Болезни Военный билет Призыв

В каких единицах измеряется импульс тела. История появления термина. Изменение величины p¯

Второй закон Ньютона \(~m \vec a = \vec F\) можно записать в иной форме, которая приведена самим Ньютоном в его главном труде «Математические начала натуральной философии».

Если на тело (материальную точку) действует постоянная сила, то постоянным является и ускорение

\(~\vec a = \frac{\vec \upsilon_2 - \vec \upsilon_1}{\Delta t}\) ,

где \(~\vec \upsilon_1\) и \(~\vec \upsilon_2\) - начальное и конечное значения скорости тела.

Подставив это значение ускорения во второй закон Ньютона, получим:

\(~\frac{m \cdot (\vec \upsilon_2 - \vec \upsilon_1)}{\Delta t} = \vec F\) или \(~m \vec \upsilon_2 - m \vec \upsilon_1 = \vec F \Delta t\) . (1)

В этом уравнении появляется новая физическая величина - импульс материальной точки.

Импульсом материальной точки называют величину равную произведению массы точки на ее скорость.

Обозначим импульс (его также называют иногда количеством движения) буквой \(~\vec p\) . Тогда

\(~\vec p = m \vec \upsilon\) . (2)

Из формулы (2) видно, что импульс - векторная величина. Так как m > 0, то импульс имеет то же направление, что и скорость.

Единица импульса не имеет особого названия. Ее наименование получается из определения этой величины:

[p ] = [m ] · [υ ] = 1 кг · 1 м/с = 1 кг·м/с.

Другая форма записи второго закона Ньютона

Обозначим через \(~\vec p_1 = m \vec \upsilon_1\) импульс материальной точки в начальный момент интервала Δt , а через \(~\vec p_2 = m \vec \upsilon_2\) - импульс в конечный момент этого интервала. Тогда \(~\vec p_2 - \vec p_1 = \Delta \vec p\) есть изменение импульса за время Δt . Теперь уравнение (1) можно записать так:

\(~\Delta \vec p = \vec F \Delta t\) . (3)

Так как Δt > 0, то направления векторов \(~\Delta \vec p\) и \(~\vec F\) совпадают.

Согласно формуле (3)

изменение импульса материальной точки пропорционально приложенной к ней силе и имеет такое же направление, как и сила.

Именно так был впервые сформулирован второй закон Ньютона .

Произведение силы на время ее действия называют импульсом силы . Не надо путать импульс \(~m \vec \upsilon\) материальной точки и импульс силы \(\vec F \Delta t\) . Это совершенно разные понятия.

Уравнение (3) показывает, что одинаковые изменения импульса материальной точки могут быть получены в результате действия большой силы в течение малого интервала времени или малой силы за большой интервал времени. Когда вы прыгаете с какой-то высоты, то остановка вашего тела происходит за счет действия силы со стороны земли или пола. Чем меньше продолжительность столкновения, тем больше тормозящая сила. Для уменьшения этой силы надо, чтобы торможение происходило постепенно. Вот почему при прыжках в высоту спортсмены приземляются на мягкие маты. Прогибаясь, они постепенно тормозят спортсмена. Формула (3) может быть обобщена и на тот случай, когда сила меняется во времени. Для этого весь промежуток времени Δt действия силы надо разделить на столь малые интервалы Δt i , чтобы на каждом из них значение силы без большой ошибки можно было считать постоянным. Для каждого малого интервала времени справедлива формула (3). Суммируя изменения импульсов за малые интервалы времени, получим:

\(~\Delta \vec p = \sum^{N}_{i=1}{\vec F_i \Delta t_i}\) . (4)

Символ Σ (греческая буква «сигма») означает «сумма». Индексы i = 1 (внизу) и N (наверху) означают, что суммируется N слагаемых.

Для нахождения импульса тела поступают так: мысленно разбивают тело на отдельные элементы (материальные точки), находят импульсы полученных элементов, а потом их суммируют как векторы.

Импульс тела равен сумме импульсов его отдельных элементов.

Изменение импульса системы тел. Закон сохранения импульса

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которой мы изучаем, называется механической системой или просто системой.

Изменение импульса системы тел

Рассмотрим систему, состоящую из трех тел. Это могут быть три звезды, испытывающие воздействие со стороны соседних космических тел. На тела системы действуют внешние силы \(~\vec F_i\) (i - номер тела; например, \(~\vec F_2\) - это сумма внешних сил, действующих на тело номер два). Между телами действуют силы \(~\vec F_{ik}\) называемые внутренними силами (рис. 1). Здесь первая буква i в индексе означает номер тела, на которое действует сила \(~\vec F_{ik}\) , а вторая буква k означает номер тела, со стороны которого действует данная сила. На основании третьего закона Ньютона

\(~\vec F_{ik} = - \vec F_{ki}\) . (5)

Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в форме уравнения (3):

\(~\Delta (m_1 \vec \upsilon_1) = (\vec F_{12} + \vec F_{13} + \vec F_1) \Delta t\) , \(~\Delta (m_2 \vec \upsilon_2) = (\vec F_{21} + \vec F_{23} + \vec F_2) \Delta t\) , (6) \(~\Delta (m_3 \vec \upsilon_3) = (\vec F_{31} + \vec F_{32} + \vec F_3) \Delta t\) .

Здесь в левой части каждого уравнения стоит изменение импульса тела \(~\vec p_i = m_i \vec \upsilon_i\) за малое время Δt . Более подробно\[~\Delta (m_i \vec \upsilon_i) = m_i \vec \upsilon_{ik} - m_i \vec \upsilon_{in}\] где \(~\vec \upsilon_{in}\) - скорость в начале, а \(~\vec \upsilon_{ik}\) - в конце интервала времени Δt .

Сложим левые и правые части уравнений (6) и покажем, что сумма изменений импульсов отдельных тел равна изменению суммарного импульса всех тел системы, равного

\(~\vec p_c = m_1 \vec \upsilon_1 + m_2 \vec \upsilon_2 + m_3 \vec \upsilon_3\) . (7)

Действительно,

\(~\Delta (m_1 \vec \upsilon_1) + \Delta (m_2 \vec \upsilon_2) + \Delta (m_3 \vec \upsilon_3) = m_1 \vec \upsilon_{1k} - m_1 \vec \upsilon_{1n} + m_2 \vec \upsilon_{2k} - m_2 \vec \upsilon_{2n} + m_3 \vec \upsilon_{3k} - m_3 \vec \upsilon_{3n} =\) \(~=(m_1 \vec \upsilon_{1k} + m_2 \vec \upsilon_{2k} + m_3 \vec \upsilon_{3k}) -(m_1 \vec \upsilon_{1n} + m_2 \vec \upsilon_{2n} + m_3 \vec \upsilon_{3n}) = \vec p_{ck} - \vec p_{cn} = \Delta \vec p_c\) .

Таким образом,

\(~\Delta \vec p_c = (\vec F_{12} + \vec F_{13} + \vec F_{21} + \vec F_{23} + \vec F_{31} + \vec F_{32} + \vec F_1 + \vec F_2 + \vec F_3) \Delta t\) . (8)

Но силы взаимодействия любой пары тел в сумме дают нуль, так как согласно формуле (5)

\(~\vec F_{12} = - \vec F_{21} ; \vec F_{13} = - \vec F_{31} ; \vec F_{23} = - \vec F_{32}\) .

Поэтому изменение импульса системы тел равно импульсу внешних сил:

\(~\Delta \vec p_c = (\vec F_1 + \vec F_2 + \vec F_3) \Delta t\) . (9)

Мы пришли к важному выводу:

импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Уравнение (9) справедливо для любого интервала времени, если сумма внешних сил остается постоянной.

Закон сохранения импульса

Из уравнения (9) вытекает чрезвычайно важное следствие. Если сумма внешних сил, действующих на систему, равна нулю, то равно нулю и изменение импульса системы\[~\Delta \vec p_c = 0\] . Это означает, что, какой бы интервал времени мы ни взяли, суммарный импульс в начале этого интервала \(~\vec p_{cn}\) и в его конце \(~\vec p_{ck}\) один и тот же\[~\vec p_{cn} = \vec p_{ck}\] . Импульс системы остается неизменным, или, как говорят, сохраняется:

\(~\vec p_c = m_1 \vec \upsilon_1 + m_2 \vec \upsilon_2 + m_3 \vec \upsilon_3 = \operatorname{const}\) . (10)

Закон сохранения импульса формулируется так:

если сумма внешних сил, действующих на тела системы, равна нулю, то импульс системы сохраняется.

Тела могут только обмениваться импульсами, суммарное же значение импульса не изменяется. Надо только помнить, что сохраняется векторная сумма импульсов, а не сумма их модулей.

Как видно из проделанного нами вывода, закон сохранения импульса является следствием второго и третьего законов Ньютона. Система тел, на которую не действуют внешние силы, называется замкнутой или изолированной. В замкнутой системе тел импульс сохраняется. Но область применения закона сохранения импульса шире: если даже на тела системы действуют внешние силы, но их сумма равна нулю, импульс системы все равно сохраняется.

Полученный результат легко обобщается на случай системы, содержащей произвольное число N тел:

\(~m_1 \vec \upsilon_{1n} + m_2 \vec \upsilon_{2n} + m_3 \vec \upsilon_{3n} + \ldots + m_N \vec \upsilon_{Nn} = m_1 \vec \upsilon_{1k} + m_2 \vec \upsilon_{2k} + m_3 \vec \upsilon_{3k} + \ldots + m_N \vec \upsilon_{Nk}\) . (11)

Здесь \(~\vec \upsilon_{in}\) - скорости тел в начальный момент времени, а \(~\vec \upsilon_{ik}\) - в конечный. Так как импульс - величина векторная, то уравнение (11) представляет собой компактную запись трех уравнений для проекций импульса системы на координатные оси.

Когда выполняется закон сохранения импульса?

Все реальные системы, конечно, не являются замкнутыми, сумма внешних сил довольно редко может оказаться равной нулю. Тем не менее в очень многих случаях закон сохранения импульса можно применять.

Если сумма внешних сил не равна нулю, но равна нулю сумма проекций сил на какое-то направление, то проекция импульса системы на это направление сохраняется. Например, система тел на Земле или вблизи ее поверхности не может быть замкнутой, так как на все тела действует сила тяжести, которая изменяет импульс по вертикали согласно уравнению (9). Однако вдоль горизонтального направления сила тяжести не может изменять импульс, и сумма проекций импульсов тел на горизонтально направленную ось будет оставаться неизменной, если действием сил сопротивления можно пренебречь.

Кроме того, при быстрых взаимодействиях (взрыв снаряда, выстрел из орудия, столкновения атомов и т. п.) изменение импульсов отдельных тел будет фактически обусловлено только внутренними силами. Импульс сис-темы сохраняется при этом с большой точностью, ибо такие внешние силы, как сила тяготения и сила трения, зависящая от скорости, заметно не изменяет импульса системы. Они малы по сравнению с внутренними силами. Так, скорость осколков снаряда при взрыве в зависимости от калибра может изменяться в пределах 600 - 1000 м/с. Интервал времени, за который сила тяжести смогла бы сообщить телам такую скорость, равен

\(~\Delta t = \frac{m \Delta \upsilon}{mg} \approx 100 c\)

Внутренние же силы давления газов сообщают такие скорости за 0,01 с, т.е. в 10000 раз быстрее.

Реактивное движение. Уравнение мещерского. Реактивная сила

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела,

например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 2). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.

Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.

Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.

Уравнение Мещерского

Выведем уравнение движения ракеты и найдем выражение для реактивной силы. Будем считать, что скорость вытекающих из ракеты газов относительно ракеты постоянна и равна \(~\vec u\) . Внешние силы на ракету не действуют: она находится в космическом пространстве вдали от звезд и планет.

Пусть в некоторый момент времени скорость ракеты относительно инерциальной системы, связанной со звездами, равна \(~\vec \upsilon\) (рис. 3), а масса ракеты равна М . Через малый интервал времени Δt масса ракеты станет равной

\(~M_1 = M - \mu \Delta t\) ,

где μ - расход топлива (расходом топлива называется отношение массы сгоревшего топлива ко времени его сгорания).

За этот же промежуток времени скорость ракеты изменится на \(~\Delta \vec \upsilon\) и станет равной \(~\vec \upsilon_1 = \vec \upsilon + \Delta \vec \upsilon\) . Скорость истечения газов относительно выбранной инерциальной системы отсчета равна \(~\vec \upsilon + \vec u\) (рис. 4), так как до начала сгорания топливо имело ту же скорость, что и ракета.

Запишем закон сохранения импульса для системы ракета - газ:

\(~M \vec \upsilon = (M - \mu \Delta t)(\vec \upsilon + \Delta \vec \upsilon) + \mu \Delta t(\vec \upsilon + \vec u)\) .

Раскрыв скобки, получим:

\(~M \vec \upsilon = M \vec \upsilon - \mu \Delta t \vec \upsilon + M \Delta \vec \upsilon - \mu \Delta t \Delta \vec \upsilon + \mu \Delta t \vec \upsilon + \mu \Delta t \vec u\) .

Слагаемым \(~\mu \Delta t \vec \upsilon\) можно пренебречь по сравнению с остальными, так как оно содержит произведение двух малых величин (это величина, как говорят, второго порядка малости). После приведения подобных членов будем иметь:

\(~M \Delta \vec \upsilon = - \mu \Delta t \vec u\) или \(~M \frac{\Delta \vec \upsilon}{\Delta t} = - \mu \vec u\) . (12)

Это одно из уравнений Мещерского для движения тела переменной массы, полученное им в 1897 г.

Если ввести обозначение \(~\vec F_r = - \mu \vec u\) , то уравнение (12) совпадет по форме записи со вторым законом Ньютона. Однако масса тела М здесь не постоянна, а убывает со временем из-за потери вещества.

Величина \(~\vec F_r = - \mu \vec u\) носит название реактивной силы . Она появляется вследствие истечения газов из ракеты, приложена к ракете и направлена противоположно скорости газов относительно ракеты. Реактивная сила определяется лишь скоростью истечения газов относительно ракеты и расходом топлива. Существенно, что она не зависит от деталей устройства двигателя. Важно лишь, чтобы двигатель обеспечивал истечение газов из ракеты со скоростью \(~\vec u\) при расходе топлива μ . Реактивная сила космических ракет достигает 1000 кН.

Если на ракету действуют внешние силы, то ее движение определяется реактивной силой и суммой внешних сил. В этом случае уравнение (12) запишется так:

\(~M \frac{\Delta \vec \upsilon}{\Delta t} = \vec F_r + \vec F\) . (13)

Реактивные двигатели

Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-реактивными двигателями.

В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твердой, жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолетов и ракет, не выходящих за пределы атмосферы, связано с тем, что именно реактивные двигатели способны обеспечить максимальную скорость полета.

Реактивные двигатели делятся на два класса: ракетные и воздушно-реактивные .

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

На рисунке 5 показана схема ракетного двигателя на твердом топливе. Порох или какое-либо другое твердое топливо, способное к горению в отсутствие воздуха, помещают внутрь камеры сгорания двигателя.

При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где расположено сопло. Вытекающие через сопло газы не встречают на своем пути стенку, на которую могли бы оказывать давление. В результате появляется сила, толкающая ракету вперед.

Суженная часть камеры - сопло служит для увеличения скорости истечения продуктов сгорания, что в свою очередь повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Применяются также ракетные двигатели, работающие на жидком топливе.

В жидкостно-реактивных двигателях (ЖРД) в качестве горючего можно использовать керосин, бензин, спирт, анилин, жидкий водород и др., а в качестве окислителя, необходимого для горения, - жидкий кислород, азотную кислоту, жидкий фтор, пероксид водорода и др. Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру, где при сгорании топлива развивается температура до 3000 °С и давление до 50 атм (рис. 6). В остальном двигатель работает так же, как и двигатель на твердом топливе.

Раскаленные газы (продукты сгорания), выходя через сопло, вращают газовую турбину, приводящую в движение компрессор. Турбокомпрессорные двигатели установлены в наших лайнерах Ту-134, Ил-62, Ил-86 и др.

Реактивными двигателями оснащены не только ракеты, но и большая часть современных самолетов.

Успехи в освоении космического пространства

Основы теории реактивного двигателя и научное доказательство воз-можности полетов в межпланетном пространстве были впервые высказаны и разработаны русским ученым К.Э. Циолковским в работе «Исследование мировых пространств реактивными приборами».

К.Э. Циолковскому принадлежит также идея применения многоступенчатых ракет. Отдельные ступени, из которых составлена ракета, снабжаются собственными двигателями и запасом топлива. По мере выгорания топлива каждая очередная ступень отделяется от ракеты. Поэтому в дальнейшем на ускорение ее корпуса и двигателя топливо не расходуется.

Идея Циолковского о сооружении большой станции-спутника на орбите вокруг Земли, с которой будут стартовать ракеты к другим планетам Солнечной системы, еще не осуществлена, но нет сомнения в том, что рано или поздно такая станция будет создана.

В настоящее время становится реальностью пророчество Циолковского: «Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство».

Нашей стране принадлежит великая честь запуска 4 октября 1957 г. первого искусственного спутника Земли. Также впервые в нашей стране 12 апреля 1961 г. был осуществлен полет космического корабля с космонавтом Ю.А. Гагариным на борту.

Эти полеты были совершены на ракетах, сконструированных отечест-венными учеными и инженерами под руководством С.П. Королева. Большие заслуги в исследовании космического пространства имеют американские ученые, инженеры и астронавты. Два американских астронавта из экипажа космического корабля «Аполлон-11» - Нейл Армстронг и Эдвин Олдрин - 20 июля 1969 г. впервые совершили посадку на Луну. На космическом теле Солнечной системы человеком были сделаны первые шаги.

С выходом человека в космос не только открылись возможности исследования других планет, но и представились поистине фантастические возможности изучения природных явлений и ресурсов Земли, о которых можно было только мечтать. Возникло космическое природоведение. Раньше общая карта Земли составлялась по крупицам, как мозаичное панно. Теперь снимки с орбиты, охватывающие миллионы квадратных километров, позволяют выбирать для исследования наиболее интересные участки земной поверхности, экономя тем самым силы и средства- Из космоса лучше различаются крупные геологические структуры: плиты, глубинные разломы земной коры - места наиболее вероятного залегания полезных ископаемых. Из космоса удалось обнаружить новый тип геологических образований кольцевые структуры, подобные кратерам Луны и Марса,

Сейчас на орбитальных комплексах разработаны технологии получения материалов, которые нельзя изготовить на Земле, а только в состоянии длительной невесомости в космосе. Стоимость этих материалов (сверхчистые монокристаллы и др.) близка к затратам на запуск космических аппаратов.

Литература

  1. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. - 496 с.

Инструкция

Найдите массу движущегося тела и измерьте его движения. После его взаимодействия с другим телом, у исследуемого тела изменится скорость. В этом случае от конечной (после взаимодействия) отнимите начальную скорость и умножьте разность на массу тела Δp=m∙(v2-v1). Мгновенную скорость измерьте радаром, массу тела - весами. Если после взаимодействия тело начало двигаться в сторону, противоположную той, кода двигалось до взаимодействия, то конечная скорость будет отрицательной. Если положительное – он вырос, если отрицательное – уменьшился.

Поскольку причиной изменения скорости любого тела является сила, то она же и является причиной изменения импульса. Чтобы рассчитать изменение импульса любого тела, достаточно найти импульс силы, действовавшей на данное тело в некоторого времени. С помощью динамометра измерьте силу, которая заставляет тело изменять скорость, придавая ему ускорение. Одновременно с помощью секундомера измерьте время, которое эта сила действовала на тело. Если сила заставляет тело двигаться , то считайте ее положительной, если же тормозит его движение – считайте ее отрицательной. Импульс силы, равный изменению импульса будет произведению силы на время ее действия Δp=F∙Δt.

Определение мгновенной скорости спидометром или радаром Если движущееся тело оборудовано спидометром (), то на его шкале или электронном табло будет непрерывно отображаться мгновенная скорость в данный момент времени. При наблюдении за телом с неподвижной точки (), направьте на него сигнал радара, на его табло отобразится мгновенная скорость тела в данный момент времени.

Видео по теме

Сила – это физическая величина, действующая на тело, которая, в частности, сообщает ему некоторое ускорение. Чтобы найти импульс силы , нужно определить изменение количества движения, т.е. импульс а самого тела.

Инструкция

Движение материальной точки воздействием некоторой силы или сил, которые придают ей ускорение. Результатом приложения силы определенной величины в течение некоторого является соответствующее количество . Импульсом силы называется мера ее действия за определенный промежуток времени:Pс = Fср ∆t, гдеFср – средняя сила, действующая на тело;∆t – временной интервал.

Таким образом, импульс силы равен изменению импульс а тела:Pc = ∆Pт = m (v – v0), гдеv0 – начальная скорость;v – конечная скорость тела.

Полученное равенство отображает второй закон Ньютона применительно к инерциальной системе отсчета: производная функции материальной точки по времени равна величине постоянной силе, действующей на нее:Fср ∆t = ∆Pт → Fср = dPт/dt.

Суммарный импульс системы нескольких тел может измениться только под воздействием внешних сил, причем его значение прямо пропорционально их сумме. Это утверждение является следствием второго и третьего законов Ньютона. Пусть из трех взаимодействующих тел, тогда верно:Pс1 + Pc2 + Pc3 = ∆Pт1 + ∆Pт2 + ∆Pт3, гдеPci – импульс силы , действующей на тело i;Pтi – импульс тела i.

Это равенство показывает, что если сумма внешних сил нулевая, то общий импульс замкнутой системы тел всегда постоянен, несмотря на то, что внутренние силы

Импульс в физике

В переводе с латинского «импульс» означает «толчок». Эту физическую величину называют также «количеством движения». Она была введена в науку примерно в то же время, когда были открыты законы Ньютона (в конце XVII века).

Разделом физики, изучающим движение и взаимодействие материальных тел, является механика. Импульс в механике – это векторная величина, равная произведению массы тела на его скорость: p=mv. Направления векторов импульса и скорости всегда совпадают.

В системе СИ за единицу импульса принимают импульс тела массой 1 кг, которое движется со скоростью 1 м/с. Поэтому единица импульса в СИ – это 1 кг∙м/с.

В расчетных задачах рассматривают проекции векторов скорости и импульса на какую-либо ось и используют уравнения для этих проекций: к примеру, если выбрана ось x, тогда рассматривают проекции v(x) и p(x). По определению импульса, эти величины связаны соотношением: p(x)=mv(x).

В зависимости от того, какая выбрана ось и куда она направлена, проекция вектора импульса на нее может быть как положительной, так и отрицательной величиной.

Закон сохранения импульса

Импульсы материальных тел при их физическом взаимодействии могут меняться. Например, при столкновении двух шариков, подвешенных на нитях, их импульсы взаимно изменяются: один шарик может прийти в движение из неподвижного состояния или увеличить свою скорость, а другой, наоборот, уменьшить скорость или остановиться. Однако в замкнутой системе, т.е. когда тела взаимодействуют только между собой и не подвергаются воздействию внешних сил, векторная сумма импульсов этих тел остается постоянной при любых их взаимодействиях и движениях. В этом заключается закон сохранения импульса. Математически его можно вывести из законов Ньютона.

Закон сохранения импульса применим также к таким системам, где какие-то внешние силы действуют на тела, но их векторная сумма равна нулю (например, сила тяжести уравновешивается силой упругости поверхности). Условно такую систему тоже можно считать замкнутой.

В математической форме закон сохранения импульса записывается так: p1+p2+…+p(n)=p1’+p2’+…+p(n)’ (импульсы p – векторы). Для системы из двух тел это уравнение выглядит как p1+p2=p1’+p2’, или m1v1+m2v2=m1v1’+m2v2’. К примеру, в рассмотренном случае с шариками суммарный импульс обоих шаров до взаимодействия будет равен суммарному импульсу после взаимодействия.

1. Как вам известно, результат действия силы зависит от ее модуля, точки приложения и направления. Действительно, чем больше сила, действующая на тело, тем большее ускорение оно приобретает. От направления силы зависит и направление ускорения. Так, приложив небольшую силу к ручке, мы легко открываем дверь, если ту же силу приложить около петель, на которых висит дверь, то ее можно и не открыть.

Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит не только от модуля силы, но и от времени ее действия. Проделаем опыт. К штативу на нити подвесим груз, к которому снизу привязана еще одна нить (рис. 59). Если за нижнюю нить резко дернуть, то она оборвется, а груз останется висеть на верхней нити. Если же теперь медленно потянуть за нижнюю нить, то оборвется верхняя нить.

Импульсом силы называют векторную физическую величину, равную произведению силы на время ее действия Ft .

Единица импульса силы в СИ - ньютон‑секунда (1 Н с ): [Ft ] = 1 Н с.

Вектор импульса силы совпадает по направлению с вектором силы.

2. Вы также знаете, что результат действия силы зависит от массы тела, на которое эта сила действует. Так, чем больше масса тела, тем меньшее ускорение оно приобретает при действии одной и той же силы.

Рассмотрим пример. Представим себе, что на рельсах стоит груженая платформа. С ней сталкивается движущийся с некоторой скоростью вагон. В результате столкновения платформа приобретет ускорение и переместится на некоторое расстояние. Если же движущийся с той же скоростью вагон столкнется с легкой вагонеткой, то она в результате взаимодействия переместится на существенно большее расстояние, чем груженая платформа.

Другой пример. Предположим, что к мишени подлетает пуля со скоростью 2 м/ с. Пуля, вероятнее всего, отскочит от мишени, оставив на ней лишь небольшую вмятину. Если же пуля будет лететь со скоростью 100 м/с, то она пробьет мишень.

Таким образом, результат взаимодействия тел зависит от их массы и скорости движения.

Импульсом тела называют векторную физическую величину, равную произведению массы тела и его скорости.

p = m v .

Единица импульса тела в СИ - килограмм-метр в секунду (1 кг м/с): [p ] = [m ][v ] = 1 кг 1м/ с = 1 кг м/с.

Направление импульса тела совпадает с направлением его скорости.

Импульс - величина относительная, его значение зависит от выбора системы отсчета. Это и понятно, поскольку относительной величиной является скорость.

3. Выясним, как связаны импульс силы и импульс тела.

По второму закону Ньютона:

F = ma .

Подставив в эту формулу выражение для ускорения a = , получим:

F = , или
Ft = mv mv 0 .

В левой части равенства стоит импульс силы; в правой части равенства - разность конечного и начального импульсов тела,т. е. изменение импульса тела.

Таким образом,

импульс силы равен изменению импульса тела.

Ft = D(m v ).

Это иная формулировка второго закона Ньютона. Именно так сформулировал его Ньютон.

4. Предположим, что сталкиваются два шарика движущиеся по столу. Любые взаимодействующие тела, в данном случае шарики, образуют систему . Между телами системы действуют силы: сила действия F 1 и сила противодействия F 2 . При этом сила действия F 1 по третьему закону Ньютона равна силе противодействия F 2 и направлена противоположно ей: F 1 = –F 2 .

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

Помимо внутренних сил, на тела системы действуют внешние силы. Так, взаимодействующие шарики притягиваются к Земле, на них действует сила реакции опоры. Эти силы являются в данном случае внешними силами. Во время движения на шарики действуют сила сопротивления воздуха и сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух шариков.

Внешними силами называют силы, которые действуют на тела системы со стороны других тел.

Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами.

В замкнутой системе действуют только внутренние силы.

5. Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела m 1 , его скорость до взаимодействия v 01 , после взаимодействия v 1 . Масса второго тела m 2 , его скорость до взаимодействия v 02 , после взаимодействия v 2 .

Силы, с которыми взаимодействуют тела, по третьему закону:F 1 = –F 2 . Время действия сил одно и то же, поэтому

F 1 t = –F 2 t .

Для каждого тела запишем второй закон Ньютона:

F 1 t = m 1 v 1 – m 1 v 01 , F 2 t = m 2 v 2 – m 2 v 02 .

Поскольку левые части равенств равны, то равны и их правые части, т. е.

m 1 v 1 m 1 v 01 = –(m 2 v 2 – m 2 v 02).

Преобразовав это равенство, получим:

m 1 v 01 + m 1 v 02 = m 2 v 1 + m 2 v 2 .

В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой - сумма импульсов тел после взаимодействия. Как видно из этого равенства, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы.

В этом состоит закон сохранения импульса .

6. Замкнутая система тел - это модель реальной системы. В природе нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев системы взаимодействующих тел можно рассматривать как замкнутые. Это возможно в следующих случаях: внутренние силы много больше внешних сил, время взаимодействия мало, внешние силы компенсируют друг друга. Кроме того, может быть равна нулю проекция внешних сил на какое‑либо направление и тогда закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

7. Пример решения задачи

Две железнодорожные платформы движутся навстречу друг другу со скоростями 0,3 и 0,2 м/с. Массы платформ соответственно равны 16 и 48 т. С какой скоростью и в каком направлении будут двигаться платформы после автосцепки?

Дано :

СИ

Решение

v 01 = 0,3 м/с

v 02 = 0,2 м/с

m 1 = 16 т

m 2 = 48 т

v 1 = v 2 = v

v 02 =

v 02 =

1,6104кг

4,8104кг

Изобразим на рисунке направление движения платформ до и после взаимодействия (рис. 60).

Силы тяжести, действующие на платформы, и силы реакции опоры коммпенсируют друг друга. Систему из двух платформ можно считать замкнутой

vx ?

и применить к ней закон сохранения импульса.

m 1 v 01 + m 2 v 02 = (m 1 + m 2)v .

В проекциях на ось X можно записать:

m 1 v 01x + m 2 v 02x = (m 1 + m 2)v x .

Так как v 01x = v 01 ; v 02x = –v 02 ; v x = –v , то m 1 v 01 – m 2 v 02 = –(m 1 + m 2)v.

Откуда v = – .

v = – = 0,75 м/с.

После сцепки платформы будут двигаться в ту сторону, в которую до взаимодействия двигалась платформа с большей массой.

Ответ: v = 0,75 м/с; направлена в сторону движения тележки с большей массой.

Вопросы для самопроверки

1. Что называют импульсом тела?

2. Что называют импульсом силы?

3. Как связаны импульс силы и изменение импульса тела?

4. Какую систему тел называют замкнутой?

5. Сформулируйте закон сохранения импульса.

6. Каковы границы применимости закона сохранения импульса?

Задание 17

1. Чему равен импульс тела массой 5 кг, движущегося со скоростью 20 м/с?

2. Определите изменение импульса тела массой 3 кг за 5 с под действием силы 20 Н.

3. Определите импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчета, связанной: а) с неподвижным относительно Земли автомобилем; б) с автомобилем, движущимся в ту же сторону с такой же скоростью; в) с автомобилем, движущимся с такой же скоростью, но в противоположную сторону.

4. Мальчик массой 50 кг спрыгнул с неподвижной лодки массой 100 кг, расположенной в воде около берега. С какой скоростью отъехала лодка от берега, если скорость мальчика направлена горизонтально и равна 1 м/с?

5. Снаряд массой 5 кг, летевший горизонтально, разрывался на два осколка. Какова скорость снаряда, если осколок массой 2 кг при разрыве приобрел скорость 50 м/с, а второй массой 3 кг - 40 м/с? Скорости осколков направлены горизонтально.

Проделаем несколько несложных преобразований с формулами. По второму закону Ньютона силу можно найти: F=m*a. Ускорение находится следующим образом: a=v⁄t . Таким образом получаем: F=m*v /t.

Определение импульса тела: формула

Выходит, что сила характеризуется изменением произведения массы на скорость во времени. Если обозначить это произведение некой величиной, то мы получим изменение этой величины во времени как характеристику силы. Эту величину назвали импульсом тела. Импульс тела выражается формулой:

где p импульс тела, m масса, v скорость.

Импульс это векторная величина, при этом его направление всегда совпадает с направлением скорости. Единицей импульса является килограмм на метр в секунду (1 кг*м/с).

Что же такое импульс тела: как понять?

Попробуем по-простому, «на пальцах» разобраться, что такое импульс тела. Если тело покоится, то его импульс равен нулю. Логично. Если скорость тела изменяется, то у тела появляется некий импульс, который характеризует величину приложенной к нему силы.

Если воздействие на тело отсутствует, но оно движется с некоторой скоростью, то есть имеет некий импульс, то его импульс означает, какое воздействие способно оказать данное тело при взаимодействии с другим телом.

В формулу импульса входит масса тела и его скорость. То есть чем большей массой и/или скоростью обладает тело, тем большее воздействие оно может оказать. Это понятно и из жизненного опыта.

Чтобы сдвинуть тело небольшой массы, нужна небольшая сила. Чем больше масса тела, тем большее придется приложить усилие. То же самое касается и скорости, которую сообщают телу. В случае же воздействия самого тела на другое, импульс также показывает величину, с которой тело способно действовать на другие тела. Эта величина напрямую зависит от скорости и массы исходного тела.

Импульс при взаимодействии тел

Возникает еще один вопрос: что произойдет с импульсом тела при его взаимодействии с другим телом? Масса тела измениться не может, если оно остается целым, а вот скорость может измениться запросто. При этом скорость тела изменится в зависимости от его массы.

В самом деле, понятно, что при столкновении тел с очень разными массами, скорость их изменится по-разному. Если летящий на большой скорости футбольный мяч врежется в неготового к этому человека, например зрителя, то зритель может упасть, то есть приобретет некоторую небольшую скорость, но точно не полетит как мячик.

А все потому, что масса зрителя намного больше массы мяча. Но при этом сохранится неизменным общий импульс этих двух тел.

Закон сохранения импульса: формула

В этом и заключается закон сохранения импульса: при взаимодействии двух тел их общий импульс остается неизменным. Закон сохранения импульса действует только в замкнутой системе, то есть в такой системе, в которой нет воздействия внешних сил или их суммарное действие равно нулю.

В реальности практически всегда на систему тел оказывается стороннее воздействие, но общий импульс, как и энергия, не пропадает в никуда и не возникает из ниоткуда, он распределяется между всеми участниками взаимодействия.