Болезни Военный билет Призыв

Спектральный анализ проводят по спектрам. Спектральный анализ. Список использованной литературы

Спектральный анализ – метод определения химического состава вещества по его спектру. Этот метод разработан в 1859 г. немецкими учеными Г.Р. Кирхгофом и Р.В. Бунзеном.

Но прежде чем рассматривать этот довольно сложный вопрос, давайте сначала поговорим о том, что такое спектр.
Спектр (лат. spectrum «виде́ние») в физике - распределение значений физической величины (обычно энергии, частоты или массы). Обычно под спектром подразумевается электромагнитный спектр - спектр частот (или то же самое, что энергий квантов) электромагнитного излучения.

В научный обиход термин спектр ввёл Ньютон в 1671-1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму. В своём труде «Оптика» (1704 г.) он опубликовал результаты своих опытов разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения и объяснил их природу. Он показал, что цвет есть собственное свойство света, а не вносятся призмой, как утверждал Бэкон в XIII веке. Фактически Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света -преломление, интерференцию (перераспределение интенсивности света в результате наложения нескольких световых волн) и дифракцию (огибание препятствия волнами).
А вот теперь возвратимся к разговору о том, что такое спектральный анализ.

Это метод, который дает ценные и разнообразные сведения о небесных светилах. Как это делается? Анализируется свет, а из анализа света можно произвести качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и т. д.
В основе спектрального анализа лежит понятие о том, что сложный свет при переходе из одной среды в другую (например, из воздуха в стекло) разлагается на составные части. Если пучок этого света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке. Если вы забыли этот порядок, то посмотрите на рисунок.

Призма как спектральный прибор

В телескопах для получения спектра используют специальные приборы – спектрографы , устанавливаемые за фокусом объектива телескопа. В прошлом все спектрографы были призменными, но теперь вместо призмы в них используют дифракционную решетку , которая также разлагает белый свет в спектр, его называют дифракционным спектром.
Всем известно, что свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 700 до 400 ммк. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку.

Еще более короткую длину волны имеют рентгеновские лучи, применяемые в медицине. Рентгеновское излучение небесных светил атмосфера Земли задерживает. Только недавно оно стало доступно для изучения посредством запусков высотных ракет, поднимающихся выше основного слоя атмосферы. Наблюдения в рентгеновских лучах производят также автоматические приборы, установленные на космических межпланетных станциях.

За красными лучами спектра лежат инфракрасные лучи. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом . В спектроскоп спектр рассматривают, в спектрографе его фотографируют. Фотография спектра называется спектрограммой .

Виды спектров

Спектр в виде радужной оболочки (сплошной, или непрерывный) дают твердые раскаленные тела (раскаленный уголь, нить электролампы) и находящиеся под большим давлением громадные массы газа. Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. У каждого газа свой излученный набор ярких линий определенных цветов. Их цвет соответствует определенным длинам волн. Они находятся всегда в одних и тех же местах спектра. Изменения состояния газа или условий его свечения, например, нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Учеными составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии. Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий и более горячий источник, дающий непрерывный спектр. Спектр поглощения состоит из непрерывного спектра, перерезанного темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу. Например, две темные линии поглощения натрия расположены в желтой части спектра.

Таким образом, спектральный анализ позволяет установить химический состав паров, излучающих свет или поглощающих его; определить, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Но спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого или жидкого тела при помощи спектрального анализа определить нельзя.

Когда тело раскалено докрасна, в его сплошном спектре ярче всего красная часть. При дальнейшем нагревании наибольшая яркость в спектре переходит в желтую, потом в зеленую часть и т. д. Теория излучения света, проверенная на опыте, показывает, что распределение яркости вдоль сплошного спектра зависит от температуры тела. Зная эту зависимость, можно установить температуру Солнца и звезд. Температуру планет и температуру звезд определяют еще при помощи термоэлемента, помещенного в фокусе телескопа. При нагревании термоэлемента в нем возникает электрический ток, характеризующий количество теплоты, приходящее от светила.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа:

    Эмиссионный спектральный анализ - физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или излучения), возникающих под влиянием сильных источников возбуждений (электрической дуги, высоковольтной искры); этот метод дает возможность определять элементный состав вещества, т. е. судить о том, какие химические элементы входят в состав данного вещества.

    Пламенная спектрофотометрия, или фотометрия пламени, являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества, возникающих под влиянием мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным образом щелочных и щелочноземельных металлов, а также некоторых других элементов, например галлия, индия, таллия, свинца, марганца, меди, фосфора.

    Примечание. Кроме эмиссионной фотометрии пламени применяют абсорбнионную, называемую также атомно-абсорбционной спектроскопией или атомно-абсорбционной спектрофотометрией. Она основана на способности свободных атомов металла в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн. Этим методом можно определять сурьму, висмут, селен, цинк, ртуть и некоторые другие элементы, не определяемые методом эмиссионной фотометрии пламени.

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают спектрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основанный на определении спектра поглощения или измерении светопоглощения в видимом участке спектра.

    В отличие от спектрофотометрии в фотоколориметрическом методе применяют «белый» свет или «белый» свет, предварительно пропущенный через широкополосные светофильтры.

    Метод анализа по спектрам комбинационного рассеяния света. В методе использовано явление, открытое одновременно советскими физиками Г. С. Ландсбергом и Л. И. Мандельштамом и индийским физиком Ч. В. Раманом. Это явление связано с поглощением веществом монохроматического излучения и последующим испусканием нового излучения, отличающегося длиной волны от поглощенного.

    Турбидиметрия основана на измерении интенсивности света, поглощаемого неокрашенной суспензией твердого вещества. В турбидиметрии интенсивность света, поглощенного раствором или прошедшего через него, измеряют так же, как в фотоколориметрии окрашенных растворов.

    Нефелометрия основана на измерении интенсивности света, отраженного или рассеянного окрашенной или неокрашенной суспензией твердого вещества (взвешенного в данной среде осадка).

    Люминесцентный, или флуоресцентный метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценции) при облучении их ультрафиолетовыми лучами.

10)К оптическим методам анализа также относятся рефрактометрический метод, основанный на измерении коэффициента преломления, и полярометрический, основанный на изучении вращения плоскости поляризации.

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

СПЕКТРАЛЬНЫЙ АНАЛИЗ (при помощи спектров испускания) имеет применение почти во всех отраслях хозяйства. Широко применяется в металлопромышленности для быстрого анализа железа, стали, чугуна, а также различных специальных сталей и готовых металлических изделий, для установления чистоты легких, цветных и драгоценных металлов. Большое применение имеет спектральный анализ в геохимии при изучении состава полезных ископаемых. В химической промышленности и близких к ней отраслях спектральный анализ служит для установления чистоты выпускаемой и применяемой продукции, для анализа катализаторов, различных остатков, осадков, мутей и промывных вод; в медицине - для открытия металлов в различных органических тканях. Ряд специальных задач, трудно разрешаемых или вовсе не разрешимых иным путем, решается при помощи спектрального анализа быстро и точно. Сюда относится, например, распределение металлов в сплавах, исследование в сплавах и минералах сульфидных и других включений; такого рода исследования иногда обозначаются термином локальный анализ .

Выбор того или другого типа спектрального аппарата с точки зрения достаточности его дисперсии производится в зависимости от цели и задач спектрального анализа. Для исследования платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt), а также Fe, Co, Ni, Сг, V, Mo, W, Ti, Mn, Zr, Re, Nb и Та наиболее пригодны кварцевые спектрографы с большей дисперсией, дающие для длин волн 4000-2200 Ӑ полоску спектра длиной по крайней мере 22 см. Для остальных элементов м. б. применены аппараты, дающие спектры длиной 7-15 см. Спектрографы со стеклянной оптикой в общем имеют меньшее значение. Из них удобны комбинированные приборы (например, фирмы Гильгера и Фюсса), которые по желанию можно применять в качестве спектроскопа и спектрографа. Для получения спектров применяются следующие источники энергии. 1) Пламя горящей смеси - водорода и кислорода, смеси кислорода и светильного газа, смеси кислорода и ацетилена или наконец воздуха и ацетилена. В последнем случае температура источника света доходит до 2500-3000°С. Пламя наиболее всего пригодно для получения спектров щелочных и щелочноземельных металлов, а также для таких элементов, как Сu, Hg и Тl. 2) Вольтова дуга . а) Обычная, гл. обр. постоянного тока, силой 5-20 А. С большим успехом она применяется для качественного анализа трудно сплавляемых минералов, которые вводятся в дугу в виде кусочков или тонко растертых порошков. Для количественного анализа металлов применение обычной вольтовой дуги имеет очень существенный недостаток, заключающийся в том, что поверхность анализируемых металлов покрывается пленкой окиси и горение дуги становится в конце концов неравномерным. Температура вольтовой дуги доходит до 5000-6000°С. б) Прерывистая дуга (Abreissbogen) постоянного тока силой 2-5 А при напряжении около 80 V. При помощи специального приспособления горение дуги прерывается 4-10 раз в сек. Этот способ возбуждения уменьшает окисление поверхности анализируемых металлов. При более высоком напряжении - до 220 V и силе тока 1-2 А - прерывистая дуга может применяться также и для анализа растворов. 3) Искровые разряды , получаемые при помощи индукционной катушки или, чаще, трансформатора постоянного или (предпочтительнее) переменного тока мощностью до 1 kW, дающего во вторичной цепи 10000-30000 V. Применяются три типа разрядов, а) Искровые разряды без емкости и индуктивности во вторичной цепи, называемые иногда дугой высокого напряжения (Hochspannungsbogen). Анализ жидкостей и расплавленных солей при помощи таких разрядов отличается большой чувствительностью. б) Искровые разряды с емкостью и индуктивностью во вторичной цепи, часто называемые также конденсированными искрами , представляют собой более универсальный источник энергии, пригодный для возбуждения спектров почти всех элементов (кроме щелочных металлов), а также газов. Схема включения дана на фиг. 1,

где R - реостат в первичной цепи, Тr- трансформатор переменного тока, С 1 - емкость во вторичной цепи I, S - переключатель для изменения индуктивности L 1 , U - синхронный прерыватель, LF - искрогаситель, F - рабочий искровой промежуток. В резонанс ко вторичной цепи I при помощи индуктивности и переменной емкости С 2 настраивается вторичная цепь II; признаком наличия резонанса является наибольшая сила тока, показываемая миллиамперметром А. Назначение вторичной цепи II синхронного прерывателя U и искрогасителя LF - делать электрические разряды возможно однообразными как по характеру, так и по числу в течение определенного промежутка времени; при обычных работах такие добавочные приспособления не вводятся.

При исследованиях металлов во вторичной цепи применяется ёмкость 6000-15000 см и индуктивность до 0,05-0,01 Н. Для анализа жидкостей во вторичную цепь иногда вводится водяной реостат с сопротивлением до 40000 Ом. Газы исследуются без индуктивности с небольшой емкостью. в) Разряды токов Тесла, которые осуществляются при помощи схемы, изображенной на фиг. 2,

где V - вольтметр, А - амперметр, Т - трансформатор, С - емкость, Т-Т - трансформатор Тесла, F - искровой промежуток, куда вводится анализируемое вещество. Токи Тесла применяются для исследований веществ, которые имеют невысокую точку плавления: различных растительных и органических препаратов, осадков на фильтрах и т. п. При спектральном анализе металлов в случае большого их количества они обычно сами являются электродами, причем им придается какая-либо форма, например, из указанных на фиг. 3,

где а - электрод из анализируемой толстой проволоки, b - из жести, с - согнутая тонкая проволока, d - диск, отрезанный от толстого цилиндрического стержня, е - форма, выпиливаемая из больших кусков литья. При количественном анализе необходимо иметь всегда одинаковую форму и размеры подвергающейся действию искр поверхности электродов. При небольшом количестве анализируемого металла можно воспользоваться оправой из какого-либо чистого металла, например, из золота и платины, в которой укрепляется анализируемый металл, как показано на фиг. 4.

Для введения в источник света растворов предложено довольно много способов. При работе с пламенем применяется распылитель Люндегорда, схематически изображенный на фиг. 5 вместе со специальной горелкой.

Продуваемый через распылитель ВС воздух захватывает испытуемую жидкость, наливаемую в количестве 3 -10 см 3 в углубление С, и в виде тонкой пыли относит ее в горелку А, где происходит смешение с газом. Для введения растворов в дугу, а также в искру применяются чистые угольные или графитовые электроды, на одном из которых делается углубление. Необходимо, однако, отметить, что очень трудно приготовить угли совершенно чистыми. Применяемые для очистки способы - попеременное кипячение в соляной и плавиковой кислотах, а также прокаливание в атмосфере водорода до 2500-3000°С - не дают углей, свободных от примесей, остаются (хотя и следы) Са, Mg, V, Ti, Al, Fe, Si, В. Удовлетворительной чистоты получаются также угли путем прокаливания их на воздухе при помощи электрического тока: через угольный стержень диаметром 5 мм пропускается ток силой около 400 А, и достигаемое таким путем сильное накаливание (до 3 000°С) оказывается достаточным для того, чтобы в течение нескольких секунд большинство загрязняющих угли примесей улетучилось. Существуют также такие способы введения растворов в искру, где сам раствор является нижним электродом, и искра проскакивает на его поверхность; другим электродом может служить какой-либо чистый металл. Примером такого устройства может служить изображенный на фиг. 6 жидкостный электрод Герляха.

Углубление, куда наливается испытуемый раствор, облицовывается платиновой фольгой или покрывается толстым слоем позолоты. На фиг. 7 изображен аппарат Хитчена, служащий также для введения растворов в искру.

Из сосуда А испытуемый раствор слабой струей поступает через трубку В и кварцевую насадку С в сферу действия искровых разрядов. Нижний электрод, впаянный в стеклянную трубку, прикрепляется к аппарату при помощи каучуковой трубки Е. Насадка С, изображенная на фиг. 7 отдельно, имеет с одной стороны вырез для стенания раствора. D - стеклянный предохранительный сосуд, в котором делается круглое отверстие для выхода ультрафиолетовых лучей. Сосуд этот удобнее делать кварцевым без отверстия. К верхнему электроду F, графитовому, угольному или металлическому, также приспосабливается предохраняющая от брызг пластинка. Для «дуги высокого напряжения», сильно накаливающей анализируемые вещества, Герлях при работе с растворами применяет электроды с охлаждением, как это схематически показано на фиг. 8.

На толстой проволоке (диаметром 6 мм) укрепляется при помощи пробки К стеклянная воронка G, куда помещаются кусочки льда. На верхнем конце проволоки укрепляется круглый железный электрод Е диаметром 4 см и высотой 4 см, на который накладывается платиновая чашечка Р; последняя должна легко сниматься для очистки. Верхний электрод также д. б. толстым во избежание расплавления. При анализе небольших количеств веществ - осадков на фильтрах, различных порошков и т. д. - можно пользоваться приспособлением, изображенным на фиг. 9.

Из испытуемого вещества и фильтровальной бумаги делается комочек, смачивается для лучшей проводимости раствором, например, NaCl, помещается на нижний электрод, состоящий иногда из чистого кадмия, заключенного в кварцевой (хуже стеклянной) трубочке; верхний электрод также является каким-либо чистым металлом. Для таких же анализов при работе с токами Тесла применяется специальная конструкция искрового промежутка, изображенная на фиг. 10 а и б.

В круглом шарнире К укрепляется в нужном положении алюминиевая пластинка Е, на которую накладывается стеклянная пластинка G, а на последнюю - препарат Р на фильтровальной бумаге F. Препарат смачивается какой-либо кислотой или раствором соли. Вся эта система представляет небольшой конденсатор. Для исследования газов применяются закрытые стеклянные или кварцевые сосуды (фиг. 11).

Для количественного анализа газов удобно пользоваться золотыми или платиновыми электродами, линии которых можно применить для сравнения. Почти все из упомянутых выше приспособлений для введения веществ в искру и дугу при работе укрепляются в специальных штативах. Примером может являться штатив Грамона, изображенный на фиг. 12:

при помощи винта D электроды одновременно раздвигаются и сдвигаются; винт Е служит для передвигания верхнего электрода параллельно оптической скамье, а винт С - для боковых поворотов нижнего электрода; для боковых поворотов всей верхней части штатива служит винт В; наконец при помощи винта А можно поднимать или опускать всю верхнюю часть штатива; Н - подставка для горелок, стаканов и пр. Выбор источника энергии для той или иной цели исследования можно сделать, руководствуясь следующей примерной таблицей.

Качественный анализ . При качественном спектральном анализе открытие какого-либо элемента зависит от многих факторов: от характера определяемого элемента, источника энергии, разрешающей способности спектрального аппарата, а также от чувствительности фотографических пластинок. Относительно чувствительности анализа можно сделать следующие указания. При работе с искровыми разрядами в растворах можно открывать 10 -9 -10 -3 %, а в металлах 10 -2 -10 -4 % исследуемого элемента; при работе с вольтовой дугой пределы открытия лежат около 10 -3 %. Абсолютное количество, которое м. б. открыто при работе с пламенем, составляет 10 -4 -10 -7 г, а при искровых разрядах 10 -6 -10 -8 г исследуемого элемента. Наибольшая чувствительность открытия относится к металлам и металлоидам - В, Р, С; меньше чувствительность для металлоидов As, Se и Те; галоиды, а также S, О, N в их соединениях совсем не м. б. открыты и м. б. открыты лишь в некоторых случаях в газовых смесях.

Для качественного анализа наибольшее значение имеют «последние линии», и при анализе задача заключается в наиболее точном определении длин волн спектральных линий. При визуальных исследованиях длины волн отсчитываются по барабану спектрометра; эти измерения можно считать лишь приблизительными, так как точность составляет обычно ±(2-З) Ӑ и в таблицах Кайзера этому интервалу ошибок могут отвечать около 10 спектральных линий, принадлежащих различным элементам, для λ 6000 и 5000 Ӑ и около 20 спектральных линий для λ ≈ 4000 Ӑ. Гораздо точнее определяется длина волн при спектрографическом анализе. В этом случае на спектрограммах при помощи измерительного микроскопа измеряется расстояние между линиями с известной длиной волны и определяемой; по формуле Гартмана находится длина волны последней. Точность таких измерений при работе с прибором, дающим полоску спектра длиной около 20 см, составляет ± 0,5 Ӑ для λ ≈ 4000 Ӑ, ± 0,2 Ӑ для λ ≈ 3000 Ӑ и ± 0,1 Ӑ для λ ≈ 2500 Ӑ. По длине волны в таблицах находят соответствующий элемент. Расстояние между линиями при обычных работах измеряется с точностью до 0,05-0,01 мм. Этот прием иногда удобно комбинировать со съемками спектров с так называемыми заслонками Гартмана, два типа которых изображены на фиг. 13, а и b; при помощи их щель спектрографа можно делать различной высоты. Фиг. 13, с схематически изображает случай качественного анализа вещества X - установление в нем элементов А и В. Спектры фиг. 13, d показывают, что в веществе Y кроме элемента А, линии которого обозначены буквой G, имеется примесь, линии которой обозначены z. При помощи этого приема в простых случаях можно выполнить качественный анализ, не прибегая к промеру расстояний между линиями.

Количественный анализ . Для количественного спектрального анализа наибольшее значение имеют линии, обладающие возможно большей концентрационной чувствительностью dI/dK, где I - интенсивность линии, а К - концентрация дающего ее элемента. Чем больше концентрационная чувствительность, тем точнее анализ. С течением времени разработан целый ряд методов количественного спектрального анализа. Эти методы следующие.

I. Спектроскопические методы (без фотографической съемки) почти все являются фотометрическими методами. Сюда относятся: 1) Метод Барратта . Одновременно возбуждаются спектры двух веществ - испытуемого и стандартного - видные в поле зрения спектроскопа рядом, один над другим. Ход лучей изображен на фиг. 14,

где F 1 и F 2 - два искровых промежутка, свет от которых проходит через призмы Николя N 1 и N 2 , поляризующие лучи во взаимно перпендикулярных плоскостях. При помощи призмы D лучи попадают в щель S спектроскопа. В его зрительной трубе помещается третья призма Николя - анализатор, - вращая которую добиваются одинаковой интенсивности двух сравниваемых линий. Предварительно при исследованиях стандартов, т. е. веществ с известным содержанием элементов, устанавливается зависимость между углом поворота анализатора и концентрацией, и по этим данным вычерчивается диаграмма. При анализе по углу поворота анализатора из этой диаграммы находится искомое процентное содержание. Точность метода ±10 %. 2) . Принцип метода заключается в том, что лучи света после призмы спектроскопа проходят через призму Волластона, где расходятся на два пучка и поляризуются во взаимно перпендикулярных плоскостях. Схема хода лучей показана на фиг. 15,

где S - щель, Р - призма спектроскопа, W - призма Волластона. В поле зрения получаются два спектра B 1 и В 2 , лежащие рядом, друг над другом; L - лупа, N - анализатор. Если вращать призму Волластона, то спектры будут передвигаться относительно друг друга, что позволяет совместить какие-либо две их линии. Например, если анализируется железо, содержащее ванадий, то совмещается линия ванадия с какой-либо близлежащей одноцветной линией железа ; затем, поворачивая анализатор, добиваются одинаковой яркости этих линий. Угол поворота анализатора, как и в предыдущем методе, является мерой концентрации искомого элемента. Метод особенно пригоден для анализа железа, спектр которого имеет много линий, что позволяет всегда найти линии, пригодные для исследований. Точность метода ± (3-7)%. 3) Метод Оккиалини . Если расположить электроды (например, анализируемые металлы) горизонтально и проектировать изображен из источника света на вертикальную щель спектроскопа, то как при искровых, так и при дуговых разрядах линии примесей м. б. открыты в зависимости от концентрации на большем или меньшем расстоянии от электродов. Источник света проектируется на щель при помощи специальной линзы, снабженной микрометрическим винтом. При анализе эта линза передвигается и вместе с ней передвигается изображение источника света до тех пор, пока какая-либо линия примеси в спектре исчезнет. Мерой концентрации примеси является отсчет по шкале линзы. В настоящее время этот метод разработан также и для работ с ультрафиолетовой частью спектра. Надо отметить, что таким же способом освещения щели спектрального аппарата пользовался Локиер и им был разработан метод количественного спектрального анализа, т. н. метод «длинных и коротких линий». 4) Прямое фотометрирование спектров . Описанные выше методы носят название визуальных. Люндегорд вместо визуальных исследований пользовался для измерения интенсивности спектральных линий фотоэлементом. Точность определения щелочных металлов при работе с пламенем достигала ± 5%. При искровых разрядах этот способ неприменим, так как они менее постоянны, чем пламя. Существуют также способы, основанные на изменении индуктивности во вторичной цепи, а также использующие искусственное ослабление света, попадающего в спектроскоп, до исчезновения в поле зрения исследуемых спектральных линий.

II. Спектрографические методы . При этих методах исследуются фотографические снимки спектров, причем мерой интенсивности спектральных линий является почернение, даваемое ими на фотографической пластинке. Интенсивность оценивается или глазом, или фотометрически.

А . Методы без применения фотометрии . 1) Метод последних линий . При изменении концентрации какого-либо элемента в спектре изменяется число его линий, что дает возможность при неизменных условиях работы судить о концентрации определяемого элемента. Фотографируется ряд спектров веществ с известным содержанием интересующего компонента, на спектрограммах определяется число его линий и составляются таблицы, в которых указывается, какие линии видны при данных концентрациях. Эти таблицы служат дальше для аналитических определений. При анализе на спектрограмме определяется число линий интересующего элемента и по таблицам находится процентное содержание, причем метод дает не однозначную его цифру, а границы концентраций, т. е. «от-до». Наиболее достоверно возможно различить концентрации, отличающиеся друг от друга в 10 раз, например, от 0,001 до 0,01%, от 0,01 до 0,1% и т. д. Аналитические таблицы имеют значение лишь для вполне определенных условий работы, которые в различных лабораториях могут очень сильно различаться; кроме того, требуется тщательное соблюдение постоянства условий работы. 2) Метод сравнительных спектров . фотографируется несколько спектров анализируемого вещества А + х% В, в котором определяется содержание х элемента В, и в промежутках между ними на той же фотографической пластинке -спектры стандартных веществ А + а% В, А + b% В, А + с% В, где а, b, с - известное процентное содержание В. На спектрограммах по интенсивности линий В определяется, между какими концентрациями заключается значение х. Критерием постоянства условий работы является равенство интенсивности на всех спектрограммах какой-либо близлежащей линии А. При анализе растворов в них добавляется одинаковое количество какого-либо элемента, дающего линию близко к линиям В, и тогда о постоянстве условий работы судят по равенству интенсивности этих линий. Чем меньше разница между концентрациями а, Ь, с, … и чем точнее достигнуто равенство интенсивности линий А, тем точнее анализ. А. Райс, например, применял концентрации а, b, с, ... , относящиеся друг к другу, как 1: 1,5. К методу сравнительных спектров примыкает метод «подбора концентраций» (Testverfahren) по Гюттигу и Турнвальду, применимый только к анализу растворов. Он заключается в том, что если в двух растворах, содержащих а% А и х% А (х больше или меньше а), что сейчас же можно определить по их спектрам, то прибавляют в какой-либо из этих растворов такое количество n элемента А, чтобы интенсивность его линий на обоих спектрах стала одинаковой. Тем самым определится концентрация х, которая будет равна (а ± n)%. Можно также прибавить в анализируемый раствор какой-либо другой элемент В до равенства интенсивности определенных линий А и В и по количеству В оценить содержание А. 3) Метод гомологических пар . В спектре вещества А + а% В линии элементов А и В не являются одинаково интенсивными и, если этих линий достаточное количество, можно найти две такие линии А и В, интенсивность которых будет одинакова. Для другого состава А + b% В одинаковыми по интенсивности будут другие линии А и В и т. д. Эти две одинаковые линии называются гомологическими парами. Концентрации В, при которых осуществляется та или иная гомологическая пара, называются фиксирующими пунктами этой пары. Для работы по этому методу требуется предварительное составление таблиц гомологических пар при помощи веществ известного состава. Чем полнее таблицы, т. е. чем больше они содержат гомологических пар с фиксирующими пунктами, отличающимися как можно меньше друг от друга, тем точнее анализ. Этих таблиц составлено довольно большое количество, причем они могут иметь применение в любой лаборатории, т. к. точно известны условия разрядов при их составлении и эти условия м. б. совершенно точно воспроизведены. Достигается это при помощи следующего простого приема. В спектре вещества А + а% В выбираются две линии элемента А, интенсивность которых очень сильно меняется в зависимости от величины самоиндукции во вторичной цепи, именно одна дуговая (принадлежащая нейтральному атому) и одна искровая линия (принадлежащая иону). Эти две линии называются фиксирующей парой . Путем подбора величины самоиндукции линии этой пары делаются одинаковыми и составление ведется именно при этих условиях, всегда указываемых в таблицах. При таких же условиях проводится и анализ, и по осуществлению той или иной гомологической пары находится процентное содержание. Имеется несколько модификаций метода гомологических пар. Из них главнейшим является метод вспомогательного спектра , применяемый в том случае, когда элементы А и В не обладают достаточным количеством линий. В этом случае линии спектра элемента А определенным образом связываются с линиями другого, более пригодного элемента G, и роль А начинает играть элемент G. Метод гомологических пар разработан Герляхом и Швейтцером. Он применим как к сплавам, так и к растворам. Его точность в среднем около ±10%.

В . Методы с применением фотометрии . 1) Метод Барратта . Фиг. 16 дает представление о методе.

F 1 и F 2 - два искровых промежутка, при помощи которых одновременно возбуждаются спектры стандартного и анализируемого вещества. Свет проходит через 2 вращающихся сектора S 1 и S 2 и при помощи призмы D образует спектры, которые расположены один над другим. Путем подбора вырезок секторов линии исследуемого элемента получают одинаковую интенсивность; концентрация определяемого элемента вычисляется из соотношения величин вырезок. 2) является аналогичным, но с одним искровым промежутком (фиг. 17).

Свет от F разделяется на два пучка и проходит через секторы S 1 и S 2 , при помощи ромба Гюфнера R две полоски спектра получаются одна над другой; Sp - щель спектрографа. Вырезки секторов изменяются до получения равенства интенсивности линии примеси и какой-либо близлежащей линии основного вещества и по соотношению величин вырезок высчитывается %-ное содержание определяемого элемента. 3) При применении в качестве фотометра вращающегося логарифмического сектора линии получают на спектрограммах клинообразный вид. Один из таких секторов и его положение относительно спектрографа при работе изображены на фиг. 18, а и б.

Вырезка сектора подчиняется уравнению

- lg Ɵ = 0,3 + 0,2l

где Ɵ - длина дуги в частях полной окружности, находящаяся на расстоянии I, измеренном в мм по радиусу от его конца. Мерой интенсивности линий является их длина, т. к. с изменением концентрации элемента длина его клинообразных линий также изменяется. Предварительно по образцам с известным содержанием строится диаграмма зависимости длины какой-либо линии от %-ного содержания; при анализе на спектрограмме измеряется длина той же линии и по диаграмме находится процентное содержание. Имеется несколько различных модификаций этого метода. Следует указать на модификацию Шейбе, применявшего т. н. двойной логарифмический сектор. Вид этого сектора изображен на фиг. 19.

Линии исследуются затем при помощи специального аппарата. Точность, достижимая при помощи логарифмических секторов, ±(10-15)%; модификация Шейбе дает точность ±(5-7)%. 4) Довольно часто применяется фотометрирование спектральных линий при помощи свето- и термоэлектрических спектрофотометров самых различных конструкций. Удобными являются термоэлектрические фотометры, выработанные специально для целей количественного анализа. Для примера на фиг. 20 приведена схема фотометра по Шейбе:

L– постоянный источник света с конденсором К, М – фотографическая пластинка с исследуемым спектром, Sp - щель, О 1 и О 2 - объективы, V - затвор, Th - термоэлемент, который присоединяется к гальванометру. Мерой интенсивности линий является отклонение стрелки гальванометра. Реже пользуются саморегистрирующими гальванометрами, дающими запись интенсивности линий в виде кривой. Точность анализа при применении этого типа фотометрии составляет ±(5-10)%. При сочетании с другими методами количественного анализа точность м. б. повышена; так, например, метод трех линий Шейбе и Шнеттлера, являющийся сочетанием метода гомологических пар и фотометрических измерений, в благоприятных случаях может дать точность ±(1-2)%.

Одним из основных методов анализа химического состава вещества является спектральный анализ. Анализ его состава производится, на основании изучения его спектра. Спектральный анализ — используется в различных исследованиях. С его помощью открыт комплекс химических элементов: Не, Ga, Cs. в атмосфере Солнца. А также Rb, Inи XI, определён состав Солнца и большинства других небесных тел.

Отрасли применения

Спектральная экспертиза, распространена в:

  1. Металлургии;
  2. Геологии;
  3. Химии;
  4. Минералогии;
  5. Астрофизике;
  6. Биологии;
  7. медицине и др.

Позволяет находить в изучаемых объектах малейшие количества устанавливаемого вещества (до 10 — MS) Спектральный анализ делится на качественный и количественный.

Методы

Способ установления химического состава вещества на основе спектра – это и есть основа спектрального анализа. Линейчатые спектры обладают неповторимой индивидуальностью, так же как и отпечатки пальцев у людей, или же узор снежинок. Неповторимость рисунков на коже пальца – это большое преимущество для розыска преступника. Поэтому благодаря особенности каждого спектра имеется — возможность установить химическое содержание тела, проведя анализ химического состава вещества. Даже если его масса элемента не превышает 10 — 10 г, с помощью спектрального анализа его можно обнаружить в составе сложного вещества. Это достаточно чувствительный метод.

Эмиссионный спектральный анализ

Эмиссионный спектральный анализ — это ряд методов установления химического состава вещества по его эмиссионному спектру. В основу способа установления химического состава вещества – спектральной экспертизы, положены закономерности в спектрах испускания и спектрах поглощения. Данный метод позволяет выявить миллионные доли миллиграмма вещества.

Существуют методы качественной и количественной экспертизы, в соответствии с установлением аналитической химии как предмета, целью которой является формирование способов установления химического состава вещества. Методы идентификации вещества, становятся крайне важными в пределах качественного органического анализа.

По линейчатому спектру паров какого-либо из веществ есть возможность установить, какие химические элементы содержаться в его составе, т.к. любой химический элемент имеет личный специфический спектр излучения. Подобный метод установления химического состава вещества именуется качественным спектральным анализом.

Рентгеноспектральный анализ

Существует еще один метод определения химического вещества, называемый рентгеноспектральным анализом. Рентгеноспектральный анализ основан на активации атомов вещества при облучении его рентгеновскими лучами, процесс называется вторичным или флуоресцентным. А также возможна активация при облучении электронами больших энергий, в этом случае процесс именуют прямым возбуждением. В результате перемещения электронов в более глубоких внутренних электронных слоях появляются линии рентгеновского излучения.

Формула Вульфа — Брэггов позволяет устанавливать длины волн, в составе рентгеновского излучения, при применении кристалла популярной структуры с известным расстоянием d. Это и есть основание метода определения. Изучаемое вещество бомбят стремительными электронами. Помещают его, к примеру, на анод разборной рентгеновской трубки, впоследствии чего оно источает характерные рентгеновские лучи, которые падают на кристалл известной структуры. Измеряют углы и рассчитывают по формуле соответствующие длины волн, после фотографирования возникающей при этом дифракционной картине.

Приемы

В настоящее время все методы химического анализа основаны на двух приемах. Либо на: физическом приеме, либо на химическом приеме сравнения устанавливаемой концентрации с ее единицей измерения:

Физический

Физический приём основан на способе соотнесения с эталоном единицы величины количества компонента путем измерения его физического свойства, который зависит от его содержания в пробе вещества. Пробно определяют функциональную зависимость «Насыщенность свойства – содержание компонента в пробе» способом градуировки средства измерения данного физического свойства по устанавливаемому компоненту. Из градуировочного графика получают количественные отношения, построенного в координатах: «насыщенность физического свойства — концентрация устанавливаемого компонента».

Химический

Химический приём используется в способе соотнесения с эталоном единицы величины количества компонента. Тут используются законы сохранения количества или массы компонента при химических взаимодействиях. На химических свойствах химических соединений, основаны химические взаимодействия. В пробе вещества осуществляют химическую реакцию, отвечающую поставленным требованиям, для определения искомого компонента, и производится замер объёма или массы, принимающих участие в конкретной химической реакции компонентов. Получают количественные отношения, далее записывается количества эквивалентов компонента для данной химической реакции или закон сохранения массы.

Приборы

Приборами для анализа физико-химического состава вещества являются:

  1. Газоанализаторы;
  2. Сигнализаторы предельно допустимых и до взрывоопасных концентраций паров и газов;
  3. Концентратомеры жидких растворов;
  4. Плотномеры;
  5. Солемеры;
  6. Влагомеры и др. схожие по назначению и комплектности приборы.

Со временем все более увеличивается круг анализируемых объектов и повышается скорость и правильность анализа. Одним из главнейших приборных методов установления атомного химического состава вещества становится спектральный анализ.

С каждым годом все больше появляются комплексы приборов, для количественного спектрального анализа. А также выпускают наиболее усовершенствованные виды аппаратуры и способы регистрации спектра. Организуются спектральные лаборатории первоначально в машиностроительной, металлургической, а затем и других областях промышленности. Со временем вырастает скорость и верность анализа. К тому же расширяется область анализируемых объектов. Одним из основных приборных методов установления атомного химического состава вещества становится спектральный анализ.

В семнадцатом веке, обозначающее совокупность всех значений какой-либо физической величины. Энергии, массы, оптического излучения. Именно последнее зачастую имеется в виду, когда мы говорим о спектре света. Конкретно спектр света представляет собой совокупность полос оптического излучения разной частоты, часть из которых мы можем видеть повседневно в окружающем мире, часть же их недоступна для невооруженного глаза. В зависимости от возможности восприятия человеческим глазом, спектр света разделяют на видимую часть и невидимую. Последнюю, в свою очередь, - на инфракрасный и ультрафиолетовый свет.

Виды спектров

Существуют также разные виды спектров. Таких выделяют три, в зависимости от спектральной плотности интенсивности излучения. Спектры могут быть непрерывные, линейчатые и полосатые. Виды спектров определяют с помощью

Непрерывный спектр

Непрерывный спектр образуется нагретыми до высокой температуры твердыми телами или газами высокой плотности. Всем известная радуга семи цветов является прямым примером непрерывного спектра.

Линейчатый спектр

Также представляет виды спектров и исходит от любого вещества, находящегося в газообразном атомарном состоянии. Здесь важно отметить, что именно в атомарном, а не молекулярном. Такой спектр обеспечивает крайне низкое взаимодействие атомов друг с другом. Поскольку взаимодействия нет, атомы излучают волны перманентно одинаковой длины. Примером такого спектра является свечение газов, нагретых до высокой температуры.

Полосатый спектр

Полосатый спектр визуально представляет собой отдельные полосы, четко разграниченные достаточно темными промежутками. При этом каждая из этих полос не является излучением строго определенной частоты, а состоит из большого количества близко расположенных друг к другу световых линий. Примером таких спектров, как и в случае с линейчатым, является свечение паров при высокой температуре. Однако они создаются уже не атомами, а имеющими крайне тесную общую связь молекулами, что и обуславливает подобное свечение.

Спектр поглощения

Однако на этом виды спектров все-таки не заканчиваются. Дополнительно выделяют еще такой вид, как спектр поглощения. При спектральном анализе спектр поглощения - это темные линии на фоне непрерывного спектра и, по существу, спектр поглощения - это выражение зависимости от показателя поглощения вещества, который может быть более или менее высоким.

Хотя существует широкий диапазон экспериментальных подходов к измерению спектров поглощения. Наиболее распространенным является эксперимент, когда генерируемый пучок излучения пропускается через охлажденный (для отсутствия взаимодействия частиц и, следовательно, свечения) газ, после чего определяется интенсивность излучения, проходящего через него. Переданная энергия вполне может быть использована для вычисления поглощения.