Болезни Военный билет Призыв

Свойства медианы в прямоугольном треугольнике. Медиана. Визуальный гид (2019)

Начальный уровень

Медиана. Визуальный гид (2019)

1. Что такое медиана?

Это очень просто!

Возьми треугольник:

Отметь на какой-нибудь его стороне середину.

И соедини с противоположной вершиной!

Получившаяся линия и есть медиана .

2. Свойства медианы.

Какие же хорошие свойства есть у медианы?

1) Вот представим, что треугольник - прямоугольный. Бывают же такие, верно?

Почему??? При чём тут прямой угол?

Давай смотреть внимательно. Только не на треугольник, а на... прямоугольник. Зачем, спросишь?

А вот ты ходишь по Земле - ты видишь, что она круглая? Нет, конечно, для этого на Землю нужно смотреть из космоса. Вот и мы посмотрим на наш прямоугольный треугольник «из космоса».

Проведём диагональ:

Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам ? (Если не помнишь, загляни в тему )

Значит, половина второй диагонали - наша медиана . Диагонали равны, их половинки, конечно же, тоже. Вот и получим

Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника? Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.

Давай посмотрим, как это свойство помогает решать задачи.

Вот, задача :
В стороны; . Из вершины проведена медиана . Найти, если.

Ура! Можно применить теорему Пифагора! Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны

Применяем теорему Пифагора:

2) А теперь пусть у нас будет не одна, а целых три медианы ! Как же они себя ведут?

Запомни очень важный факт:

Сложно? Смотри на рисунок:

Медианы, и пересекаются в одной точке.

И….(доказываем это в , а пока запомни !):

  • - вдвое больше, чем;
  • - вдвое больше, чем;
  • - вдвое больше, чем.

Не устал ещё? На следующий пример сил хватит? Сейчас мы применим всё, о чём говорили!

Задача : В треугольнике проведены медианы и, которые пересекаются в точке. Найти, если

Найдём по теореме Пифагора:

А теперь применим знания про точку пересечения медиан.

Давай обозначим. Отрезок, а. Если не все понятно - посмотри на рисунок.

Мы уже нашли, что.

Значит, ; .

В задаче нас спрашивают об отрезке.

В наших обозначениях.

Ответ : .

Понравилось? Старайся теперь сам применять знания про медиану!

МЕДИАНА. СРЕДНИЙ УРОВЕНЬ

1. Медиана делит сторону пополам.

И все? А может, она ещё что-нибудь делит пополам? Представь себе, что это так!

2. Теорема: медиана делит площадь пополам.

Почему? А давай вспомним самую простую форму площади треугольника.

И применим эту формулу аж два раза!

Посмотри, медиана разделила на два треугольника: и. Но! Высота-то у них одна и та же - ! Только в эта высота опускается на сторону , а в - на продолжение стороны . Удивительно, но вот бывает и так: треугольники разные, а высота - одна. И вот, теперь-то и применим два раза формулу.

Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?

Первое утверждение: медианы пересекаются в одной точке.

Второе утверждение: точкой пересечения медианы делятся в отношении, считая от вершины.

Давай попробуем разгадать секрет этой теоремы:

Соединим точки и. Что получилось?

А теперь проведем ещё одну среднюю линию: отметим середину - поставим точку, отметим середину - поставим точку.

Теперь - средняя линия. То есть

  1. параллельна;

Заметил совпадения? И, и - параллельны. И, и.

Что из этого следует?

  1. параллельна;

Конечно же, только у параллелограмма!

Значит, - параллелограмм . Ну и что? А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.

Снова смотрим на рисунок.

То есть - медиана разделена точками и на три равные части. И точно так же.

Значит, точкой обе медианы разделились именно в отношении, то есть и.

Что же будет происходить с третьей медианой? Давай вернемся в начало. О, ужас?! Нет, сейчас будет все гораздо короче. Давай выбросим медиану и проведем медианы и.

А теперь представим, что мы провели точно такие же рассуждения, как для медиан и. Что тогда?

Получится, что медиана разделит медиану абсолютно точно так же: в отношении, считая от точки.

Но сколько же может быть точек на отрезке, которые делят его в отношении, считая от точки?

Конечно же, только одна! И мы её уже видели - это точка.

Что же получилось в итоге?

Медиана точно прошла через! Все три медианы через неё прошли. И все разделились в отношении, считая от вершины.

Вот и разгадали (доказали) теорему. Разгадкой оказался параллелограмм, сидящий внутри треугольника.

4. Формула длины медианы

Как же найти длину медианы, если известны стороны? А ты уверен, что тебе это нужно? Откроем страшную тайну: эта формула не очень полезная. Но всё-таки мы её напишем, а доказывать не будем (если интересно доказательство - смотри следующий уровень).

Как бы понять, отчего так выходит?

Давай смотреть внимательно. Только не на треугольник, а на прямоугольник.

Итак, рассмотрим прямоугольник.

Ты заметил, что наш треугольник - ровно половина этого прямоугольника?

Проведём диагональ

Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам? (Если не помнишь, загляни в тему )
Но одна из диагоналей - - наша гипотенуза! Значит, точка пересечения диагоналей - середина гипотенузы. Она называлась у нас.

Значит, половина второй диагонали - наша медиана. Диагонали равны, их половинки, конечно же, тоже. Вот и получим

Более того, так бывает только в прямоугольном треугольнике!

Доказывать это утверждение мы не будем, а чтобы в него поверить подумай сам: разве бывает какой - нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника? Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике. Давай посмотрим, как это свойство помогает решать задачи.

Вот, задача:

В стороны; . Из вершины проведена медиана. Найти, если.

Ура! Можно применить теорему Пифагора! Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике , мы никак не могли бы решить эту задачу. А теперь можем!

Применяем теорему Пифагора:

МЕДИАНА. КОРОТКО О ГЛАВНОМ

1. Медиана делит сторону пополам.

2. Теорема: медиана делит площадь пополам

4. Формула длины медианы

Обратная теорема: если медиана равна половине стороны, то треугольник прямоугольный и эта медиана проведена к гипотенузе.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

1. Медиана разбивает треугольник на два треугольника одинаковой площади.

2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Свойства биссектрис треугольника

1. Биссектриса угла - это геометрическое место точек, равноудаленных от сторон этого угла.

2. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам: .

3. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.

Свойства высот треугольника

1. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.

2. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

Свойства серединных перпендикуляров треугольника

1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

2. Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Свойство средней линии треугольника

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Подобие треугольников

Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия:

· два угла одного треугольника равны двум углам другого треугольника;

· две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны;

· три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

В подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.

Теорема синусов

Теорема косинусов

a 2 = b 2 + c 2 - 2bc cos

Формулы площади треугольника

1. Произвольный треугольник

a, b, c - стороны; - угол между сторонами a и b ; - полупериметр; R - радиус описанной окружности; r - радиус вписанной окружности; S - площадь; h a - высота, проведенная к стороне a .

S = ah a

S = ab sin

S = pr

2. Прямоугольный треугольник

a, b - катеты; c - гипотенуза; h c - высота, проведенная к стороне c .

S = ch c S = ab

3. Равносторонний треугольник

Четырехугольники

Свойства параллелограмма

· противолежащие стороны равны;

· противоположные углы равны;

· диагонали точкой пересечения делятся пополам;

· сумма углов, прилежащих к одной стороне, равна 180°;

· сумма квадратов диагоналей равна сумме квадратов всех сторон:

d 1 2 +d 2 2 =2(a 2 +b 2).

Четырехугольник является параллелограммом, если:

1. Две его противоположные стороны равны и параллельны.

2. Противоположные стороны попарно равны.

3. Противоположные углы попарно равны.

4. Диагонали точкой пересечения делятся пополам.

Свойства трапеции

· ее средняя линия параллельна основаниям и равна их полусумме;

· если трапеция равнобокая, то ее диагонали равны и углы при основании равны;

· если трапеция равнобокая, то около нее можно описать окружность;

· если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.

Свойства прямоугольника

· диагонали равны.

Параллелограмм является прямоугольником, если:

1. Один из его углов прямой.

2. Его диагонали равны.

Свойства ромба

· все свойства параллелограмма;

· диагонали перпендикулярны;

· диагонали являются биссектрисами его углов.

1. Параллелограмм является ромбом, если:

2. Две его смежные стороны равны.

3. Его диагонали перпендикулярны.

4. Одна из диагоналей является биссектрисой его угла.

Свойства квадрата

· все углы квадрата прямые;

· диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.

Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.

Основные формулы

1. Произвольный выпуклый четырехугольник
d 1 , d 2 - диагонали; - угол между ними; S - площадь.

S = d 1 d 2 sin

Примечание . В данном уроке изложены теоретические материалы и решение задач по геометрии на тему "медиана в прямоугольном треугольнике". Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Почти наверняка курс будет дополнен.

Свойства медианы прямоугольного треугольника

Определение медианы

  • Медианы треугольника пересекаются в одной точке и делятся этой точкой на две части в отношении 2:1, считая от вершины угла. Точка их пересечения называется центром тяжести треугольника (относительно редко в задачах для обозначения этой точки используется термин "центроид"),
  • Медиана разбивает треугольник на два равновеликих треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Большей стороне треугольника соответствует меньшая медиана.

Задачи по геометрии, предлагаемые для решения, в основном, используют следующие свойства медианы прямоугольного треугольника .

  • Сумма квадратов медиан, опущенных на катеты прямоугольного треугольника равна пяти квадратам медианы, опущенной на гипотенузу (Формула 1)
  • Медиана, опущенная на гипотенузу прямоугольного треугольника равна половине гипотенузы (Формула 2)
  • Медиана, опущенная на гипотенузу прямоугольного треугольника, равна радиусу окружности, описанной вокруг данного прямоугольного треугольника (Формула 2)
  • Медиана, опущенная на гипотенузу, равна половине корня квадратного из суммы квадратов катетов (Формула 3)
  • Медиана, опущенная на гипотенузу, равна частному от деления длины катета на два синуса противолежащего катету острого угла (Формула 4)
  • Медиана, опущенная на гипотенузу, равна частному от деления длины катета на два косинуса прилежащего катету острого угла (Формула 4)
  • Сумма квадратов сторон прямоугольного треугольника равна восьми квадратам медианы, опущенной на его гипотенузу (Формула 5)

Обозначения в формулах :

a, b - катеты прямоугольного треугольника

c - гипотенуза прямоугольного треугольника

Если обозначить треугольник, как ABC, то

ВС = а

(то есть стороны a,b,c - являются противолежащими соответствующим углам)

m a - медиана, проведенная к катету а

m b - медиана, проведенная к катету b

m c - медиана прямоугольного треугольника , проведенная к гипотенузе с

α (альфа) - угол CAB, противолежащий стороне а

Задача про медиану в прямоугольном треугольнике

Медианы прямоугольного треугольника, проведенные к катетам, равны, соответственно, 3 см и 4 см. Найдите гипотенузу треугольника

Решение

Прежде чем начать решение задачи, обратим внимание на соотношение длины гипотенузы прямоугольного треугольника и медианы, которая опущена на нее. Для этого обратимся к формулам 2, 4, 5 свойств медианы в прямоугольном треугольнике . В этих формулах явно указано соотношение гипотенузы и медианы, которая на нее опущена как 1 к 2. Поэтому,для удобства будущих вычислений (что никак не повлияет на правильность решения, но сделает его более удобным), обозначим длины катетов AC и BC через переменные x и y как 2x и 2y (а не x и y).

Рассмотрим прямоугольный треугольник ADC. Угол C у него прямой по условию задачи, катет AC - общий с треугольником ABC, а катет CD равен половине BC согласно свойствам медианы. Тогда, по теореме Пифагора

AC 2 + CD 2 = AD 2

Поскольку AC = 2x, CD = y (так как медиана делит катет на две равные части), то
4x 2 + y 2 = 9

Одновременно, рассмотрим прямоугольный треугольник EBC. У него также угол С прямой по условию задачи, катет BC является общим с катетом BC исходного треугольника ABC, а катет EC по свойству медианы равен половине катета AC исходного треугольника ABC.
По теореме Пифагора:
EC 2 + BC 2 = BE 2

Поскольку EC = x (медиана делит катет пополам), BC = 2y, то
x 2 + 4y 2 = 16

Так как треугольники ABC, EBC и ADC связаны между собой общими сторонами, то оба полученных уравнения также связаны между собой.
Решим полученную систему уравнений.
4x 2 + y 2 = 9
x 2 + 4y 2 = 16