Болезни Военный билет Призыв

Уравнение гиперболы и ее свойства. Основные свойства гиперболы. Парабола и её каноническое уравнение

Гиперболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры гиперболы:

Точки F 1 (–c, 0), F 2 (c , 0), где называются фокусами гиперболы, при этом величина 2с (с > a > 0) определяет междуфокусное расстояние . Точки А 1 (–а , 0), А 2 (а , 0) называются вершинами гиперболы , при этом А 1 А 2 = 2а образует действительную ось гиперболы, а В 1 В 2 = 2b мнимую ось (В 1 (0, –b ), B 2 (0, b )), О центр гиперболы.


Величина называется эксцентриситетом гиперболы, она характеризует меру «сжатости» гиперболы;

фокальные радиусы гиперболы (точка М принадлежит гиперболе), причем r 1 = a + εx , r 2 = –a + εx для точек правой ветви гиперболы, r 1 = – (a + εx ), r 2 = – (–a + εx ) – для точек левой ветви;

директрисы гиперболы;

уравнения асимптот .

Для гиперболы справедливо: ε > 1, директрисы не пересекают границу и внутреннюю область гиперболы, а также обладают свойством

Говорят, что уравнение

задает уравнение гиперболы, сопряженной данной (рис. 20). Его можно записать также в виде

В таком случае ось мнимая, фокусы лежат на оси . Все остальные параметры определяются аналогично как для гиперболы (25).


Точки гиперболы обладают важным характеристическим свойством: абсолютное значение разности расстояний от каждой из них до фокусов есть величина постоянная, равная 2a (рис. 19).

Для параметрического задания гиперболы в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на гиперболе, и положительным направлением оси Ox :

Пример 1. Привести уравнение гиперболы

9x 2 – 16y 2 = 144

к каноническому виду, найти еепараметры, изобразить гиперболу.

Решение. Разделим левую и правую части заданного уравнения на 144: Из последнего уравнения непосредственно следует: a = 4, b = 3, c = 5, O (0, 0) – центр гиперболы. Фокусы находятся в точках F 1 (–5, 0) и F 2 (5, 0), эксцентриситет ε = 5/4, директрисы D 1 и D 2 описываются уравнениями D 1: x = –16/5, D 2: x = 16/5, асимптоты l 1 и l 2 имеют уравнения

Сделаем чертеж. Для этого по осям Ox и Oy симметрично относительно точки (0, 0) отложим отрезки А 1 А 2 = 2а = 8 и В 1 В 2 = 2b = 6 соответственно. Через полученные точки А 1 (–4, 0), А 2 (4, 0), В 1 (0, –3), В 2 (0, 3) проведем прямые, параллельные координатным осям. В результате получим прямоугольник (рис. 21), диагонали которого лежат на асимптотах гиперболы. Строим гиперболу




Для нахождения угла φ между асимптотами гиперболы воспользуемся формулой

.

,

откуда получаем

Пример 2. Определить тип, параметры и расположение на плоскости кривой, уравнение которой

Решение. С помощью метода выделения полных квадратов упростим правую часть данного уравнения:

Получаем уравнение

которое делением на 30 приводится к виду

Это уравнение гиперболы, центр которой лежит в точке действительная полуось – мнимая полуось – (рис. 22).


Пример 3. Составить уравнение гиперболы, сопряженной относительно гиперболы определить ее параметры и сделать чертеж.

Решение. Уравнение гиперболы, сопряженной данной, –

Действительная полуось b = 3, мнимая – а = 4, половина междуфокусного расстояния Вершинами гиперболы служат точки B 1 (0, –3) и В 2 (0, 3); ее фокусы находятся в точках F 1 (0, –5) и F 2 (0, 5); эксцентриситет ε = с /b = 5/3; директрисы D 1 и D 2 задаются уравнениями D 1: y = –9/5, D 2: y = 9/5; уравнения являются уравнениями асимптот (рис. 23).


Заметим, что для сопряженных гипербол общими элементами являются вспомогательный «прямоугольник» и асимптоты.

Пример 4. Написать уравнение гиперболы с полуосями a и b (a > 0, b > 0), если известно, что ее главные оси параллельны координатным осям. Определить основные параметры гиперболы.

Решение. Искомое уравнение можно рассматривать как уравнение гиперболы которое получается в результате параллельного переноса старой системы координат на вектор где (x 0 , y 0) – центр гиперболы в «старой» системе координат. Тогда, используя соотношения между координатами произвольной точки М плоскости в заданной и преобразованной системах

    Гипербола представляет собой плоскую кривую, для каждой точки которой модуль разности расстояний до двух заданных точек (фокусов гиперболы ) является постоянным. Расстояние между фокусами гиперболы называется фокусным расстоянием и обозначается через \(2c\). Середина отрезка, соединяющего фокусы, называется центром . У гиперболы имеются две оси симметрии: фокальная или действительная ось, проходящая через фокусы, и перпендикулярная ей мнимая ось, проходящая через центр. Действительная ось пересекает ветви гиперболы в точках, которые называются вершинами . Отрезок, соединяющий центр гиперболы с вершиной, называется действительной полуосью и обозначается через \(a\). Мнимая полуось обозначается символом \(b\). Каноническое уравнение гиперболы записывается в виде
    \(\large\frac{{{x^2}}}{{{a^2}}}\normalsize - \large\frac{{{y^2}}}{{{b^2}}}\normalsize = 1\).

    Модуль разности расстояний от любой точки гиперболы до ее фокусов является постоянной величиной:
    \(\left| {{r_1} - {r_2}} \right| = 2a\),
    где \({r_1}\), \({r_2}\) − расстояния от произвольной точки \(P\left({x,y} \right)\) гиперболы до фокусов \({F_1}\) и \({F_2}\), \(a\) − действительная полуось гиперболы.

    Уравнения асимптот гиперболы
    \(y = \pm \large\frac{b}{a}\normalsize x\)

    Соотношение между полуосями гиперболы и фокусным расстоянием
    \({c^2} = {a^2} + {b^2}\),
    где \(c\) − половина фокусного расстояния, \(a\) − действительная полуось гиперболы, \(b\) − мнимая полуось.

    Эксцентриситет гиперболы
    \(e = \large\frac{c}{a}\normalsize > 1\)

    Уравнения директрис гиперболы
    Директрисой гиперболы называется прямая, перпендикулярная ее действительной оси и пересекающая ее на расстоянии \(\large\frac{a}{e}\normalsize\) от центра. У гиперболы − две директрисы, отстоящие по разные стороны от центра. Уравнения директрис имеют вид
    \(x = \pm \large\frac{a}{e}\normalsize = \pm \large\frac{{{a^2}}}{c}\normalsize\).

    Уравнение правой ветви гиперболы в параметрической форме
    \(\left\{ \begin{aligned} x &= a \cosh t \\ y &= b \sinh t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(a\), \(b\) − полуоси гиперболы, \(t\) − параметр.

    Общее уравнение гиперболы
    где \(B^2 - 4AC > 0\).

    Общее уравнение гиперболы, полуоси которой параллельны осям координат
    \(A{x^2} + C{y^2} + Dx + Ey + F = 0\),
    где \(AC

    Равнобочная гипербола
    Гипербола называется равнобочной , если ее полуоси одинаковы: \(a = b\). У такой гиперболы асимптоты взаимно перпендикулярны. Если асимптотами являются горизонтальная и вертикальная координатные оси (соответственно, \(y = 0\) и \(x = 0\)), то уравнение равнобочной гиперболы имеет вид
    \(xy = \large\frac{{{e^2}}}{4}\normalsize\) или \(y = \large\frac{k}{x}\normalsize\), где \(k = \large\frac{e^2}{4}\normalsize .\)

    Параболой называется плоская кривая, в каждой точки которой выполняется следующее свойство: расстояние до заданной точки (фокуса параболы ) равно расстоянию до заданной прямой (директрисы параболы ). Расстояние от фокуса до директрисы называется параметром параболы и обозначается через \(p\). Парабола имеет единственную ось симметрии, которая пересекает параболу в ее вершине . Каноническое уравнение параболы имеет вид
    \(y = 2px\).

    Уравнение директрисы
    \(x = - \large\frac{p}{2}\normalsize\),

    Координаты фокуса
    \(F \left({\large\frac{p}{2}\normalsize, 0} \right)\)

    Координаты вершины
    \(M \left({0,0} \right)\)

    Общее уравнение параболы
    \(A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\),
    где \(B^2 - 4AC = 0\).

    Уравнение параболы, ось симметрии которой параллельна оси \(Oy\)
    \(A{x^2} + Dx + Ey + F = 0\;\left({A \ne 0, E \ne 0} \right) \),
    или в эквивалентной форме
    \(y = a{x^2} + bx + c,\;\;p = \large\frac{1}{2a}\normalsize\)

    Уравнение директрисы
    \(y = {y_0} - \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F\left({{x_0},{y_0} + \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \({x_0} = - \large\frac{b}{{2a}}\normalsize,\;\;{y_0} = ax_0^2 + b{x_0} + c = \large\frac{{4ac - {b^2}}}{{4a}}\normalsize\)

    Уравнение параболы с вершиной в начале координат и осью симметрии, параллельной оси \(Oy\)
    \(y = a{x^2},\;\;p = \large\frac{1}{{2a}}\normalsize\)

    Уравнение директрисы
    \(y = - \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F \left({0, \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \(M \left({0,0} \right)\)

Определение 7.2. Геометрическое место точек плоскости, для которых разность расстояний до двух фиксированных точек есть величина постоянная, называют гиперболой .

Замечание 7.2. Говоря о разности расстояний, подразумевают, что из большего расстояния вычитается меньшее. Это значит, что на самом деле для гиперболы постоянным является модуль разности расстояний от любой ее точки до двух фиксированных точек. #

Определение гиперболы аналогично определению эллипса . Различие между ними лишь в том, что для гиперболы постоянна разность расстояний до фиксированных точек, а для эллипса - сумма тех же расстояний. Поэтому естественно, что у этих кривых много общего как в свойствах, так и в используемой терминологии.

Фиксированные точки в определении гиперболы (обозначим их F 1 и F 2) называют фокусами гиперболы . Расстояние между ними (обозначим его 2с) называют фокальным расстоянием , а отрезки F 1 M и F 2 M, соединяющие произвольную точку M на гиперболе с ее фокусами, - фокальными радиусами .

Вид гиперболы полностью определяется фокальным расстоянием |F 1 F 2 | = 2с и значением постоянной величины 2а, равной разности фокальных радиусов, а ее положение на плоскости - положением фокусов F 1 и F 2 .

Из определения гиперболы следует, что она, как и эллипс, симметрична относительно прямой, проходящей через фокусы, а также относительно прямой, которая делит отрезок F 1 F 2 пополам и перпендикулярна ему (рис. 7.7). Первую из этих осей симметрии называют действительной осью гиперболы , а вторую - ее мнимой осью . Постоянную величину а, участвующую в определении гиперболы, называют действительной полуосью гиперболы .

Середина отрезка F 1 F 2 , соединяющего фокусы гиперболы, лежит на пересечении ее осей симметрии и поэтому является центром симметрии гиперболы, который называют просто центром гиперболы .

Для гиперболы действительная ось 2а должна быть не больше, чем фокальное расстояние 2с, так как для треугольника F 1 MF 2 (см. рис. 7.7) справедливо неравенство ||F 1 M| - |F 2 M| | ≤ |F 1 F 2 |. Равенство а = с выполнено только для тех точек M, которые лежат на действительной оси симметрии гиперболы вне интервала F 1 F 2 . Отбрасывая этот вырожденный случай, далее будем предполагать, что а

Уравнение гиперболы . Рассмотрим на плоскости некоторую гиперболу с фокусами в точках F 1 и F 2 и действительной осью 2а. Пусть 2с - фокальное расстояние, 2c = |F 1 F 2 | > 2а. Согласно замечанию 7.2, гипербола состоит из тех точек M(х; у), для которых | |F 1 M| - - |F 2 M| | = 2а. Выберем прямоугольную систему координат Oxy так, чтобы центр гиперболы находился в начале координат , а фокусы располагались на оси абсцисс (рис. 7.8). Такую систему координат для рассматриваемой гиперболы называют канонической , а соответствующие переменные - каноническими .


В канонической системе координат фокусы гиперболы имеют координаты F 1 (c; 0) и F 2 (-с; 0). Используя формулу расстояния между двумя точками, запишем условие ||F 1 M| - |F 2 M|| = 2а в координатах |√((х - с) 2 + у 2) - √((х + с) 2 + у 2)| = 2а, где (x; у) - координаты точки M. Чтобы упростить это уравнение, избавимся от знака модуля: √((х - с) 2 + у 2) - √((х + с) 2 + у 2) = ±2а, перенесем второй радикал в правую часть и возведем в квадрат: (х - с) 2 + у 2 = (х + с) 2 + у 2 ± 4а √((х + с) 2 + у 2) + 4а 2 . После упрощения получим -εх - а = ±√((х + с) 2 + у 2), или

√((х + с) 2 + у 2) = |εх + а| (7.7)

где ε = с/а. Возведем в квадрат вторично и снова приведем подобные члены: (ε 2 - 1)х 2 - у 2 = с 2 - а 2 , или, учитывая равенство ε = с/а и полагая b 2 = c 2 - a 2 ,

x 2 /a 2 - y 2 /b 2 = 1 (7.8)

Величину b > 0 называют мнимой полуосью гиперболы .

Итак, мы установили, что любая точка на гиперболе с фокусами F 1 (с;0) и F 2 (-с; 0) и действительной полуосью а удовлетворяет уравнению (7.8). Но надо также показать, что координаты точек вне гиперболы этому уравнению не удовлетворяют. Для этого мы рассмотрим семейство всех гипербол с данными фокусами F 1 и F 2 . У этого семейства гипербол оси симметрии являются общими. Из геометрических соображений ясно, что каждая точка плоскости (кроме точек, лежащих на действительной оси симметрии вне интервала F1F2, и точек, лежащих на мнимой оси симметрии) принадлежит некоторой гиперболе семейства, причем только одной, так как разность расстояний от точки до фокусов F 1 и F 2 меняется от гиперболы к гиперболе. Пусть координаты точки M(х; у) удовлетворяют уравнению (7.8), а сама точка принадлежит гиперболе семейства с некоторым значением ã действительной полуоси. Тогда, как мы доказали, ее координаты удовлетворяют уравнению Следовательно, система двух уравнений с двумя неизвестными

имеет хотя бы одно решение. Непосредственной проверкой убеждаемся, что при ã ≠ а это невозможно. Действительно, исключив, например, x из первого уравнения:

после преобразований получаем уравнение

которое при ã ≠ а не имеет решений, так как . Итак, (7.8) есть уравнение гиперболы с действительной полуосью а > 0 и мнимой полуосью b = √(с 2 - а 2) > 0. Его называют каноническим уравнением гиперболы .

Вид гиперболы. По своему виду гипербола (7.8) заметно отличается от эллипса. Учитывая наличие двух осей симметрии у гиперболы, достаточно построить ту ее часть, которая находится в первой четверти канонической системы координат. В первой четверти, т.е. при x ≥ 0, у ≥ 0, каноническое уравнение гиперболы однозначно разрешается относительно у:

у = b/a √(x 2 - а 2). (7.9)

Исследование этой функции y(x) дает следующие результаты.

Область определения функции - {x: x ≥ а} ив этой области определения она непрерывна как сложная функция, причем в точке x = а она непрерывна справа. Единственным нулем функции является точка x = а.

Найдем производную функции y(x): y"(x) = bx/a√(x 2 - а 2). Отсюда заключаем, что при x > а функция монотонно возрастает. Кроме того, , а это означает, что в точке x = a пересечения графика функции с осью абсцисс существует вертикальная касательная. Функция y(x) имеет вторую производную y" = -ab(x 2 - а 2) -3/2 при x > а, и эта производная отрицательна. Поэтому график функции является выпуклым вверх, а точек перегиба нет.

Указанная функция имеет наклонную асимптоту, это вытекает из существования двух пределов:


Наклонная асимптота описывается уравнением y = (b/a)x.

Проведенное исследование функции (7.9) позволяет построить ее график (рис. 7.9), который совпадает с частью гиперболы (7.8), содержащейся в первой четверти.

Так как гипербола симметрична относительно своих осей, вся кривая имеет вид, изображенный на рис. 7.10. Гипербола состоит из двух симметричных ветвей, расположенных по разные

стороны от ее мнимой оси симметрии. Эти ветви не ограничены с обеих сторон, причем прямые у = ±(b/a)x являются одновременно асимптотами и правой и левой ветвей гиперболы.

Оси симметрии гиперболы различаются тем, что действительная пересекает гиперболу, а мнимая, будучи геометрическим местом точек, равноудаленных от фокусов, - не пересекает (поэтому ее и называют мнимой). Две точки пересечения действительной оси симметрии с гиперболой называют вершинами гиперболы (точки A(a; 0) и B(-a; 0) на рис. 7.10).

Построение гиперболы по ее действительной (2a) и мнимой (2b) осям следует начинать с прямоугольника с центром в начале координат и сторонами 2a и 2b, параллельными, соответ-ственно, действительной и мнимой осям симметрии гиперболы (рис. 7.11). Асимптоты гиперболы являются продолжениями диагоналей этого прямоугольника, а вершины гиперболы - точками пересечения сторон прямоугольника с действительной осью симметрии. Отметим, что прямоугольник и его положение на плоскости однозначно определяют форму и положение гиперболы. Отношение b/a сторон прямоугольника определяет степень сжатости гиперболы, но вместо этого параметра обычно используют эксцентриситет гиперболы. Эксцентриситетом гиперболы называют отношение ее фокального расстояния к действительной оси. Эксцентриситет обозначают через ε. Для гиперболы, описываемой уравнением (7.8), ε = c/a. Отметим, что если эксцентриситет эллипса может принимать значения из полуинтервала }