Болезни Военный билет Призыв

Условная вероятность. Теорема Байеса. Простые задачи по теории вероятности. Основная формула

Вероятность противоположного события

Рассмотрим некоторое случайное событие A , и пусть его вероятность p(A) известна. Тогда вероятность противоположного события определяется по формуле

. (1.8)

Доказательство. Вспомним, что по аксиоме 3 для несовместных событий

p(A+B) = p(A) + p(B) .

В силу несовместности A и

Следствие. , то есть вероятность невозможного события равна нулю.

С помощью формулы (1.8) определяется, например, вероятность промахнуться, если известна вероятность попадания (или, наоборот, вероятность попадания, если известна вероятность промаха; например, если вероятность попадания для орудия 0,9, вероятность промаха для него (1 – 0,9 = 0,1).

  1. Вероятность суммы двух событий

Здесь уместно будет напомнить, что для несовместных событий эта формула имеет вид:

Пример. Завод производит 85% продукции первого сорта и 10% - второго. Остальные изделия считаются браком. Какова вероятность, что взяв наудачу изделие, мы получим брак?

Решение. P = 1 – (0,85 + 0,1) = 0,05.

Вероятность суммы двух любых случайных событий равна

Доказательство. Представим событие A + B в виде суммы несовместных событий

Учитывая несовместность A и , получим согласно аксиоме 3

Аналогично находим

Подставляя последнее в предыдущую формулу, получим искомую (1.10) (рис 2).

Пример. Из 20 студентов 5 человек сдали на двойку экзамен по истории, 4 – по английскому языку, причем, 3 студента получили двойки по обоим предметам. Каков процент студентов в группе, не имеющих двоек по этим предметам?

Решение. P = 1 – (5/20 + 4/20 – 3/20) = 0,7 (70%).

  1. Условная вероятность

В некоторых случаях необходимо определить вероятность случайного события B при условии, что произошло случайное событие A , имеющее ненулевую вероятность. То, что событие A произошло, сужает пространство элементарных событий до множества A , соответствующего этому событию. Дальнейшие рассуждения проведём на примере классической схемы. Пусть Wсостоит из n равновозможных элементарных событий (исходов) и событию A благоприятствует m(A) , а событию AB - m(AB) исходов. Обозначим условную вероятность события B при условии, что A произошло, - p(B|A). По определению,

= .

Если A произошло, то реализован один из m(A) исходов и событие B может произойти, только если произойдёт один из исходов, благоприятствующих AB ; таких исходов m(AB) . Поэтому естественно положить условную вероятность события B при условии, что A произошло, равной отношению

Обобщая, дадим общее определение: условной вероятностью события B при условии, что событие A с ненулевой вероятностью произошло, называется

. (1.11)

Легко можно проверить, что введённое таким образом определение удовлетворяет всем аксиомам и, следовательно, справедливы все ранее доказанные теоремы.

Часто условную вероятность p(B|A) можно легко найти из условия задачи, в более сложных случаях приходится пользоваться определением (1.11).

Пример. В урне лежит N шаров, из них n белых и N-n черных. Из нее достают шар и, не кладя его обратно (выборка без возвращения ), достают еще один. Чему равна вероятность того, что оба шара белые?

Решение. При решении этой задачи применим и классическое определение вероятности, и правило произведения: обозначим через A событие, состоящее в том, что первым вынули белый шар (тогда – первым вынули черный шар), а через B – событие, состоящее в том, что вторым вынули белый шар; тогда

.

Легко видеть, что вероятность того, что три вынутые подряд (без возвращения) шара белые:

и т.д.

Пример. Из 30 экзаменационных билетов студент подготовил только 25. Если он отказывается отвечать по первому взятому билету (которого он не знает), то ему разрешается взять второй. Определить вероятность того, что второй билет окажется счастливым.

Решение. Пусть событие A заключается в том, что первый вытащенный билет оказался для студента ²плохим², а B - второй - ²хорошим². Поскольку после наступления события A один из ²плохих² уже извлечён, то остаётся всего 29 билетов, из которых 25 студент знает. Отсюда искомая вероятность, предполагая, что появление любого билета равновозможно и они обратно не возвращаются, равна .

  1. Вероятность произведения

Соотношение (1.11), предполагая, что p(A) или p(B) не равны нулю, можно записать в виде

Это соотношение называют теоремой о вероятности произведения двух событий , которая может быть обобщена на любое число множителей, например, для трёх она имеет вид

Пример. По условиям предыдущего примера найти вероятность успешной сдачи экзамена, если для этого студент должен ответить на первый билет или, не ответив на первый, обязательно ответить на второй.

Решение. Пусть события A и B заключаются в том, что, соответственно, первый и второй билеты ²хорошие². Тогда – появление ²плохого² билета в первый раз. Экзамен будет сдан, если произойдёт событие A или одновременно и B . То есть искомое событие С - успешная сдача экзамена – выражается следующим образом: C = A + .Отсюда

Здесь мы воспользовались несовместностью A и , а следовательно, несовместностью A и , теоремами о вероятности суммы и произведения и классическим определением вероятности при подсчёте p(A) и .

Эту задачу можно решить и проще, если воспользоваться теоремой о вероятности противоположного события:

  1. Независимость событий

Случайные события A и B назовём независимыми , если

Для независимых событий из (1.11) следует, что ; справедливо и обратное утверждение.

Независимость событий означает, что наступление события A не изменяет вероятности появления события B, то есть условная вероятность равна безусловной.

Пример. Рассмотрим предыдущий пример с урной, содержащей N шаров, из которых n белых, но изменим опыт: вынув шар, мы кладем его обратно и только затем вынимаем следующий (выборка с возвращением ).

A - событие, состоящее в том, что первым вынули белый шар, - событие, состоящее в том, что первым вынули черный шар, а B - событие, состоящее в том, что вторым вынули белый шар; тогда

то есть в этом случае события A и В независимы.

Таким образом, при выборке с возвращением события при втором вынимании шара не зависят от событий первого вынимания, а при выборке без возвращения это не так. Однако при больших N и n эти вероятности очень близки к друг другу. Этим пользуются, так как иногда производят выборку без возвращения (например, при контроле качества, когда тестирование объекта приводит к его разрушению), а расчеты проводят по формулам для выборки с возвращением, которые проще.

На практике при расчете вероятностей часто пользуются правилом, согласно которому из физической независимости событий следует их независимость в теоретико-вероятностном смысле.

Пример. Вероятность того, что человек в возрасте 60 лет не умрет в ближайший год, равна 0,91. Страховая компания страхует на год жизнь двух людей 60-ти лет.

Вероятность того, что ни один из них не умрет: 0,91 × 0,91 = 0,8281.

Вероятность того, что они оба умрут:

(1 0,91) × (1 0,91) = 0,09 × 0,09 = 0,0081.

Вероятность того, что умрет хотя бы один :

1 0,91 × 0,91 = 1 0,8281 = 0,1719.

Вероятность того, что умрет один :

0,91 × 0,09 + 0,09 × 0,91 = 0,1638.

Систему событий A 1 , A 2 ,..., A n назовём независимой в совокупности, если вероятность произведения равна произведению вероятностей для любой комбинации сомножителей из этой системы. В этом случае, в частности,

Пример. Шифр сейфа состоит из семи десятичных цифр. Чему равна вероятность, что вор с первого раза наберет его верно?

В каждой из 7 позиций можно набрать любую из 10 цифр 0,1,2,...,9, всего 10 7 чисел, начиная с 0000000 и кончая 9999999.

Пример. Шифр сейфа состоит из русской буквы (их 33) и трех цифр. Чему равна вероятность, что вор с первого раза наберет его верно?

P = (1/33) × (1/10) 3 .

Пример. В более общем виде задача о страховке: вероятность того, что человек в возрасте … лет не умрет в ближайший год, равна p. Страховая компания страхует на год жизнь n людей этого возраста.

Вероятность того, что ни один из них не умрет: pn (не придется платить страховую премию никому).

Вероятность того, что умрет хотя бы один : 1 – p n (предстоят выплаты).

Вероятность того, что они все умрут: (1 – p) n (самые большие выплаты).

Вероятность того, что умрет один : n × (1 – p) × p n-1 (если людей пронумеровать, то тот, кто умрет, может иметь номер 1, 2,…,n – это n разных событий, каждое из которых имеет вероятность (1 – p) × p n-1).

  1. Формула полной вероятности

Пусть события H 1 , H 2 , ... , H n удовлетворяют условиям

Если , и .

Такую совокупность называют полной группой событий .

Предположим, что известны вероятности p (H i ), p (A/H i ). В этом случае применима формула полной вероятности

. (1.14)

Доказательство. Воспользуемся тем, что H i (их обычно называют гипотезами ) попарно несовместны (следовательно несовместны и H i × A ), и их сумма есть достоверное событие

Эта схема имеет место всегда, когда можно говорить о разбиении всего пространства событий на несколько, вообще говоря, разнородных областей. В экономике это – разбиение страны или района на регионы разного размера и разных условий, когда известна доля каждого региона p(H i) и вероятность (доля) какого-то параметра в каждом регионе (например, процент безработных – в каждом регионе он свой) – p(A/H i) . На складе может лежать продукция с трех разных заводов, поставляющих разное количество продукции с разной долей брака и т.д.

Пример. Литье в болванках поступает из двух цехов в третий: 70% из первого и 30% из второго. При этом продукция первого цеха имеет 10% брака, а второго – 20%. Найти вероятность того, что одна взятая наугад болванка имеет дефект.

Решение: p(H 1) = 0,7; p(H 2) = 0,3; p(A/H 1) = 0,1; p(A/H 2) = 0,2;

P = 0,7 × 0.1 + 0,3 × 0,2 = 0,13 (в среднем 13% болванок в третьем цехе дефектны).

Математическая модель может быть, например, такой: имеется несколько урн разного состава; в первой урне n 1 шаров, из которых m 1 белых, и т.д. По формуле полной вероятности ищется вероятность, выбрав наугад урну, достать из нее белый шар.

По этой же схеме решаются задачи и в общем случае.

Пример. Вернемся к примеру с урной, содержащей N шаров, из которых n белых. Достаем из нее (без возвращения) два шара. Какова вероятность, что второй шар белый?

Решение. H 1 – первый шар белый; p(H 1)=n/N;

H 2 – первый шар черный; p(H 2)=(N-n)/N;

В - второй шар белый; p(B|H 1)=(n-1)/(N-1); p(B|H 2)=n/(N-1);

Эта же модель может быть применена при решении такой задачи: из N билетов студент выучил только n. Что ему выгоднее – тянуть билет самым первым или вторым? Оказывается, в любом случае он с вероятностью n/N вытянет хороший билет и с вероятностью (N-n)/N – плохой.

Пример. Определить вероятность того, что путник, вышедший из пункта А, попадёт в пункт В, если на развилке дорог он наугад выбирает любую дорогу (кроме обратной). Схема дорог указана на рис. 1.3.

Решение. Пусть приход путника в пункты H 1 , H 2 , H 3 и H 4 будет соответствующими гипотезами. Очевидно, они образуют полную группу событий и по условию задачи

p(H 1) = p(H 2) = p(H 3) = p(H 4) = 0,25.

(Все направления из А для путника равновозможны). Согласно схеме дорог условные вероятности попадания в B при условии, что путник прошёл через H i , равны:

Применяя формулу полной вероятности, получим

  1. Формула Байеса

Предположим, что выполняются условия предыдущего пункта и дополнительно известно, что событие A произошло. Найдём вероятность того, что при этом была реализована гипотеза H k. По определению условной вероятности

. (1.15)

Полученное соотношение называют формулой Байеса . Она позволяет по известным
(до проведения опыта) априорным вероятностям гипотез p(H i) и условным вероятностям p(A|H i) определить условную вероятность p(H k |A) , которую называют апостериорной (то есть полученной при условии, что в результате опыта событие A уже произошло).

Пример. 30% пациентов, поступивших в больницу, принадлежат первой социальной группе, 20% - второй и 50% - третьей. Вероятность заболевания туберкулёзом для представителя каждой социальной группы, соответственно, равна 0,02, 0,03 и 0,01. Проведенные анализы для случайно выбранного пациента показали наличие туберкулёза. Найти вероятность того, что это представитель третьей группы.

Понимаю, что всем хочется заранее знать, как завершится спортивное мероприятие, кто одержит победу, а кто проиграет. Обладая подобной информацией, можно без страха делать ставки на спортивные мероприятия. Но можно ли вообще и если да, то как рассчитать вероятность события?

Вероятность – это величина относительная, поэтому не может с точностью говорить о каком-либо событии. Данная величина позволяет проанализировать и оценить необходимость совершения ставки на то или иное соревнование. Определение вероятностей – это целая наука, требующая тщательного изучения и понимания.

Коэффициент вероятности в теории вероятности

В ставках на спорт есть несколько вариантов исхода соревнования:

  • победа первой команды;
  • победа второй команды;
  • ничья;
  • тотал.

У каждого исхода соревнования есть своя вероятность и частота, с которой данное событие совершится при условии сохранения начальных характеристик. Как уже говорили ранее, невозможно точно рассчитать вероятность какого-либо события – оно может совпасть, а может и не совпасть. Таким образом, ваша ставка может как выиграть, так и проиграть.

Точного 100% предугадывания результатов соревнования не может быть, так как на исход матча влияет множество факторов. Естественно, и букмекеры не знают заранее исход матча и лишь предполагают результат, принимая решение на своей системе анализа и предлагают определенные коэффициенты для ставок.

Как посчитать вероятность события?

Допустим, что коэффициент букмекера равен 2. 1/2 – получаем 50%. Получается, что коэффициент 2 равен вероятности 50%. По тому же принципу можно получить безубыточный коэффициент вероятности – 1/вероятность.

Многие игроки думают, что после нескольких повторяющихся поражений, обязательно произойдет выигрыш — это ошибочное мнение. Вероятность выигрыша ставки не зависит от количества поражений. Даже если вы выбрасываете несколько орлов подряд в игре с монеткой, вероятность выбрасывания решки останется прежней – 50%.

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Профессиональный беттер должен хорошо ориентироваться в коэффициентах, быстро и правильно оценивать вероятность события по коэффициенту и при необходимости уметь перевести коэффициенты из одного формата в другой . В данном мануале мы расскажем о том, какие бывают виды коэффициентов, а так же на примерах разберём, как можно высчитывать вероятность по известному коэффициенту и наоборот.

Какие бывают типы коэффициентов?

Существует три основных вида коэффициентов, которые предлагают игрокам букмекеры: десятичные коэффициенты , дробные коэффициенты (английские) и американские коэффициенты . Наиболее распространённые коэффициенты в Европе - десятичные. В Северной Америке популярны американские коэффициенты. Дробные коэффициенты - наиболее традиционный вид, они сразу же отражают информацию о том сколько нужно поставить, чтобы получить определённую сумму.

Десятичные коэффициенты

Десятичные или еще их называют европейские коэффициенты - это привычный формат числа, представленный десятичной дробью с точностью до сотых, а иногда даже до тысячных. Пример десятичного коэффициента - 1.91. Рассчитать прибыль в случае с десятичными коэффициентами очень просто, достаточно лишь умножить сумму вашей ставки на этот коэффициент. Например, в матче "Манчестер Юнайтед" - "Арсенал" победа "МЮ" выставлена с коэффициентом - 2.05, ничья оценена коэффициентом - 3.9, а победа "Арсенала" равняется - 2.95. Предположим, что мы уверены в победе "Юнайтед" и ставим на них 1000 долларов. Тогда наш возможный доход рассчитывается следующим образом:

2.05 * $1000 = $2050;

Правда ведь ничего сложного?! Точно так же рассчитывается возможный доход при ставке на ничью и победу "Арсенала".

Ничья: 3.9 * $1000 = $3900;
Победа "Арсенала": 2.95 * $1000 = $2950;

Как рассчитать вероятность события по десятичным коэффициентам?

Представим теперь что нам нужно определить вероятность события по десятичным коэффициентам, которые выставил букмекер. Делается это так же очень просто. Для этого мы единицу делим на этот коэффициент.

Возьмем уже имеющиеся данные и посчитаем вероятность каждого события:

Победа "Манчестер Юнайтед": 1 / 2.05 = 0,487 = 48,7%;
Ничья: 1 / 3.9 = 0,256 = 25,6%;
Победа "Арсенала": 1 / 2.95 = 0,338 = 33,8%;

Дробные коэффициенты (Английские)

Как понятно из названия дробный коэффициент представлен обыкновенной дробью. Пример английского коэффициента - 5/2. В числителе дроби находиться число, являющееся потенциальной суммой чистого выигрыша, а в знаменателе расположено число обозначающее сумму которую нужно поставить, чтобы этот выигрыш получить. Проще говоря, мы должны поставить $2 доллара, чтобы выиграть $5. Коэффициент 3/2 означает что для того чтобы получить $3 чистого выигрыша нам придётся сделать ставку в размере $2.

Как рассчитать вероятность события по дробным коэффициентам?

Вероятность события по дробным коэффициентам рассчитать так же не сложно, нужно всего на всего разделить знаменатель на сумму числителя и знаменателя.

Для дроби 5/2 рассчитаем вероятность: 2 / (5+2) = 2 / 7 = 0,28 = 28%;
Для дроби 3/2 рассчитаем вероятность:

Американские коэффициенты

Американские коэффициенты в Европе непопулярны, зато в Северной Америке очень даже. Пожалуй, данный вид коэффициентов самый сложный, но это только на первый взгляд. На самом деле и в этом типе коэффициентов ничего сложного нет. Сейчас во всем разберёмся по порядку.

Главной особенностью американских коэффициентов является то, что они могут быть как положительными , так и отрицательными . Пример американских коэффициентов - (+150), (-120). Американский коэффициент (+150) означает, что для того чтобы заработать $150 нам нужно поставить $100. Иными словами положительный американский коэффициент отражает потенциальный чистый заработок при ставке в $100. Отрицательный же американский коэффициент отражает сумму ставки, которую необходимо сделать для того чтобы получить чистый выигрыш в $100. Например коэффициент (- 120) нам говорит о том, что поставив $120 мы выиграем $100.

Как рассчитать вероятность события по американским коэффициентам?

Вероятность события по американскому коэффициенту считается по следующим формулам:

(-(M)) / ((-(M)) + 100) , где M - отрицательный американский коэффициент;
100 / (P + 100) , где P - положительный американский коэффициент;

Например, мы имеем коэффициент (-120), тогда вероятность рассчитывается так:

(-(M)) / ((-(M)) + 100); подставляем вместо "M" значение (-120);
(-(-120)) / ((-(-120)) + 100 = 120 / (120 + 100) = 120 / 220 = 0,545 = 54,5%;

Таким образом, вероятность события с американским коэффициентом (-120) равна 54,5%.

Например, мы имеем коэффициент (+150), тогда вероятность рассчитывается так:

100 / (P + 100); подставляем вместо "P" значение (+150);
100 / (150 + 100) = 100 / 250 = 0,4 = 40%;

Таким образом, вероятность события с американским коэффициентом (+150) равна 40%.

Как зная процент вероятности перевести его в десятичный коэффициент?

Для того чтобы рассчитать десятичный коэффициент по известному проценту вероятности нужно 100 разделить на вероятность события в процентах. Например, вероятность события составляет 55%, тогда десятичный коэффициент этой вероятности будет равен 1,81.

100 / 55% = 1,81

Как зная процент вероятности перевести его в дробный коэффициент?

Для того чтобы рассчитать дробный коэффициент по известному проценту вероятности нужно от деления 100 на вероятность события в процентах отнять единицу. Например, имеем процент вероятности 40%, тогда дробный коэффициент этой вероятности будет равен 3/2.

(100 / 40%) - 1 = 2,5 - 1 = 1,5;
Дробный коэффициент равен 1,5/1 или 3/2.

Как зная процент вероятности перевести его в американский коэффициент?

Если вероятность события больше 50%, то расчёт производится по формуле:

- ((V) / (100 - V)) * 100, где V - вероятность;

Например, имеем вероятность события 80%, тогда американский коэффициент этой вероятности будет равен (-400).

- (80 / (100 - 80)) * 100 = - (80 / 20) * 100 = - 4 * 100 = (-400);

В случае если вероятность события меньше 50%, то расчёт производиться по формуле:

((100 - V) / V) * 100 , где V - вероятность;

Например, имеем процент вероятности события 20%, тогда американский коэффициент этой вероятности будет равен (+400).

((100 - 20) / 20) * 100 = (80 / 20) * 100 = 4 * 100 = 400;

Как перевести коэффициент в другой формат?

Бывают случаи, когда необходимо перевести коэффициенты из одного формата в другой. Например, у нас есть дробный коэффициент 3/2 и нам нужно перевести его в десятичный. Для перевода дробного коэффициента в десятичный мы сначала определяем вероятность события с дробным коэффициентом, а затем эту вероятность переводим в десятичный коэффициент.

Вероятность события с дробным коэффициентом 3/2 равна 40%.

2 / (3+2) = 2 / 5 = 0,4 = 40%;

Теперь переведём вероятность события в десятичный коэффициент, для этого 100 делим на вероятность события в процентах:

100 / 40% = 2.5;

Таким образом, дробный коэффициент 3/2 равен десятичному коэффициенту 2.5. Аналогичным образом переводятся, например, американские коэффициенты в дробные, десятичные в американские и т.д. Самое сложное во всём этом лишь расчёты.

вероятность (probability) - число от 0 до 1, которое отражает шансы того, что случайное событие произойдет, где 0 - это полное отсутствие вероятности происхождения события, а 1 означает, что рассматриваемое событие определенно произойдет.

Вероятность события E является числом от до 1.
Сумма вероятностей взаимоисключающих событий равна 1.

эмпирическая вероятность - вероятность, которая посчитана как относительная частота события в прошлом, извлеченная из анализа исторических данных.

Вероятность очень редких событий нельзя посчитать эмпирически.

субъективная вероятность - вероятность, основанная на личной субъективной оценке события безотносительно исторических данных. Инвесторы, которые принимают решения о покупке и продаже акций зачастую действуют именно исходя из соображений субъективной вероятности.

априорная вероятность -

Шанс 1 из… (odds) того что событие произойдет через понятие вероятности. Шанс появления события выражается через вероятность так: P/(1-P).

Например, если вероятность события 0,5, то шанс события 1 из 2 т.к. 0,5/(1-0,5).

Шанс того, что событие не произойдет вычисляется по формуле (1-P)/P

Несогласованная вероятноть - например в цене акций компании А на 85% учтено возможное событие E, а в цене акций компании Б всего на 50%. Это называется несогласованная вероятность. Согласно теореме голландских ставок, несогласованная вероятность создает возможности для извлечения прибыли.

Безусловная вероятность - это ответ на вопрос «Какова вероятность того, что событие произойдет?»

Условная вероятность - это ответ на вопрос: «Какова вероятность события A если событие Б произошло». Условная вероятность обозначается как P(A|B).

Совместная вероятность - вероятность того, что события А и Б произойдут одновременно. Обозначается как P(AB).

P(A|B) = P(AB)/P(B) (1)

P(AB) = P(A|B)*P(B)

Правило суммирования вероятностей:

Вероятность того, что случится либо событие A либо событие B -

P (A or B) = P(A) + P(B) - P(AB) (2)

Если события A и B взаимоисключающие, то

P (A or B) = P(A) + P(B)

Независимые события - события A и B независимы если

P(A|B) = P(A), P(B|A) = P(B)

То есть это последовательность результатов, где значение вероятности постоянно от одного собятия к другому.
Бросок монеты - пример такого события, - результат каждого следующего броска не зависит от результата предыдущего.

Зависимые события - это такие события, когда вероятность появления одного зависит от вероятности появления другого.

Правило умножения вероятностей независимых событий:
Если события A и B независимы, то

P(AB) = P(A) * P(B) (3)

Правило полной вероятности:

P(A) = P(AS) + P(AS") = P(A|S")P(S) + P (A|S")P(S") (4)

S и S" - взаимоисключающие события

математическое ожидание (expected value) случайной переменной есть среднее возможных исходов случайной величины. Для события X матожидание обоначается как E(X).

Допустим у нас есть 5 значений взаимоисключающих событий c определенной вероятностью (например доход компании составил такую-то сумму с такой вероятностью). Матожиданием будет сумма всех исходов помноженных на их вероятность:

Дисперсия случайной величины - матожидание квадратных отклонений случайной величины от ее матожидания:

s 2 = E{ 2 } (6)

Условное матожидание (conditional expected value) - матожидание случайной величины X при условии того, что событие S уже произошло.