева можно записать и в другой форме:
.

Неравенство Чебышева применимо для любых случайных величин. В форме
оно устанавливаетверхнюю границу , а в форме
-нижнюю границу вероятности рассматриваемого события.

Запишем неравенство Чебышева в форме
для некоторых случайных величин:

а) для СВ Х = m, имеющей биноминальный закон распределения с математическим ожиданием а = М(Х) = nр и дисперсией D(X) = npq:
.

б) для частости события в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью
и имеющей дисперсию
:
.

3амечание . Если М(Х) > А или
, то правые части неравенств Маркова и Чебышева в форме соответственно
и
будутотрицательными а в форме
и
будутбольше 1 .

Это означает, что применение указанных неравенств в этих случаях приведет к тривиальному результату: вероятность события больше отрицательного числа либо меньше числа, превосходящего 1.

  1. Теорема Чебышева (с доказательством), ее значение и след­ствие. Пример.

Теорема . Если дисперсии n независимых случайных величин
ограничены одной и той же постоянной, то при неограниченном увеличении числа n средняя арифметическая случайных величин сходится по вероятности к средней арифметической их математических ожиданий
, т.е.

☺ По условию ,, где С - постоянное число.

Получим неравенство Чебышева в форме
для средней арифметической случайных величин, т.е. для
.

Найдем математическое ожидание М(Х) и оценку дисперсии D(Х):

(Здесь использованы свойства математического ожидания и дисперсии и, в частности, то, что случайные величины
независимы, а следовательно, дисперсия их суммы равна сумме дисперсий.)

Запишем неравенство
для случайной величины
:

Т.к. по доказанному
, то
,

Следовательно .

в пределе при n → ∞ величина стремится к нулю, и получим доказываемую формулу. ☻

Подчеркнем смысл теоремы Чебышева. При большом числе n случайных величин практически достоверно, что их средняя величина случайная, как угодно мало отличается от неслучайной величины, т.е. практически перестает быть случайной.

Следствие . Если независимые случайные величины
имеют одинаковые математические ожидания, равные а, а их дисперсии ограничены одной и той же постоянной, то:

,

Теорема Чебышева и ее следствие имеют большое практическое значение. Например, страховой компании необходимо установить размер страхового взноса, который должен уплачивать страхователь; при этом страховая компания обязуется выплатить при наступлении страхового случая определенную страховую сумму. Рассматривая частоту/убытки страхователя при наступлении страхового случая как величину случайную и обладая известной статистикой таких случаев, можно определить среднее число/средние убытки при наступлении страховых случаев, которое на основании теоремы Чебышева с большой степенью уверенности можно считать величиной почти не случайной. Тогда на основании этих данных и предполагаемой страховой суммы определяется размер страхового взноса. Без учета действия закона больших чисел (теоремы Чебышева) возможны существенные убытки страховой компании (при занижении размера страхового взноса), либо потеря привлекательности страховых услуг (при завышении размера взноса).

1

В данной статье рассматриваются предельные теоремы теории вероятностей, в частности неравенство Чебышева, закон больших чисел, которые устанавливают связь между теоретическими и экспериментальными характеристиками случайных величин при большом числе испытаний над ними. Материал статьи ориентирован на детальную проработку основной теоремы Чебышева. Ее доказательство базируется на весьма общей лемме, известной под названием неравенство Чебышева. Данное неравенство справедливо для дискретных и непрерывных случайных величин. Неравенство Чебышева имеет ограниченное значение, так как часто дает грубую и очевидную оценку. Сущность теоремы состоит в том, что отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеяно мало. Теорема Чебышева представляет собой яркий пример, который подтверждает справедливость учения диалектического материализма о связи между случайностью и необходимостью.

теория вероятностей

случайные величины

предельные теоремы

закон больших чисел

неравенство Чебышева

теорема Чебышева

1. Бочаров П.П., Печинкин А.В. Теория вероятностей. Математическая статистика. – М.: Гардарика, 2009. – 328с.

2. Булдык Г.М. Теория вероятностей и математическая статистика. 2005. – 285с.

3. Гмурман В.Е. Теория вероятностей и математическая статистика: учебное пособие. – 12 издание – М.: Высшее образование, 2008. – 479с. – (Основы наук)

4. Письменный Д. Конспект лекций по теории вероятностей, математической статистике и случайным процессом/ Дмитрий Письменный. – 3-е издание – М.: Айрис-пресс, 2008. – 288с. – (Высшее образование)


Введение

Предельные теоремы условно делят на две группы. К первой группе теорем относится закон больших чисел, устанавливающий устойчивость средних значений: при большом числе испытаний их средний результат перестает быть случайным и может быть предсказан с точностью. Вторая группа теорем, которая называется центральной предельной теоремой, она устанавливает условия, благодаря которым закон распределения суммы большого числа случайных величин неограниченно приближается к нормальному.

В данной статье мы рассмотрим неравенство Чебышева, которое используется: а) для грубой оценки вероятностей событий, связанных со случайными величинами, распределение которых неизвестно; б) доказательства ряда теорем закона больших чисел.

Целью данной статьи является успешное изучение и практическое применение теоремы Чебышева и закона больших чисел для эффективной математической подготовки студентов экономических специальностей высших учебных заведений.

Неравенство Чебышева

Неравенство Чебышева справедливо для дискретных и непрерывных случайных величин.

Теорема 1. Если случайная величина Х имеет математическое ожидание М(Х)=а и дисперсию D(Х), то для любого ε>0 справедливо неравенство Чебышева.

P {|X-M(X)|}≥ε}≤ (1)

Докажем теорему (1) для непрерывной случайной величины Х с плотностью f(x).

Вероятность - это вероятность попадания случайной величины Х в область, лежащую вне промежутка .Можно записать

Так как область интегрирования можно записать в виде2 ≥ ε2,откуда следует. Имеем

так как интеграл неотрицательной функции при расширении области интегрирования может только увеличиться. Поэтому

Аналогично доказывается неравенство Чебышева и для дискретной случайной величины. Рассмотрим случайную величину Х с математическим ожиданием М(Х) и дисперсией D(X). Тогда теорема, приведенная ниже, является справедливой.

Теорема 2. Вероятность того, что величина Х отклоняется от своего математического ожидания М(Х) не меньше любого положительного числа ε ограничена сверху величиной , то есть

P {|X - M(X)|} <ε} ≥ 1- (2)

В форме (2) оно устанавливает нижнюю границу вероятности события, а в форме (1) - верхнюю.

Неравенство Чебышева справедливо для случайных величин Х= m, имеющей биноминальное распределение с математическим ожиданием М(Х) = а = np и дисперсией D(X) = npq. Данное неравенство принимает вид

P {| m - np | (3)

для частости события в n независимых испытаниях, в каждом из которых оно может произойти с вероятностью p=M()=a, дисперсия которых D()=, неравенство Чебышева имеет вид

P {| - p| (4)

Неравенство Чебышева имеет ограниченное значение, так как часто дает грубую и очевидную оценку. Например, если D(X) >ε2 и > 1, то 1-> 0; поэтому в данном случае неравенство Чебышева указывает на то, что вероятность отклонения неотрицательна, а это и без того тривиально,так как любая вероятность выражается неотрицательным числом. Это неравенство используется для вывода теоремы Чебышева.

Теорема Чебышева

Рассмотрим случайную величину Х, в которой закон распределения изменяется от эксперимента к эксперименту. Тогда будем иметь дело с несколькими (n) величинами.

Теорема 3. Если Х1, Х2, …, Xn независимые случайные величины с конечными математическими ожиданиями М(Хi), i=, и дисперсиями D(Хi), i=, ограниченными одним и тем же числом С, то есть D(Хi) < С, i=, то при возрастании n среднее арифметическое наблюдаемых значений величин Хi, i=, сходится по вероятности к среднему арифметическому их ожиданий, то есть для любого ε> 0

Рассмотрим величинуY=. Ее математическое ожиданиеM(Y) = , а дисперсияD(Y) = .

Применим к величине Y неравенство Чебышева, получим

P ()

Так как, то

Как бы ни было мало , переходя к пределу в формуле (6) при n, получим

что и требовалось доказать.

Таким образом, теорема Чебышева утверждает, что среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограниченны) перестает быть случайной величиной. То есть оно является устойчивым и сходится по вероятности к определенной неслучайной величине, так как среднее арифметическое математических ожиданий - величина неслучайная.

Можно получить другую формулировку закона больших чисел, если в формуле (5) перейти к вероятности противоположного события

Для одинаково распределенных случайных величин Хi, i= существует частный случай теоремы Чебышева.

Теорема 4 (теорема Хинчина). Пусть Х1, Х2, … - независимые одинаково распределенные случайные величины, которые имеют конечные математические ожидания М(Хi) = m. Тогда последовательность {Yn}, где Yn, сходится m с вероятностью 1, то есть для любого ε>0

Закон больших распространяется на зависимые случайные величины.

Теорема 5 (теорема Маркова). Если для случайных величин Х1, Х2, …

= 0

то среднее арифметическое наблюдаемых значений случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий:

для любого ε> 0

Сущность теоремы Чебышева состоит в том, что отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеяно мало.

Отсюда следует, невозможно с уверенностью предсказать какое вероятное значение примет каждое из случайных величин, но можно предвидеть какое значение примет их среднее арифметическое.

Таким образом, среднее арифметическое достаточно большого числа независимых случайных величин утрачивает характер случайной величины. Это можно объяснить тем, что отклонение каждой их величин от своих математических ожиданий могут быть и положительными, и отрицательными, а в среднем арифметическом они взаимно погашаются.

Теорема Чебышева является справедливой не только для дискретных, но и для непрерывных величин; она представляет собой яркий пример, который подтверждает справедливость учения диалектического материализма о связи между случайностью и необходимостью.

Библиографическая ссылка

Минасова Н.Р., Макеева О.О. ПРЕДЕЛЬНЫЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ // Международный студенческий научный вестник. – 2014. – № 2.;
URL: http://eduherald.ru/ru/article/view?id=11855 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Неравенства Чебышёва

Во введении к разделу обсуждалась задача проверки того, что доля дефектной продукции в партии равна определенному числу. Для демонстрации вероятностно-статистического подхода к проверке подобных утверждений являются полезными неравенства, впервые примененные в теории вероятностей великим русским математиком Пафнутием Львовичем Чебышёвым (1821-1894) и потому носящие его имя. Эти неравенства широко используются в теории математической статистики, а также непосредственно применяются в ряде практических задач принятия решении. Например, в задачах статистического анализа технологических процессов и качества продукции в случаях, когда явный вид функции распределения результатов наблюдений не известен. Они применяются также в задаче исключения резко отклоняющихся результатов наблюдений.

Первое неравенство Чебышева. Пусть Х – неотрицательная случайная величина (т.е. для любого ). Тогда для любого положительного числа а справедливо неравенство

Доказательство. Все слагаемые в правой части формулы (4), определяющей математическое ожидание, в рассматриваемом случае неотрицательны. Поэтому при отбрасывании некоторых слагаемых сумма не увеличивается. Оставим в сумме только те члены, для которых . Получим, что

. (9)

Для всех слагаемых в правой части (9) , поэтому

Из (9) и (10) следует требуемое.

Второе неравенство Чебышева. Пусть Х – случайная величина. Для любого положительного числа а справедливо неравенство

.

Это неравенство содержалось в работе П.Л.Чебышёва «О средних величинах», доложенной Российской академии наук 17 декабря 1866 г. и опубликованной в следующем году.

Для доказательства второго неравенства Чебышёва рассмотрим случайную величину У = (Х – М(Х)) 2 . Она неотрицательна, и потому для любого положительного числа b , как следует из первого неравенства Чебышёва, справедливо неравенство

.

Положим b = a 2 . Событие { Y > b } совпадает с событием {| X M (X )|> a }, а потому

что и требовалось доказать.

Пример 11 . Можно указать неотрицательную случайную величину Х и положительное число а такие, что первое неравенство Чебышёва обращается в равенство.

Достаточно рассмотреть . Тогда М(Х) = а, М(Х)/а = 1 и Р(а> a ) = 1, т.е. P (X > a ) = M (X )| a = 1.

Следовательно, первое неравенство Чебышёва в его общей формулировке не может быть усилено. Однако для подавляющего большинства случайных величин, используемых при вероятностно-статистическом моделировании реальных явлений и процессов, левые части неравенств Чебышёва много меньше соответствующих правых частей.

Пример 12. Может ли первое неравенство Чебышёва обращаться в равенство при всех а ? Оказывается, нет. Покажем, что для любой неотрицательной случайной величины с ненулевым математическим ожиданием можно найти такое положительное число а , что первое неравенство Чебышёва является строгим.

Действительно, математическое ожидание неотрицательной случайной величины либо положительно, либо равно 0. В первом случае возьмем положительное а , меньшее положительного числа М(Х), например, положим а = М(Х)/ 2. Тогда М(Х)/а больше 1, в то время как вероятность события не может превышать 1, а потому первое неравенство Чебышева является для этого а строгим. Второй случай исключается условиями примера 11.

Отметим, что во втором случае равенство 0 математического ожидания влечет тождественное равенство 0 случайной величины. Для такой случайной величины левая и правая части первого неравенства Чебышёва равны 0 при любом положительном а .

Можно ли в формулировке первого неравенства Чебышева отбросить требование неотрицательности случайной величины Х ? А требование положительности а ? Легко видеть, что ни одно из двух требований не может быть отброшено, поскольку иначе правая часть первого неравенства Чебышева может стать отрицательной.