Болезни Военный билет Призыв

Температура коэффициент реакции равен 2. Расчеты скорости реакции c использованием температурного коэффициента скорости реакции. Кинетика сложных реакций

Возрастание скорости реакции с ростом температуры принято характеризовать температурным коэффициентом скорости реакции, числом, показывающим, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10°С. Температурный коэффициент различных реакций различен. При обычных температурах его значение для большинства реакций находится в пределах от 2... 4.

Температурный коэффициент определяют в соответствии с так называемым «правилом Вант-Гоффа», которое математически выражается уравнением

v 2 /v 1 = g (T 2 – T 1)/10 ,

где v 1 и v 2 скорости реакции при температурах Т 1 и Т 2 ; g - температурный коэффициент реакции.

Так, например, если g = 2, то при Т 2 – Т 1 = 50°С v 2 /v 1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т 1 и Т 2 , а только от их разности.

Энергия активации, разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц, находящихся в реагирующей системе. Для различных химических реакций Э. а. изменяется в широких пределах - от нескольких до ~ 10 дж./ моль. Для одной и той же химической реакции значение Э. а. зависит от вида функций распределения молекул по энергиям их поступательного движения и внутренним степеням свободы (электронным, колебательным, вращательным). Как статистическую величину Э. а. следует отличать от пороговой энергии, или энергетического барьера, - минимальной энергии, которой должна обладать одна пара сталкивающихся частиц для протекания данной элементарной реакции.

Аррениуса уравнение , температурная зависимость константы скорости к элементарной хим. реакции:

где A-предэкспоненциальныи множитель (размерность совпадает с размерностью к), Е а -энергия активации, обычно принимающая положит. значения, Т-абс. температура, k-постоянная Больцмана. Принято приводить Е а в расчете не на одну молекулу. а на число частиц N A = 6,02*10 23 (постоянная Авогадро) и выражать в кДж/моль; в этих случаях в уравнении Аррениуса величину k заменяют газовой постоянной R. График зависимости 1nк от 1/kT (аррениусов график) – прямая линия, отрицательный наклон которой определяется энергией активации Е а и характеризует положит. температурную зависимость к.

Катализа́тор - химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции . Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Важно понимать, что катализатор участвует в реакции. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (до миллиона раз) [источник? ] повторяется.

Катализаторы подразделяются на гомогенные и гетерогенные . Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный - образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества . Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al 2 O 3 , TiO 2 , ThO 2 , алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO .

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных , существуют катализаторы окисления-восстановления ; для них характерно присутствие переходного металла или его соединения (Со +3 , V 2 O 5 +MoO 3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Диспе́рсная систе́ма - это образования из двух или более числа фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.).

Обычно дисперсные системы - это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы. Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду, например для системы «газ в жидкости» принято обозначение Г/Ж.

Коллоидные растворы. Коллоидное состояние характерно для многих веществ, если их частицы имеют размер от 1 до 500 нм. Легко показать, что суммарная поверхность этих частиц огромна. Если предположить, что частицы имеют форму шара с диаметром 10 нм, то при общем объеме этих частиц 1 см 3 они будут иметь

площадь поверхности порядка 10 м2. Как указывалось ранее поверхностный слой характеризуется поверхностной энергией и способностью адсорбировать те или иные частицы, в том числе ионы

из раствора. Характерной особенностью коллоидных частиц является наличие на их поверхности заряда, обусловленного избирательной адсорбцией ионов. Коллоидная частица имеет сложное строение. Она включает в себя ядро, адсорбированные ионы, противоины и растворитель. Существуют лиофильные (гид.

роф ильные) коллоиды, в которых растворитель взаимодейстиует с ядрами частиц, илнофобные (гидрофобные) коллоиды, в которых растворитель не взаимодействует с ядрами

частиц. Растворитель входит в состав гидрофобных частиц лишь как сольватная оболочка адсорбированных ионов или при наличии стабилизаторов (ПАВ), имеющих лиофобную и лиофильные части.

Приведем несколько примеров коллоидных частиц:

Как. видно, ядро состоит из электронейтрального агрегата час­тиц с адсорбированными ионами элементов, входящих в состав ядра (в данных примерах ионами Аg + , НS-, Fе 3+). Коллоидная час-шца кроме ядра имеет противоионы и молекулы растворителя. Ад­сорбированные ионы и противоионы с растворителем образуют ад­сорбированный слой. Суммарно заряд частицы равен разности за­рядов адсороированных ионов и противоионов. Вокруг частиц на­ходится д и ф ф у з н ы й с л о и и о н о в, заряд которых равен иряду коллоидной частицы. Коллоидная частица и диффузный слои образуют электронейтральную мицеллу

Мицеллы (уменьшительное от лат. mica - частица, крупинка) - частицы в коллоидных системах, состоят из нерастворимого в данной среде ядра очень малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя. Например, мицелла сульфида мышьяка имеет строение:

{(As 2 S 3) m nHS − (n-x)H + } x- хН +

Средний размер мицелл от 10 −5 до 10 −7 см.

Коагуляция - разделение коллоидного раствора на две фазы – растворитель и студнеобразную массу, или загустевание раствора в результате укрупнения частиц растворенного вещества

Пептизация - процесс перехода коллоидного осадка или геля в коллоидный раствор под действием жидкости или добавленных к ней веществ, хорошо адсорбирующихся осадком или гелем, называемых в этом случае пептизаторами (например, пептизация жиров под действием желчи).
Пептизация - разъединение агрегатов частиц гелей (студней) или рыхлых осадков под влиянием определенных веществ - пептизаторов после коагуляции коллоидных растворов. В результате пептизации осадок (или гель) переходит во взвешенное состояние.

РАСТВОРЫ, однофазные системы, состоящие из двух или более компонентов. По своему агрегатному состоянию растворы могут быть твердыми, жидкими или газообразными.

Растворимость , способность вещества образовывать с другим веществом (или веществами) гомогенные смеси с дисперсным распределением компонентов (см. Растворы). Обычно растворителем считают вещество, которое в чистом виде существует в том же агрегатном состоянии, что и образовавшийся раствор. Если до растворения оба вещества находились в одном и том же агрегатном состоянии, растворителем считается вещество, присутствующее в смеси в существенно большем кол-ве.

Растворимость определяется физическим и химическим сродством молекул растворителя и растворяемого вещества, соотношением энергий взаимодействием однородных и разнородных компонентов раствора. Как правило, хорошо растворимы друг в друге подобные по физ. и хим. свойствам вещества (эмпирич. правило "подобное растворяется в подобном"). В частности, вещества, состоящие из полярных молекул, и вещества с ионным типом связи хорошо раств. в полярных растворителях (воде, этаноле, жидком аммиаке), а неполярные вещества хорошо раств. в неполярных растворителях (бензоле, сероуглероде).

Растворимость данного вещества зависит от температуры и давления соответствует общему принципу смещения равновесий (см. Ле Шателье-Брауна принцип). Концентрация насыщенного раствора при данных условиях численно определяет Р. вещества в данном растворителе и также наз. растворимостью. Пересыщенные растворы содержат большее кол-во растворенного вещества, чем это соответствует его растворимости, существование пересыщенных растворов обусловлено кинетич. затруднениями кристаллизации (см. Зарождение новой фазы). Для характеристики растворимости малорастворимых веществ используют произведение активностей ПА (для растворов, близких по своим свойствам к идеальному - произведение растворимости ПР).

Из качественных соображений понятно, что скорость реакций должна увеличиваться с ростом температуры, т.к. при этом возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение. Для количественного описания температурных эффектов в химической кинетике используют два основных соотношения - правило Вант-Гоффа и уравнение Аррениуса.

Правило Вант-Гоффа заключается в том, что при нагревании на 10 о С скорость большинства химических реакций увеличивается в 2 4 раза. Математически это означает, что скорость реакции зависит от температуры степенным образом:

, (4.1)

где - температурный коэффициент скорости ( = 24). Правило Вант-Гоффа является весьма грубым и применимо только в очень ограниченном интервале температур.

Гораздо более точным является уравнение Аррениуса , описывающее температурную зависимость константы скорости:

, (4.2)

где R - универсальная газовая постоянная; A - предэкспоненциальный множитель, который не зависит от температуры, а определяется только видом реакции; E A - энергия активации , которую можно охарактеризовать как некоторую пороговую энергию: грубо говоря, если энергия сталкивающихся частиц меньше E A , то при столкновении реакция не произойдет, если энергия превышает E A , реакция произойдет. Энергия активации не зависит от температуры.

Графически зависимость k (T ) выглядит следующим образом:

При низких температурах химические реакции почти не протекают: k (T ) 0. При очень высоких температурах константа скорости стремится к предельному значению: k (T )A . Это соответствует тому, что все молекулы являются химически активными и каждое столкновение приводит к реакции.

Энергию активации можно определить, измерив константу скорости при двух температурах. Из уравнения (4.2) следует:

. (4.3)

Более точно энергию активации определяют по значениям константы скорости при нескольких температурах. Для этого уравнение Аррениуса (4.2) записывают в логарифмической форме

и записывают экспериментальные данные в координатах ln k - 1/T . Тангенс угла наклона полученной прямой равен -E A / R .

Для некоторых реакций предэкспоненциальный множитель слабо зависит от температуры. В этом случае определяют так называемую опытную энергию активации :

. (4.4)

Если предэкспоненциальный множитель - постоянный, то опытная энергия активации равна аррениусовской энергии активации: E оп = E A .

Пример 4-1. Пользуясь уравнением Аррениуса, оцените, при каких температурах и энергиях активации справедливо правило Вант-Гоффа.

Решение. Представим правило Вант-Гоффа (4.1) как степенную зависимость константы скорости:

,

где B - постоянная величина. Сравним это выражение с уравнением Аррениуса (4.2), приняв для температурного коэффициента скорости значение ~ e = 2.718:

.

Возьмем натуральный логарифм обеих частей этого приближенного равенства:

.

Продифференцировав полученное соотношение по температуре, найдем искомую связь связь между энергией активации и температурой:

Если энергия активации и температура примерно удовлетворяют этому соотношению, то правилом Вант-Гоффа для оценки влияния температуры на скорость реакции пользоваться можно.

Пример 4-2. Реакция первого порядка при температуре 70 о С завершается на 40% за 60 мин. При какой температуре реакция завершится на 80% за 120 мин, если энергия активации равна 60 кДж/моль?

Решение. Для реакции первого порядка константа скорости выражается через степень превращения следующим образом:

,

где a = x /a - степень превращения. Запишем это уравнение при двух температурах с учетом уравнения Аррениуса:

где E A = 60 кДж/моль, T 1 = 343 K, t 1 = 60 мин, a 1 = 0.4, t 2 = 120 мин, a 2 = 0.8. Поделим одно уравнение на другое и прологарифмируем:

Подставляя в это выражение приведенные выше величины, находим T 2 = 333 К = 60 о С.

Пример 4-3. Скорость бактериального гидролиза мышц рыб удваивается при переходе от температуры -1.1 о С к температуре +2.2 о С. Оцените энергию активации этой реакции.

Решение. Увеличение скорости гидролиза в 2 раза обусловлено увеличением константы скорости: k 2 = 2k 1 . Энергию активации по отношению констант скорости при двух температурах можно определить из уравнения (4.3) с T 1 = t 1 + 273.15 = 272.05 K, T 2 = t 2 + 273.15 = 275.35 K:

130800 Дж/моль = 130.8 кДж/моль.

4-1. При помощи правила Вант-Гоффа вычислите, при какой температуре реакция закончится через 15 мин, если при 20 о С на это требуется 2 ч. Температурный коэффициент скорости равен 3.(ответ)

4-2. Время полураспада вещества при 323 К равно 100 мин, а при 353 К - 15 мин. Определите температурный коэффициент скорости.(ответ)

4-3. Какой должна быть энергия активации, чтобы скорость реакции увеличивалась в 3 раза при возрастании температуры на 10 0 С а) при 300 К; б) при 1000 К?(ответ)

4-4. Реакция первого порядка имеет энергию активации 25 ккал/моль и предэкспоненциальный множитель 5 . 10 13 сек -1 . При какой температуре время полураспада для данной реакции составит: а) 1 мин; б) 30 дней?(ответ)

4-5. В каком из двух случаев константа скорости реакции увеличивается в большее число раз: при нагревании от 0 о С до 10 о С или при нагревании от 10 о С до 20 о С? Ответ обоснуйте с помощью уравнения Аррениуса.(ответ)

4-6. Энергия активации некоторой реакции в 1.5 раза больше, чем энергия активации другой реакции. При нагревании от T 1 до T 2 константа скорости второй реакции увеличилась в a раз. Во сколько раз увеличилась константа скорости первой реакции при нагревании от T 1 до T 2 ?(ответ)

4-7. Константа скорости сложной реакции выражается через константы скорости элементарных стадий следующим образом:

Выразите энергию активации и предэкспоненциальный множитель сложной реакции через соответствующие величины, относящиеся к элементарным стадиям.(ответ)

4-8. В необратимой реакции 1-го порядка за 20 мин при 125 о С степень превращения исходного вещества составила 60%, а при 145 o C такая же степень превращения была достигнута за 5.5 мин. Найдите константы скорости и энергию активации данной реакции.(ответ)

4-9. Реакция 1-го порядка при температуре 25 о С завершается на 30% за 30 мин. При какой температуре реакция завершится на 60% за 40 мин, если энергия активации равна 30 кДж/моль?(ответ)

4-10. Реакция 1-го порядка при температуре 25 о С завершается на 70% за 15 мин. При какой температуре реакция завершится на 50% за 15 мин, если энергия активации равна 50 кДж/моль?(ответ)

4-11. Константа скорости реакции первого порядка равна 4.02 . 10 -4 с -1 при 393 К и 1.98 . 10 -3 с -1 при 413 К. Рассчитайте предэкспоненциальный множитель для этой реакции.(ответ)

4-12. Для реакции H 2 + I 2 2HI константа скорости при температуре 683 К равна 0,0659 л/(моль. мин), а при температуре 716 К - 0,375 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 700 К.(ответ)

4-13. Для реакции 2N 2 O 2N 2 + O 2 константа скорости при температуре 986 К равна 6,72 л/(моль. мин), а при температуре 1165 К - 977,0 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 1053,0 К.(ответ)

4-14. Трихлорацетат-ион в ионизирующих растворителях, содержащих H + , разлагается по уравнению

H + + CCl 3 COO - CO 2 + CHCl 3

Стадией, определяющей скорость реакции, является мономолекулярный разрыв связи C- C в трихлорацетат-ионе. Реакция протекает по первому порядку, и константы скорости имеют следующие значения: k = 3.11 . 10 -4 с -1 при 90 о С, k = 7.62 . 10 -5 с -1 при 80 о С. Рассчитайте а) энергию активации, б) константу скорости при 60 о С.(ответ)

4-15. Для реакции CH 3 COOC 2 H 5 + NaOH ѕ CH 3 COONa + C 2 H 5 OH константа скорости при температуре 282,6 К равна 2,307 л/(моль. мин), а при температуре 318,1 К - 21,65 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 343 К.(ответ)

4-16. Для реакции C 12 H 22 O 11 + H 2 O C 6 H 12 O 6 + C 6 H 12 O 6 константа скорости при температуре 298,2 К равна 0,765 л/(моль. мин), а при температуре 328,2 К - 35,5 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 313,2 К.(ответ)

4-17. Вещество разлагается двумя параллельными путями с константами скорости k 1 и k 2 . Какова разность энергий активации этих двух реакций, если при 10 o C k 1 /k 2 = 10, а при 40 o C k 1 /k 2 = 0.1?(ответ)

4-18. В двух реакциях одинакового порядка разница энергий активации составляет E 2 - E 1 = 40 кДж/моль. При температуре 293 К отношение констант скорости равно k 1 /k 2 = 2. При какой температуре константы скорости сравняются?(ответ)

4-19. Разложение ацетондикарбоновой кислоты в водном растворе - реакция первого порядка. Измерены константы скорости этой реакции при разных температурах:

Рассчитайте энергию активации и предэкспоненциальный множитель. Чему равен период полураспада при 25 о С?

Задача 336.
При 150°С некоторая реакция заканчивается за 16 мин. Принимая температурный коэффициент скорости реакции равным 2,5, рассчитать, через какое время закончится эта реакция, если проводить ее: а) при 20 0 °С; б) при 80°С.
Решение:
Согласно правилу Вант Гоффа зависимость скорости от температуры выражается уравнением:

v t и k t - скорость и константа скорости реакции при температуре t°С; v (t + 10) и k (t + 10) те же величины при температуре (t + 10 0 C); - температурный коэффициент скорости реакции, значение которого для большинства реакций лежит в пределах 2 – 4.

а) Учитывая, что скорость химической реакции при данной температуре обратно пропорциональна продолжительности её протекания, подставим данные, приведённые в условии задачи в формулу, количественно выражающую правило Вант-Гоффа, получим:

б) Так как данная реакция протекает с понижением температуры, то при данной температуре скорость этой реакции прямо пропорциональна продолжительности её протекания, подставим данные, приведённые в условии задачи в формулу, количественно выражающую правило Вант-Гоффа, получим:

Ответ : а) при 200 0 С t2 = 9,8 c; б) при 80 0 С t3 = 162 ч 1мин 16 c.

Задача 337.
Изменится ли значение константы скорости реакции: а) при замене одного катализатора другим; б) при изменении концентраций реагирующих веществ?
Решение:
Константа скорости реакции – это величина, зависящая от природы реагирующих веществ, от температуры и от присутствия катализаторов, не зависит от концентрации реагирующих веществ. Она может быть равна скорости реакции в случае, когда концентрации реагирующих веществ равны единице (1 моль/л).

а) При замене одного катализатора другим изменится скорость данной химической реакции, она или увеличится. В случае применения катализатора увеличится скорость химической реакции, то, соответственно увеличится и значение константы скорости реакции. Изменение значения константы скорости реакции произойдёт и при замене одного катализатора другим, который увеличит или уменьшит скорость данной реакции по отношению к исходному катализатору.

б) При изменении концентрации реагирующих веществ изменится значения скорости реакции, а значение константы скорости реакции не изменится.

Задача 338.
Зависит ли тепловой эффект реакции от ее энергии активации? Ответ обосновать.
Решение:
Тепловой эффект реакции зависит только от начального и конечного состояния системы и не зависит от промежуточных стадий процесса. Энергия активации – это избыточная энергия, которой должны обладать молекулы веществ, для того чтобы их столкновение могло привести к образованию нового вещества. Энергию активации можно изменить повышением или понижением температуры, соответственно понижая или увеличивая её. Катализаторы понижают энергию активации, а ингибиторы – понижают.

Таким образом, изменение энергии активации приводит к изменению скорости реакции, но не к изменению теплового эффекта реакции. Тепловой эффект реакции – величина постоянная и не зависит от изменения энергии активации для данной реакции. Например, реакция образования аммиака из азота и водорода имеет вид:

Данная реакция экзотермическая, > 0). Реакция протекает с уменьшением числа молей реагирующих частиц и числа молей газообразных веществ, что приводит систему из менее устойчивого состояния в более устойчивое, энтропия уменьшается, < 0. Данная реакция в обычных условиях не протекает (она возможна только при достаточно низких температурах). В присутствии катализатора энергия активации уменьшается, и скорость реакции возрастает. Но, как до применения катализатора, так и в присутствии его тепловой эффект реакции не изменяется, реакция имеет вид:

Задача 339.
Для какой реакции прямой или обратной - энергия активации больше, если прямая реакция идет с выделением теплоты?
Решение:
Разность энергий активации прямой и обратной реакций равна тепловому эффекту: H = E a(пр.) - Е а(обр.) . Данная реакция протекает с выделением теплоты, т.е. является экзотермической, < 0 Исходя из этого, энергия активации прямой реакции имеет меньшее значение, чем энергия активации обратной реакции:
E a(пр.) < Е а(обр.) .

Ответ: E a(пр.) < Е а(обр.) .

Задача 340.
Во сколько раз увеличится скорость реакции, протекающей при 298 К, если энергию активации её уменьшить на 4 кДж/моль?
Решение:
Обозначим уменьшение энергии активации через Ea, а константы скоростей реакции до и после уменьшения энергии активации соответственно через k и k". Используя уравнение Аррениуса, получим:

E a - энергия активации, k и k" - константы скорости реакции, Т – температура в К (298).
Подставляя в последнее уравнение данные задачи и, выражая энергию активации в джоулях, рассчитаем увеличение скорости реакции:

Ответ : В 5 раз.

Задача 336.
При 150°С некоторая реакция заканчивается за 16 мин. Принимая температурный коэффициент скорости реакции равным 2,5, рассчитать, через какое время закончится эта реакция, если проводить ее: а) при 20 0 °С; б) при 80°С.
Решение:
Согласно правилу Вант Гоффа зависимость скорости от температуры выражается уравнением:

v t и k t - скорость и константа скорости реакции при температуре t°С; v (t + 10) и k (t + 10) те же величины при температуре (t + 10 0 C); - температурный коэффициент скорости реакции, значение которого для большинства реакций лежит в пределах 2 – 4.

а) Учитывая, что скорость химической реакции при данной температуре обратно пропорциональна продолжительности её протекания, подставим данные, приведённые в условии задачи в формулу, количественно выражающую правило Вант-Гоффа, получим:

б) Так как данная реакция протекает с понижением температуры, то при данной температуре скорость этой реакции прямо пропорциональна продолжительности её протекания, подставим данные, приведённые в условии задачи в формулу, количественно выражающую правило Вант-Гоффа, получим:

Ответ : а) при 200 0 С t2 = 9,8 c; б) при 80 0 С t3 = 162 ч 1мин 16 c.

Задача 337.
Изменится ли значение константы скорости реакции: а) при замене одного катализатора другим; б) при изменении концентраций реагирующих веществ?
Решение:
Константа скорости реакции – это величина, зависящая от природы реагирующих веществ, от температуры и от присутствия катализаторов, не зависит от концентрации реагирующих веществ. Она может быть равна скорости реакции в случае, когда концентрации реагирующих веществ равны единице (1 моль/л).

а) При замене одного катализатора другим изменится скорость данной химической реакции, она или увеличится. В случае применения катализатора увеличится скорость химической реакции, то, соответственно увеличится и значение константы скорости реакции. Изменение значения константы скорости реакции произойдёт и при замене одного катализатора другим, который увеличит или уменьшит скорость данной реакции по отношению к исходному катализатору.

б) При изменении концентрации реагирующих веществ изменится значения скорости реакции, а значение константы скорости реакции не изменится.

Задача 338.
Зависит ли тепловой эффект реакции от ее энергии активации? Ответ обосновать.
Решение:
Тепловой эффект реакции зависит только от начального и конечного состояния системы и не зависит от промежуточных стадий процесса. Энергия активации – это избыточная энергия, которой должны обладать молекулы веществ, для того чтобы их столкновение могло привести к образованию нового вещества. Энергию активации можно изменить повышением или понижением температуры, соответственно понижая или увеличивая её. Катализаторы понижают энергию активации, а ингибиторы – понижают.

Таким образом, изменение энергии активации приводит к изменению скорости реакции, но не к изменению теплового эффекта реакции. Тепловой эффект реакции – величина постоянная и не зависит от изменения энергии активации для данной реакции. Например, реакция образования аммиака из азота и водорода имеет вид:

Данная реакция экзотермическая, > 0). Реакция протекает с уменьшением числа молей реагирующих частиц и числа молей газообразных веществ, что приводит систему из менее устойчивого состояния в более устойчивое, энтропия уменьшается, < 0. Данная реакция в обычных условиях не протекает (она возможна только при достаточно низких температурах). В присутствии катализатора энергия активации уменьшается, и скорость реакции возрастает. Но, как до применения катализатора, так и в присутствии его тепловой эффект реакции не изменяется, реакция имеет вид:

Задача 339.
Для какой реакции прямой или обратной - энергия активации больше, если прямая реакция идет с выделением теплоты?
Решение:
Разность энергий активации прямой и обратной реакций равна тепловому эффекту: H = E a(пр.) - Е а(обр.) . Данная реакция протекает с выделением теплоты, т.е. является экзотермической, < 0 Исходя из этого, энергия активации прямой реакции имеет меньшее значение, чем энергия активации обратной реакции:
E a(пр.) < Е а(обр.) .

Ответ: E a(пр.) < Е а(обр.) .

Задача 340.
Во сколько раз увеличится скорость реакции, протекающей при 298 К, если энергию активации её уменьшить на 4 кДж/моль?
Решение:
Обозначим уменьшение энергии активации через Ea, а константы скоростей реакции до и после уменьшения энергии активации соответственно через k и k". Используя уравнение Аррениуса, получим:

E a - энергия активации, k и k" - константы скорости реакции, Т – температура в К (298).
Подставляя в последнее уравнение данные задачи и, выражая энергию активации в джоулях, рассчитаем увеличение скорости реакции:

Ответ : В 5 раз.

Скорость большинства химических реакций возрастает при повышении температуры. Так как концентрация реагирующих веществ, практически не зависит от температуры, то в соответствии с кинетическим уравнением реакции основное влияние температуры на скорость реакции осуществляется через изменение константы скорости реакции. При увеличении температуры возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение.

Зависимость скорости реакции от температуры можно характеризовать величиной температурного коэффициента .

Экспериментальные данные по влиянию температуры на скорость многих химических реакций при обычных температурах (273–373 К), в небольшом интервале температур показали, что повышение температуры на 10 градусов увеличивает скорость реакции в 2-4 раза (правило Вант-Гоффа).

По Вант-Гоффу- температурный коэффициент константы скорости (коэффициент Вант-Гоффа ) – это возрастание скорости реакции при увеличении температуры на 10 градусов.

(4.63)

где и - константы скорости при температурах и ; - температурный коэффициент скорости реакции.

При повышении температуры на n десятков градусов отношение констант скоростей будет равно

где n может быть как целым, так и дробным числом.

Правило Вант-Гоффа это приближенное правило. Оно применимо в узком интервале температур, так как температурный коэффициент изменяется с температурой.

Более точная зависимость константы скорости реакции от температуры выражается полуэмпирическим уравнением Аррениуса

где А - предэкспоненциальный множитель который не зависит от температуры, а определяется только видом реакции; Е – энергия активации химической реакции. Энергию активации можно представить как некоторую пороговую энергию, характеризующую высоту энергетического барьера на пути реакции. Энергия активации также не зависит от температуры.

Эта зависимость установлена в конце XIX в. голландским ученым Аррениусом для элементарных химических реакций.

Энергия активации прямой (Е 1) и обратной (Е 2) реакции связана с тепловым эффектом реакции DН соотношением (см. рис 1):

Е 1 – Е 2 = DН.

Если реакция эндотермическая и DН> 0, то Е 1 > Е 2 и энергия активации прямой реакции больше обратной. Если реакция экзотермическая, то Е 1 < Е 2 .

Уравнение Аррениуса (101) в дифференциальной форме можно записать:

Из уравнения следует, что чем больше энергия активации Е, тем быстрее растет скорость реакции с температурой.

Разделив переменные k и T и, считая E постоянной величиной, после интегрирования уравнения (4.66) получим:

Рис. 5. График lnk 1/T .

, (4.67)

где А – предэкспоненциальный множитель, имеющий размерность константы скорости. Если это уравнение справедливо, то на графике в координатах опытные точки располагаются на прямой линии под углом a к оси абсцисс и угловой коэффициент () равен , что позволяет рассчитать энергию активации химической реакции по зависимости константы скорости от температуры по уравнению .

Энергию активации химической реакции можно вычислить по значениям констант скоростей при двух различных температурах по уравнению

. (4.68)

Теоретический вывод уравнения Аррениуса сделан для элементарных реакций. Но опыт показывает, что подавляющее большинство сложных реакций также подчиняются этому уравнению. Однако для сложных реакций энергия активации и предэкспоненциальный множитель в уравнении Аррениуса не имеют определенного физического смысла.

Уравнение Аррениуса (4.67) позволяет дать удовлетворительное описание большого круга реакций в узком температурном интервале.

Для описания зависимости скорости реакции от температуры применяют также модифицированное уравнение Аррениуса

, (4.69)

в которое входят уже три параметра: А , Е и n .

Уравнение (4.69) широко используется для реакций, протекающих в растворах. Для некоторых реакций зависимость константы скорости реакции от температуры отличается от приведенных выше зависимостей. Так, например, в реакциях третьего порядка константа скорости убывает с увеличением температуры. В цепных экзотермических реакциях константа скорости реакции резко возрастает при температуре выше некоторого предела (тепловой взрыв).

4.5.1. Примеры решения задач

Пример 1. Константа скорости некоторой реакции с увеличением температуры изменялась следующим образом: t 1 = 20°С;

k 1 = 2,76 10 -4 мин. -1 ; t 2 = 50 0 С; k 2 = 137,4 10 -4 мин. -1 Определить температурный коэффициент константы скорости химической реакции.

Решение. Правило Вант –Гоффа позволяет рассчитать температурный коэффициент константы скорости по соотношению

g n = =2 ¸ 4, где n = = =3;

g 3 = =49,78 g = 3,68

Пример 2. С помощью правила Вант-Гоффа вычислить, при какой температуре реакция закончится за 15 мин., если при температуре 20 0 С потребовалось 120 мин. Температурный коэффициент скорости реакции равен 3.

Решение. Очевидно, чем меньше время протекания реакции (t ), тем больше константа скорости реакции:

3 n = 8, n ln3 = ln8, n= = .

Температура, при которой реакция закончится за 15 минут, равна:

20 + 1,9×10 = 39 0 С.

Пример 3. Константа скорости реакции омыления уксусно-этилового эфира раствором щелочи при температуре 282,4 К равна2,37л 2 /моль 2 мин. , а при температуре 287,40 К равна 3,2л 2 /моль 2 мин. Найти, при какой температуре константа скорости данной реакции равна 4?

Решение.

1. Зная значения констант скоростей при двух температурах, можно найти энергию активации реакции:

= = 40,8 кДж/моль.

2. Зная значение энергии активации, из уравнения Аррениуса

Вопросы и задания для самоконтроля.

1.Какие величины называются «аррениусовскими» параметрами?

2.Какой минимум опытных данных необходим для расчета энергии активации химической реакции?

3. Покажите, что температурный коэффициент константы скорости зависит от температуры.

4. Существуют ли отклонения от уравнения Аррениуса? Как можно описать зависимость константы скорости от температуры в этом случае?

Кинетика сложных реакций

Реакции, как правило, не протекают путем непосредственного взаимодействия всех исходных частиц с прямым переходом их в продукты реакции, а состоят из нескольких элементарных стадий. Это, прежде всего, относится к реакциям, в которых, согласно их стехиометрическому уравнению, принимает участие более трех частиц. Однако, даже реакции двух или одной частицы часто идут не по простому би- или мономолекулярному механизму, а более сложным путем, то есть через ряд элементарных стадий.

Реакции называются сложными, если расходование исходных веществ и образование продуктов реакции происходит через ряд элементарных стадий, которые могут протекать одновременно или последовательно. При этом некоторые стадии проходят с участием веществ, не являющихся ни исходными веществами, ни продуктами реакции (промежуточные вещества).

В качестве примера сложной реакции можно рассмотреть реакцию хлорирования этилена с образованием дихлорэтана. Прямое взаимодействие и должно идти через четырехчленный активированный комплекс, что сопряжено с преодолением высокого энергетического барьера. Скорость такого процесса мала. Если же в системе тем или иным путем (например, при действии света) образуются атомы , то процесс может пойти по цепному механизму. Атом легко присоединяется по двойной связи с образованием свободного радикала - . Этот свободный радикал может легко оторвать атом от молекулы с образованием конечного продукта - , в результате чего регенерируется свободный атом .

В результате этих двух стадий одна молекула и одна молекула превращаются в молекулу продукта - , а регенерированный атом вступает во взаимодействие со следующей молекулой этилена. Обе стадии имеют невысокие энергии активации, и этот путь обеспечивает быстрое протекание реакции. С учетом возможности рекомбинации свободных атомов и свободных радикалов полная схема процесса может быть записана в виде:

При всем многообразии, сложные реакции можно свести к комбинации нескольких типов сложных реакций, а именно параллельных, последовательных и последовательно-параллельных реакций.

Две стадии называются последовательными , если частица, образующаяся в одной стадии, является исходной частицей в другой стадии. Например, в приведенной схеме последовательными являются первая и вторая стадии:

.

Две стадии называются параллельными , если в обеих в качестве исходной принимают участие одни и те же частицы. Например, в схеме реакции параллельными являются четвертая и пятая стадии:

Две стадии называются последовательно-параллельными , если они являются параллельными по отношению к одной и последовательными по отношению к другой из участвующих в этих стадиях частиц.

Примером последовательно-параллельных стадий являются вторая и четвертая стадии данной схемы реакции.

К характерным признакам того, что реакция протекает по сложному механизму, относятся следующие признаки:

Несовпадение порядка реакции и стехиометрических коэффициентов;

Изменение состава продуктов в зависимости от температуры, начальных концентраций и других условий;

Ускорение или замедление процесса при добавлении в реакционную смесь небольших количеств веществ;

Влияние материала и размеров сосуда на скорость реакции и др.

При кинетическом анализе сложных реакций применяют принцип независимости: «Если в системе протекают одновременно несколько простых реакций, то основной постулат химической кинетики применяется к каждой из них, как если бы данная реакция была единственной». Этот принцип можно сформулировать и следующим образом: «Величина константы скорости элементарной реакции не зависит от того, протекают ли в данной системе одновременно другие элементарные реакции».

Принцип независимости справедлив для большинства реакций, протекающих по сложному механизму, но не является всеобщим, та как существуют реакции, в которых одни простые реакции влияют на протекание других (например, сопряженные реакции.)

Важное значение при изучении сложных химических реакций имеет принцип микрообратимости или детального равновесия :

если в сложном процессе устанавливается химическое равновесие, то скорости прямой и обратной реакции должны быть равны для каждой из элементарных стадий.

Наиболее распространенным случаем протекания сложной реакции будет случай, когда реакция идет через несколько простых стадий, протекающих с разными скоростями. Различие в скоростях приводит к тому, что кинетика получения продукта реакции может определяться закономерностями только одной реакции. Например, для параллельных реакций скорость всего процесса определяется скоростью наиболее быстрой стадии, а для последовательных – наиболее медленной. Следовательно, при анализе кинетики параллельных реакций при значительной разнице в константах можно пренебречь скоростью медленной стадии, а при анализе последовательных реакций – не обязательно определять скорость быстрой реакции.

В последовательных реакциях наиболее медленная реакция называется лимитирующей. У лимитирующей стадии самая маленькая константа скорости.

Если значения констант скоростей отдельных стадий сложной реакции близки, то необходим полный анализ всей кинетической схемы.

Введение понятия стадии, определяющей скорость, во многих случаях упрощает математическую сторону рассмотрения подобных систем и объясняет тот факт, что иногда кинетика сложных, многостадийных реакций хорошо описывается простыми уравнениями, например первого порядка.