Болезни Военный билет Призыв

Стохастические модели отображают. Теоретико-вероятностные (стохастические) модели и методы исследований. Классификация средств моделирования

Стохастические модели описывают случайные процессы или ситуации, при этом подразумевается, что случайность тех или иных явлений выражается в терминах вероятности. Так же, как и детерминированные, стохастические модели бывают дискретные и непрерывные.

      1. Непрерывно-стохастические модели

Основной схемой формализованного описания систем, для которых характерны

1) непрерывный характер изменения времени и

2) наличие случайностей в поведении,

служит аппарат систем массового обслуживания. То есть это план математических схем, разработанных для формализации процессов функционирования систем, которые являются процессами обслуживания. Именно для таких систем характерны стохастический характер функционирования (случайное появление заявок на обслуживание), завершение обслуживания в случайные моменты времени, наличие входного и выходного потока заявок, наличие приборов обслуживания, поток событий, существование очереди на обслуживание, определение некоторого порядка обслуживания и т.п.

Как видно из описания моделей такого рода, непрерывно-стахостические модели нам не подходят.

      1. Дискретно-стохастические модели

Данный тип моделей подходит для тех объектов, которые обладают следующими характеристиками:

    время в них дискретно

    они проявляют статически закономерное случайное поведение.

По данному определению наша модель полностью подходит под описание дискретно-стохастических моделей: по условию время у нас дискретно и мы сделали вывод, что в модели присутствуют случайности. Модели систем такого рода могут быть построены на основе двух схем формализованного описания:

Конечно-разностные уравнения, среди переменных которых используют функции, задающие случайные процессы

Вероятностные автоматы

“Вероятностным автоматом называется дискретный прелбразователь информации, имеющий более одного состояния, функционирование которого в каждом такте зависит только от состояния памяти в нем и может быть описано статически” 3

Задание вероятностных автоматов осуществляется таблично или с помощью графов, но их использование на практике возможно лишь путем реализации имитационной модели на ЭВМ (за исключением небольших и несложных моделях, при которых возможны и аналитические расчеты).

Проверим возможность применения вероятностных автоматов к нашей модели:

Случайности в нашей модели есть, но представляется ли возможным вычислить закон распределения?

1.В случае случайной цены?

Да, это равномерное распределение и вероятности всех состояний при определении цены равны.

    В случае случайного распределения непроданной продукции?

Это опять равномерное распределение и вероятности найти можно.

Посмотрим, какие входные состояния может принимать система...Оказывается таких состояний бесконечно много, следовательно, вероятностный автомат построить нельзя. А если сделать ограничения на объем выпуска? Это множество будет конечным и вероятностный автомат можно будет построить, но полученная модель, как и в случае предположения о детерминированности системы, будет плохо отражать реальность. Поэтому откажемся от построения вероятностного автомата.

Наиболее удобным в случае дискретно-стохастической схемы формализованного описания представляется решение задачи с помощью конечно-разностных уравнений.

3.1. Математические модели случайных процессов

При проведении научных исследований в производстве и в быту часто встречаются события, которые многократно появляются при одних и тех же условиях, но отличающиеся каждый раз друг от друга. Например, измеряя значение напряжения в сети переменного тока с помощью одного и того же прибора с одинаковой тщательностью, никогда не получим одинаковых данных. Наблюдается случайное рассеивание. Для оценки величины рассеивания вводится вероятность, как мера измерения.

Закономерность рассеивания, выраженная функцией распределения вероятностей, носит общий характер.

Если входные параметры объекта, смена состояний объекта или его выходные параметры описываются случайными распределениями вероятностей, то эти объекты относятся к классу стохастических. При моделировании поведения данных объектов применяется аппарат теории вероятностей, а для идентификации параметров моделей применяется аппарат математической статистики. Рассмотрим виды моделей, которые могут быть применены для описания стохастических объектов.

3.1.1. Распределение случайных событий . Массовые явления или процессы характеризуются многократным повторением при постоянных условиях некоторых опытов (операций и прочее). Абстрагируясь от специальных свойств этих опытов, в теории вероятностей вводится понятие испытания (опыта). Испытанием называется осуществление определенного комплекса условий, который может быть воспроизведен сколь угодно большое число раз. Явления, происходящие при реализации этого комплекса условий (в результате испытания), называются событиями .

Положительное число в отрезке , представляющее собой количественную меру возможности реализации случайного события в испытании, называется его вероятностью. Вероятность появления события А обозначают символом Р(А) , причем 0£Р(А)£ 1. Вероятность понимается как идеальная мера возможности появления события.

Случайная величина рассматривается как функция, аргументом которой служит элементарное случайное событие. Дискретной случайной величиной называется такая, которая может принимать конечное или бесконечное счетное множество значений, например возможны значения x 1 , x 2 , …, x n , … Для каждого события x i определены вероятности P(x i) . Распределение вероятностей дискретной случайной величины, представленное на рис. 3.1, рассматривают как точечное распределение вероятностей.

При непрерывном распределении случайной величины вероятности распределены сплошной полосой по всей оси x или по некоторым ее участкам с определенной плотностью.

Распределение вероятностей носит название теоретического распределения случайной величины.

Интегральная функция распределения вероятностей определяет вероятность того, что случайная величина X меньше значения x

. (3.1)

Пример задания интегральной функции распределения вероятностей приведен на рис. 3.2.

Дифференциальная функция распределения вероятностей (плотность распределения вероятностей) определяет вероятность того, что случайная величина X меньше значения x

. (3.2)

Пример задания дифференциальной функции распределения вероятностей приведен на рис. 3.3.

Совокупность случайных величин X(Q) аргумента Q , образует случайный процесс. Течение случайного процесса описывают некоторой функцией X(Q) , где Q - аргумент функции со значениями из множества Q . Функцию X(Q) , наблюдаемую в некотором опыте, соблюдая определенный комплекс условий, называют выборочной функцией или реализацией случайного процесса.

Если множество Q произвольно, то вместо термина «случайный процесс» применяют термин «случайная функция». Название «случайный процесс» применимо в тех случаях, когда параметр Q интерпретируется как время. Если аргумент случайной функции является пространственной переменной, то функцию называют случайным полем.

Определение. Моделью случайного процесса называют случайную функцию X(Q) , заданную на множестве Q , принимающую действительные значения и описываемую семейством распределений :

, QiÎQ, i=1,2,...,n, n=1,2,...,

которое удовлетворяет условиям согласованности

,

= ,

где i 1 , i 2 ,…, i n , - любая перестановка индексов 1 , 2 ,..., n .

Набор функций называется конечномерными распределениями случайной функции или интегральной функции распределения вероятностей многомерной случайной величины. При n =1 получим одномерное распределение (3.1). Модель многомерного распределения необходима для моделирования многопараметрической случайной величины.

При решении многих задач моделирования приходится оперировать с несколькими случайными функциями. Для того чтобы над ними производить математические операции, недостаточно, чтобы каждая из этих случайных функций была задана в отдельности. Последовательность функций X 1 (Q), X 2 (Q),…, X n (Q) возможно заменить векторной функцией x(Q) , компонентами которой служат случайные функции X i (Q), (i=1,2,…,n) .

Явные выражения для конечномерных функций распределения случайного процесса бывают сложными и неудобными для применения. Поэтому в ряде случаев предпочитают задавать конечномерные распределения их плотностями (дифференциальной функцией распределения вероятностей многомерной случайной величины) или характеристическими функциями.

Если - плотность функций распределения , то

=

= .

Связь интегральной функции распределения вероятностей одномерной случайной величины и ее дифференциальной функцией распределения вероятностей показана формулой

.

Модель системы может быть задана также в виде характеристической функции конечномерного распределения последовательности

X 1 (Q),X 2 (Q), …, X n (Q), Qi³0 >, i=1,n, n=1,2,...,

которая определяется формулой

где M - символ математического ожидания, u 1 ,u 2 ,...,u k - вещественные числа.

Если существует плотность конечномерного распределения, то модель в виде характеристической функции является преобразованием Фурье плотности распределения. Для одномерной случайной величины характеристическая функция определится по формуле

.

3.1.2. Корреляционные функции. Исчерпывающую характеристику модели стохастического объекта в виде случайной функции в широком смысле дает семейство конечномерных распределений. Однако решение многих теоретико-вероятностных задач зависит только от небольшого числа параметров, характеризующих входящие в задачу распределения. Наиболее важными числовыми характеристиками распределений являются их моменты. В теории случайных функций роль моментов распределений играют моментные функции. Рассмотрим модели в виде моментных функций для одномерной случайной величины.

Момент k –го порядка дискретной случайной величины определяется по формуле

.

Для непрерывной случайной величины моментная функция k

.

Рассмотрим модели в виде моментных функций для многомерной случайной величины.

Определение . Модель случайной функции X(Q i), Q i ÎQ в виде моментной функции задается отношением

если математическое ожидание в правой части равенства имеет смысл при всех QiÎQ, i=1,n . Величина q=j 1 +j 2 +...+j n называется порядком моментной функции.

Если известны характеристические функции конечномерного распределения, то моментные функции с целочисленными индексами могут быть найдены с помощью дифференцирования

при u 1 =u 1 =…=u n =0 .

Кроме моментных функций в качестве моделей часто рассматривают центральные моменты функции. Центрированной случайной величиной называется случайная величина . Для непрерывной случайной величины центральная моментная функция k –го порядка определяется по формуле

.

Для многомерной случайной величины центральные моменты функции определятся по формуле

которые являются моментными функциями центрированной случайной функции многих параметров.

Среди моментных функций особое значение имеют функции первых двух порядков, которые могут иметь обозначения:

m(Q)=m 1 (Q 1)=MX(Q),

R 1 (Q 1 ,Q 2)=m 1 (Q 1 ,Q 2)=M{}.

Функции m(Q) называются средним значением или математическим ожиданием, а R 1 (Q 1 ,Q 2) - корреляционной функцией. При Q 1 =Q 2 =Q корреляционная функция дает дисперсию s(Q) величины e(Q), R 1 (Q 1 ,Q 2)=s 2 (Q) .

Величину

называют коэффициентом корреляции случайных величин X(Q 1) и X(Q 2) .

Моделирование – построение моделей для исследования и изучения объектов, процессов, явлений.

стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

один подход к классификации математических моделей подразделяет их на детерминированные истохастические (вероятностные). В детерминированных моделях входные параметры поддаются измерению однозначно и с любой степенью точности, т.е. являются детерминированными величинами. Соответственно, процесс эволюции такой системы детерминирован. В стохастических моделях значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются стохастическими; соответственно, случайным будет и процесс эволюции системы. При этом, выходные параметры стохастической модели могут быть как величинами вероятностными, так и однозначно определяемыми.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

    детерминированные,

    стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

Типовые схемы. Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в области системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы.

В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени, конечные автоматы и конечно-разностные схемы.

В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем – системы массового обслуживания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех процессов, происходящих в больших системах. Для таких систем в ряде случаев более перспективным является применение агрегативных моделей. Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы:

    непрерывно-детерминированный (например, дифференциальные уравнения);

    дискретно-детерминированный (конечные автоматы);

    дискретно-стохастический (вероятностные автоматы);

    непрерывно-стохастический (системы массового обслуживания);

    обобщенный, или универсальный (агрегативные системы).

20. Модель популяции .

Модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию о нем. Рассмотрим примеры динамических систем - модели популяций. Популя­ция (от лат.populatio- население) - термин, используемый в различных разделах биологии, а также в генетике, демографии и медицине.

Популяция - это человеческое, животное или растительное население неко­торой местности, способной к более-менее устойчивому самовоспроизводству, относительно обособленное (обычно географически) от других групп.

Описание популяций, а также происходящих в них и с ними процессов, воз­можно путем создания и исследования динамических моделей.

Пример 1. Модель Мальтуса.

Скорость роста пропорциональна текущему размеру популяции. Она описы­вается дифференциальным уравнением х = ах , где α - некоторый параметр, оп­ределяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функцияx(t) = х 0 е*.

Если рождаемость превосходит смертность (α > 0), размер популяция не­ограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объема популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может слу­жить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста:

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к рав­новесному значению

Пример 2. Модель «хищник - жертва».

Модель взаимодействия «хищник - жертва» независимо предложили в 1925 - 1927 гг. Лотка и Вольтерра. Два дифференциальных уравнения модели­руют временную динамику численности двух биологических популяций жертвы и хищника. Предполагается, что жертвы размножаются с постоянной скоростью а их численность убывает вследствие поедания хищниками. Хищники же размно­жаются со скоростью, пропорциональной количеству пищи и умирают естествен­ным образом.

Допустим, что на некоторой территории обитают два вида животных: кро­лики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов -х, число лис -у. Используя модель Мальтуса с необходимыми поправ­ками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Вольтерра - Лотки:

х =(α -су)х;

Эта система имеет равновесное состояние, когда число кроликов и лис по­стоянно. Отклонение от этого состояния приводит к колебаниям численности кро­ликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в слу­чае гармонического осциллятора, это поведение не является структурно устойчи­вым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания числен­ности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов.

Особенности стохастического моделирования.

Особенности стохастического мод-ия: стохастическое моделирование – моделирование случайных воздействий.

Стохастическое моделирования (СМ) - м оделирование случайных процессов и случайных событий.

Суть СМ – многократное повторение модельных экспериментов с целью получения статистики о свойствах системы, получения данных о свойствах случайных событий и величин.

Цель – в результате СМ для параметров объектов должна быть получена оценка мат ожидания, дисперсии и закона распределения случайной величины.

Понятие случайного события и случайной величины.

Случайным событием называется любой факт, который в результате опыта может произойти или не произойти. Случайные события могут быть: Достоверными (событие, которое происходит в каждом опыте). Невозможными (событие, которое в результате опыта произойти не может).

Числовая величина, принимающая то или иное значение в результате реализации опыта случайным образом, называется случайной величиной .

Характеристики случайных величин и случайных событий.

Характеристики случайного события:

Частота появления события - вероятность появления того или иного события при неограниченном количестве опытов.

Характеристики случайной величины:

    Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины.

    Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Плотности распределения вероятности - вид функции, которой определяет закон распределения случайных величин.

Моделирование случайных событий.

Исходные данные:

Вероятность события Pa;

Требуется построить модель события A, которое происходит с вероятностью Pa.

Алгоритм моделирования:

Используется датчик случайных чисел с равномерным законом распределения от 0 до 1:

Randomize(RND)  x i . 0<=x i <=1

Если выполняется Xi<=Pa то событие A произошло. В противном случае произошло событие не A.

Моделирование полной группы случайных событий.

Группа несовместимых событий называется полной, если при испытаниях только одно событие произойдет обязательно (алгоритм).

Примеры стохастических моделей.

Модели для прогнозирования изменений состояния автотр. предприятия .

Литература: , .

3. Имитационное моделирование

Понятие имитационного моделирования.

Суть ИМ – компьютерный эксперимент – исследования свойств объекта путем экспериментирования с его компьютерной моделью.

Актуальность имитационного моделирования.

1)моделирование сложных систем (когда аналитически использовать объект невозможно)

2)моделирование действия случайных факторов (необходимо многократное повторение)

3)отсутствие математической модели (при исследовании неизвестных явлений).

4)необходимость получения результатов к определенному сроку (скорее всего самая главная причина)

Примеры задач имитационного моделирования: модели систем массового обслуживания, модели случайных событий, клеточные автоматы, модели сложных систем и т.д.

1. Модели систем массового обслуживания

Схема СМО

Цель СМО : определение оптимальных параметров системы

Пример: очередь в супермаркете

На обслуживание могут поступать заявки с более высоким приоритетом. Пример: бензоколонка (скорая, полиция).

2. Модели случайных событий

Случайным называют событие, которое в результате испытания может наступить, а может и не наступить. Исчерпывающей характеристикой случайного события является вероятность его наступления. Примеры: объемы выпускаемой продукции предприятием каждый день; котировки валют в обменных пунктах; интервал времени до появления очередного клиента, длительность проведения технического обслуживания автомобиля.

3. Клеточные автоматы

Клеточный автомат – система, представляющая собой совокупность одинаковых клеток. Все клетки образуют, так называемую, решетку клеточного автомата. Каждая клетка является конечным автоматом, состояния которого определяются состояниями соседних клеток и ее собственным состоянием. Впервые, идея таких автоматов отмечена в работах Неймана в 1940-х годах.

Пример: игра «Жизнь». Была в 1970 году Джоном Конвэем.

Стохастический вариант даже простой эпидемии достаточно сложен. Не удивительно, что в общем случае для анализа стохастической модели эпидемии требуется еще более сложный математический аппарат. По-настоящему удовлетворительное описание основных характеристик такого процесса еще не достигнуто, но ряд отдельных полезных результатов уже получен.

Рассмотрим вначале исходную модель и вывод основных уравнений движения. В данном случае имеются две существенно различные случайные величины. Пусть, как и ранее, обозначает число восприимчивых индивидуумов в момент времени t, a - число источников инфекции. Таким образом, мы имеем дело с двумерным процессом, аналогичным тому, который был рассмотрен в разд. 8.3. Здесь возможны переходы двух видов. Снова примем частоту контактов равной тогда вероятность появления в интервале нового источника инфекции будет равна . Если частота удаления из коллектива зараженных индивидуумов равна у, то вероятность того, что в интервале будет удален один индивидуум, составит . В данном случае возможны два значения функции отличные от нуля; в обозначениях, принятых в разд. 8.2 и 8.3, они имеют вид . Если изменить временной масштаб, перейдя к и обозначить через относительную частоту удаления, то, используя уравнение (8.48), получим следующее дифференциальное уравнение в частных производных для производящей функции вероятностей:

при начальном условии

(в предположении, что процесс начинается при наличии восприимчивых индивидуумов и а источников инфекции).

До сих пор непосредственно решить уравнение (9.24) в простом замкнутом виде еще не удалось. Попытки использовать обыкновенные дифференциальные уравнения для моментов или семиинвариантов, выведенные обычным способом, также не увенчались успехом по тем же причинам, что и в случае модели конкуренции между двумя видами, рассмотренной в разд. 8.4. (Такая же трудность возникает даже в случае простой стохастической эпидемии.) Однако не исключено, что уравнение (9.24) можно будет использовать как основу для дальнейших исследований.

Если вероятность того, что в момент имеется j восприимчивых индивидуумов и к источников инфекции, равна , то подстановка производящей функции вероятностей

в уравнение (9.24) дает систему дифференциальных уравнений

В принципе эти уравнения можно решить непосредственно с помощью преобразований Лапласа. Однако получающиеся алгебраические выражения столь громоздки, что практически этот метод совершенно непригоден.

Некоторого успеха можно добиться в предельном случае при когда . Здесь можно получить довольно простую треугольную систему линейных уравнений, решение которой дает вероятность того, что дополнительно к первоначальным случаям эпидемия охватит еще w индивидуумов. Для получения конкретных результатов необходимо провести численные расчеты; были рассчитаны распределения общего числа зараженных индивидуумов для и 40 при и различных значениях . Как и ожидалось, при все распределения имеют -образную форму с максимальным значением в точке Если же , то распределения имеют -образную форму, т. е. возможна очень малая или очень большая вспышка, тогда как промежуточные состояния наблюдаются редко.

Таким образом, хотя при столь малых значениях (не более 40) резкие переходы отсутствуют, имеются две различные схемы распространения эпидемии.

При больших справедлива теорема о стохастическом пороговом значении, принадлежащая Уиттлу. Не входя во все детали анализа, проведенного Уиттлом, с помощью следующих приближенных рассуждений легко показать, чего именно можно ожидать в этом случае. Если достаточно велико, то (во всяком случае, в начальный период) численность группы источников инфекции изменяется примерно по тому же закону, которому подчиняется процесс размножения и гибели со скоростями размножения и гибели, равными соответственно и у. Теперь используем формулу (8.35), выражающую вероятность вымирания популяции, заменив , на на у. Из нее следует, что вероятность прекращения эпидемического процесса равна 1 при и при . В первом случае исходная группа источников инфекции, безусловно, элиминирует и можно ожидать, что общее число заболеваний будет мало. Во втором случае с вероятностью можно ожидать малой вспышки и с вероятностью - большой вспышки эпидемии.

Стохастические модели с такими общими свойствами весьма полезны, хотя и до известного предела. Несмотря на присущие им ограничения, эти модели, соответствующим образом обобщенные и измененные, смогут, по-видимому, сыграть важную роль при исследовании широкого круга эпидемических явлений, наблюдаемых в больших популяциях. Однако очевидно, что для изучения более тонких деталей эти модели не подойдут. Так, в рассмотренной выше стохастической модели предполагалось, что не только латентный период равен нулю, но и длительность заразного периода имеет экспоненциальное распределение; для большинства болезней ни одно из этих допущений не справедливо. Для более реалистичного описания биологических и клинических деталей можно было бы построить модели для многофазовых процессов аналогично тому, что было сделано в конце разд. 8.3. Затем для различных интервалов можно выбрать распределения сохраняя при этом марковский характер всего процесса. В определенных случаях оказываются применимыми модели, рассмотренные в разд. 9.5 и 9.6.