Болезни Военный билет Призыв

Специфичные для структуры фрагменты молекул масс спектроскопия. Масс-спектрометр – принцип работы и применение масс-спектрометров

Масс-спектрометр – устройство для установления масс атомов (молекул) согласно характеру перемещения их ионов в гальваническом и магнитном фонах.

Навигация:

Нейтральная частица не подвергается воздействию гальванического и магнитного поля. Тем не менее, в случае если забрать у неё либо прибавить ей один и больше электронов, в таком случае она перевоплотится в ион, вид перемещения которого в данных полях достаточно предопределяется его весом и зарядом. Определённо говоря, в масс-спектрометрах обусловливается не масса, а расположение массы к заряду. В случае если запас известный, в таком случае несомненно обусловливается массовая значимость иона, а следовательно, масса промежуточного атома и его ядра. Конструктивно, масс-спектрометры могут очень различаться друг от друга. В них могут применяться равно как статичные поля, так и меняющиеся во времени поля, магнитные либо гальванические.

Масс-спектрометр складывается с последующих ключевых элементов:

  • Гетерополярного источника, где промежуточные атомы преобразуются в ионы (к примеру, перед воздействием нагревания либо СВЧ-поля) и убыстряются гальваническим полем;
  • Сферы неизменных электро- и магнитных полей;
  • Приёмника ионов, характеризующего местоположение областей, куда определяются ионы, пересекшие данные поля.

Масс-спектрометр

Хромато-масс-спектрометр

Концепция ХМС с комбинированным квадруполь-времяпролётным масс-спектрометром высокого разрешения с ионизацией электроспреем, дает возможность замечать и определять как ведомые компоновки и их метаболиты, так и незнакомые компоновки в размашистом спектре масс с 20 вплоть до 40 000. Несомненно (лекарственные вещества, наркотикосодержащие вещества, пестициды и др.), осуществлять совместное исследование главных и следовых частей, предопределять подлинное изотопическое отношение с целью четкого установления молекулярных формул. Меняющийся интервал при численной оценке является свыше 4 порядков. Применяется с целью численной оценки синтезов. Устройство располагает уникальными характеристиками: разрешающей возможностью более 35 000 FWHM, правильностью установления молекулярной массы меньше 0.7 ррm, высочайшей чувствительностью при наибольшем разрешении. Большой темп распознавания информации – вплоть до 60 спектров в одну секунду.

Хромато-масс-спектрометр

Научные работники в течение длительного времени разыскивали альтернативу магниту в свойстве масс-анализатора. В 1953 Вольфгангом Паулем, в дальнейшем получивший Нобелевскую премию в области физики в 1989 г., было очерчено первое устройство с квадрупольным анализатором. Формирование квадрупольных масс-анализаторов стало революцией в масс-спектрометрии. Магнитные масс-анализаторы требуют применения высочайших напряжений (тыс. вольт), а квадрупольные - нет, и данное упрощает их систему, наименьшие объемы вакуумной доли упрощают концепцию формирования вакуума. Масс-спектрометры стали меньше в объемах, стали легче в эксплуатации и что самое главное, гораздо экономичнее, чтобы раскрыть вероятность пользоваться данным аналитическим способом многочисленным тысячам пользователей. К минусам квадруполей принадлежат невысокое разрешение и небольшой верх наибольшей детектируемой массы (м/z~4100). Тем не менее, нынешние масс-анализаторы дают возможность осуществлять детектирование ионов с соответствием м/z~350.

Принцип действия

Квадруполь предполагает собою 4 одновременно и симметрично размещенных монополя (электроды совершенного сечения). К электродам по двое в обратной полярности подаётся обусловленное сочетание непрерывного и индукционного напряжения.

Под воздействием незначительного убыстряющего напряжения (15-25 В), ионы входят синхронно осям стержней электродов. Перед воздействием осцилирующего поля, предопределяемым электродами, они начинают двигаться вдоль осей х и у. При этом амплитуда колебаний увеличивается без перемены направленности перемещения. Ионы, чьи амплитуды доходят высочайших значимостей, нейтрализуются при столкновении с электродами. Прочную амплитуду обретают только лишь эти ионы, чьи значения м/z станут отвечать установленному соответствию U/V. Последнее дает возможность им беспрепятственно передвигаться в квадруполе и находиться в окончательном результате детектируемыми. Подобным способом, масс-диапазон фиксируется маршрутом обоюдной перемены значимостей величин U и V.

Квадрупольный масс-спектрометр

Магнитный масс-спектрометр

В магнитных масс-спектрометрах с целью распределения ионов в масс-анализаторах, применяют гомогенное магнитное поле. В данном случае движения форсирования ионов в гальванической область и распределения их в магнитной, могут быть изображены численно.

Магнитный масс-термоанализатор - приспособление с целью пространственного и временного распределения ионов с разными значимостями взаимоотношения массы к заряду, применяющиеся с целью распределения магнитного поля.

Исторически, первоначальным масс-анализатором был магнит. В соответствии с физическим законом, линия заряженных элементов в магнитном поле искажается, а радиус кривизны находится в зависимости от массы элементов.

Существуют разные геометрии магнитных масс-анализаторов, в каковых измеряется или радиус кривизны, или магнитное поле. Магнитные масс-спектрометры обладают высочайшим разрешением и могут применяться с абсолютно всеми типами ионизации. Невзирая на существенные плюсы нынешних пред остальными (высочайшее разрешение, большая достоверность замеров и высокий рабочий интервал масс), они располагают 2-я главными недостатками - данное оборудование огромно, как согласно объемам, так и согласно размеру цены.

Магнитный масс-спектрометр

Это простой тип масс-анализатора. Во времяпролетном масс-анализаторе ионы выпадают с источника и оказываются во времяпролетной трубе, где не имеется гальванического поля (бесполевой период). Пронесшись определенный промежуток d, ионы фиксируются сенсором ионов с прямой либо практически прямой фиксирующей поверхностью. В 1951-1971 годах, в свойстве сенсора ионов применялся второстепенный электрический умножитель «жалюзного типа», позднее использовался составной обнаружитель, применяющий 2 либо изредка 3 последовательно находящихся микроканальных пластинок.

Времяпролетный масс-термоанализатор представляется пульсирующим масс-анализатором, то есть ионы зачисляются с источника ионов во времяпролетный элемент не постоянно, а дозами, при помощи определенных интервалов времени. Подобные масс-анализаторы совместимы с ионизацией лазерной десорбции, при содействии матрицы, таким образом, как в этом способе ионизации, ионы кроме того возникают не постоянно, а при любом импульсе лазера.

Времяпролетный масс-спектрометр

Масс-спектрометры Agilent

Еще издавна масс-спектрометр оценивают как прекрасный обнаружитель для газовой хроматографии. Приобретенные с поддержкой масс-спектрометрического сенсора спектры, предоставляют подобные сведения о высококачественном составе проверки, которую не могут предоставить другие газохроматографические сенсоры. Масс-спектрометрический обнаружитель имеет огромную чувствительность, помимо этого, он уничтожает пробу, предоставляет данные о массе и распознаёт быстрее гомологи, нежели изомеры.

Высоконадежные масс-спектрометры Agilent удовлетворяют наиболее большим условиям и предельно отвечают решаемым задачам. В настоящий период производители могут представить линейки высокоточных прогрессивных масс-спектрометров для ГX и BЭЖX.

Масс-спектрометр Agilent

Получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров .

В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

История масс-спектрометрии

  • 1912 год - Томсон создает первый масс-спектрограф и получает масс-спектры молекул кислорода , азота , угарного газа , углекислого газа и фосгена .
  • 1913 год - С помощью своего масс-спектрографа Томсон открывает изотопы неона : неон-20 и неон-22.
  • 1923 год - Астон измеряет с помощью масс-спектрометра дефект массы .
  • 1934 год - Конрад применяет масс-спектрометрию для анализа органических молекул.
  • 1940 год - Нир с помощью препаративной масс-спектрометрии выделяет уран-235 .
  • 1940 год - Нир создает первый надежный источник электронного удара, применив ионизационную камеру .
  • 1948 год - Камероном и Эггером создан первый масс-спектрометр с время-пролётным масс-анализатором .
  • 1953 год - Пауль патентует квадрупольный масс-анализатор и ионную ловушку .
  • 1956 год - МакЛаферти и Голке создают первый газовый хромато-масс-спектрометр.
  • 1966 год - Мансон и Филд создают ионный источник с химической ионизацией .
  • 1972 год - Каратаев и Мамырин изобретают время-пролётный масс-анализатор с фокусировкой, значительно улучшающий разрешение анализатора.
  • 1974 год - Первый жидкостный хромато-масс-спектрометр создан Арпино, Болдуином и МакЛаферти
  • 1981 год - Барбер, Бордоли, Седжвик и Тайлор создают ионизатор с бомбардировкой быстрыми атомами (FAB).
  • 1982 год - Первый масс-спектр целого белка (инсулин) с помощью бомбардировки быстрыми атомами (FAB).
  • 1983 год - Бланки и Бестал изобретают термоспрей .
  • 1987 год - Карас, Бахман, Бар и Хилленкамп изобретают ионизацию лазерной десорбцией при содействии матрицы (MALDI).
  • 1999 год - Александр Макаров изобретает электростатическую ионную ловушку.

Принцип работы и устройство масс-спектрометра

Источники ионов

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы . Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

Условно способы ионизации органических веществ можно классифицировать по фазам, в которых находятся вещества перед ионизацией.

Газовая фаза Жидкая фаза

  • ионизация при атмосферном давлении (AP)
Твёрдая фаза

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

  • ионизация в индуктивно-связанной плазме (ICP)
  • термоионизация или поверхностная ионизация
  • ионизация в тлеющем разряде и искровая ионизация (см. искровой разряд)
  • ионизация в процессе лазерной абляции

Масс-анализаторы

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

Непрерывные масс-анализаторы

  • Магнитный и электростатический секторный масс-анализатор (англ. Sector instrument )
  • Квадрупольный масс-анализатор (англ. Quadrupole mass analyzer )
импульсные масс-анализаторы
  • Времяпролётный масс-анализатор (англ. Time-of-flight mass spectrometry )
  • Ионная ловушка (англ. Ion trap )
  • Квадрупольная линейная ловушка (англ. Quadrupole ion trap )
  • Масс-анализатор ионно-циклотронного резонанса с Фурье-преобразованием (англ. Fourier transform ion cyclotron resonance )
  • Орбитрэп (англ. Orbitrap )

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным . Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод , выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений.

Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS ). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Характеристики масс-спектрометров и масс-спектрометрических детекторов

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.

Важнейшая характеристика при анализе органических соединений - это чувствительность. Для того, чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр - достоверность. Ведь если Вы записывали только один пик из всего характеристического масс-спектра, Вам понадобится ещё много поработать, чтобы доказать, что этот пик соответствует именно тому компоненту, который Вас интересует. Как же разрешить эту проблему? Использовать высокое разрешение на приборах с двойной фокусировкой, где можно добиться высокого уровня достоверности не жертвуя чувствительностью. Или использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий материнскому иону можно подтвердить масс-спектром дочерних ионов. Итак, абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой.

По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения имеют улучшенные характеристики благодаря ряду инноваций, применённых в них, например, использованию искривлённого квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор и, следовательно, снижению шума.

Применения масс-спектрометрии

Разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика . Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков - бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надёжна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.

Целый ряд техногенных (то есть не существующих в природе, а появившихся в результате индустриальной деятельности человека) веществ являются супертоксикантами (имеющими отравляющее, канцерогенное или вредное для здоровья человека действие в предельно низких концентрациях). Примером является хорошо известный диоксин .

Существование ядерной энергетики немыслимо без масс-спектрометрии. С её помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Конечно и медицина не обходится без масс-спектрометрии. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter pylori и является самым надёжным из всех методов диагностики. Также, масс-спектрометрия применяется для определения наличия допинга в крови спортсменов.

Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии. Ограничимся просто перечислением: аналитическая химия , биохимия , клиническая химия , общая химия и органическая химия , фармацевтика , косметика , парфюмерия , пищевая промышленность , химический синтез , нефтехимия и нефтепераработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология , криминалистика , допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия , геология , гидрология , петрография , минералогия , геохронология , археология , ядерная промышленность и энергетика , полупроводниковая промышленность , металлургия .

Примечания

См. также

  • Масс-спектрометры для элементного анализа
  • Лазерно-искровая масс-спектрометрия (Лазерная микромасс-спектрометрия)
  • Хромато-масс-спектрометр
  • Системы ВЭЖХ-масс-спектрометр
  • Жидкостная хроматография ; Колонки для ВЭЖХ

Ссылки

  • Масс-спектрометрия (англ.)

Wikimedia Foundation . 2010 .

ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Химический факультет

Курсовая работа на тему
«Масс-спектрометрический метод анализа»

Выполнил: студент группы Х-202
Меньшенин А.Н.

Проверила: Данилина Е.И.

Линейная ионная ловушка отличается от трёхмерной (рис. 2.6) тем, что она запирает ионы вдоль оси квадрупольного анализатора масс, используя двумерное (2D) радиочастотное (RF) поле с потенциалами, приложенными к концевым электродам. Основное преимущество линейной ловушки перед 3D – больший объём анализатора, который сам по себе значительно увеличивает динамический диапазон и улучшает диапазон количественного анализа.
Ограничения ионной ловушки: сканирование иона-предшественника, «правило одной трети» и динамический диапазон.

Главными ограничениями данных возможностей ионной ловушки, которые удерживают её от того, чтобы быть совершенным средством для фармакокинетики и протеомики, являются следующие: 1) способность давать высокую чувствительность одновременно для тройного квадрупольного сканирования иона-предшественника, и для экспериментов со средним затуханием невозможна для ионных ловушек. 2) Верхний предел соотношения между m/z предшественника и самого мелкого пойманного фрагмента составляет приблизительно 0.3 (также известно как «правило одной трети»). Иллюстрацией правила одной трети является то, что фрагментарные ионы от m/z 900 не будут детектироваться при m/z меньше 300, накладывая значительные ограничения на очередное секвенирование пептидов. 3) Динамический диапазон ионных ловушек ограничен тем, что при слишком большом числе ионов внутри ловушки пространственные влияние зарядов ограничит представительность анализатора. Чтобы обойти это, автоматические сканеры быстро пересчитывают ионы перед тем, как те попадут в ловушку, тем самым ограничивая число вошедших ионов. Но такой подход составляет проблему, если нужный ион сопровождается большим фоном других ионов.

Двуфокусирующий магнитный сектор

Первые анализаторы масс разделяли ионы при помощи магнитного поля. В магнитом анализе ионы ускоряются в магнитном поле при помощи электрического. Заряженные частицы, движущиеся в магнитно поле, будут двигаться по дуге, радиус которой зависит от скорости ион, силы магнитного поля и m / z иона. Масс-спектр получается сканированием магнитного поля и наблюдением того, как ионы попадают фиксированный точечный детектор. Ограничением магнитных анализаторов является относительно малое разрешение. Чтобы улучшить его, магнитные приборы были модифицированы с добавлением электростатического анализатора, чтобы сфокусировать ионы. Такие приборы называются двухсекторными. Электрический сектор служит как элемент фокусировки кинетической энергии, позволяя только ионам с определённой кинетической энергией проходить через поле, независимо от их m / z отношения. То есть, добавление электрического сектора позволяет только ионам с одинаковой энергией достигать детектора, тем самым уменьшая разброс кинетической энергии, что, в свою очередь, увеличивает разрешение. Нужно отметить, что увеличение разрешения вызывает соответствующее уменьшение чувствительности. Такие двуфокусирующие (рис. 2.7) анализаторы масс используются совместно с ESI, FAB и EI, однако они нешироко используются сейчас, в основном, из-за их больших размеров и успешности времяпролётных, квадрупольных и FTMS анализаторов с ESI и


MALDI.

Квадрупольная-времяпролётная тандемная масс-спектрометрия

Линейный времяпролётный (TOF) анализатор масс (рис. 2.7 ) является простейшим анализатором масс. Он пережил возрождение с изобретением MALDI и его текущее применения для электроспрея и даже газовой хроматографии с масс-спектрометрией электронной ионизацией (GC/MS). Времяпролётный анализ основан на ускорении группы ионов по направлению к детектору, при котором всем ионам сообщается одинаковая энергия при помощи ускоряющего потенциала. Так как ионы имеют одинаковую энергию, но разную массу, лёгкие ионы достигают детектора первыми из-за их большей скорости, в то время как тяжёлые ионы летят дольше из-за их большей массы и, соответственно, более низкой скорости. Поэтому анализатор был назван времяпролётным, потому что масса в нём определяется по времени прибытия ионов. Масса, заряд и кинетическая энергия – всё это вносит свой в клад в время прибытия иона к детектору. Так как кинетическая энергия (KE) иона равна ½ mv 2 , скорость иона может быть представлена как v = d/t = (2KE/m) ½ . Ионы проходят расстояние d за время t, а t зависит от m / z . В этом уравнении v = d/t = (2KE/m) ½ , принимая z = 1. Другим представлением этого уравнения, более чётко показывающим, как определяется масса, является m=2t 2 KE/d 2 , где KE=const .


Времяпролётный рефлектрон (рис. 2.8 ) сейчас широко используется для ESI, MALDI, а в последнее время и для приложения электронной ионизации для ГХ/МС. Он комбинирует времяпролётную технологию и электростатическое зеркало. Рефлектрон служит для увеличения времени (t), которое нужно ионам, чтобы достичь детектора, при этом уменьшая распределение кинетической энергии, тем самым уменьшая временное распределение Δt. Так как разрешение определяется как масса пика, делённая на его ширину или m/Δm (или t/Δt, так как m пропорциональна t), увеличение t и уменьшение Δt приводит к росту разрешения. Поэтому TOF рефлектрон даёт более высокое разрешение по сравнению с простым прибором TOF посредством увеличения длины пути и фокусировки энергии посредством рефлектрона. Нужно отметить, что увеличенное разрешение (обычно выше 5000) и чувствительность на TOF рефлектроне значительно уменьшается при высоких массах (обычно при m / z свыше 5000).

Другим типом тандемного анализа масс, MS/MS, является также возможное комбинирование MALDI и TOF рефлектрона. MS/MS осуществляется с особенности MALDI – фрагментации, которая происходит после ионизации, или распадом после источника (PSD). Времяпролётные приборы сами по себе не разделяют пост-ионизационные фрагментарные ионы от одного и того же иона-прекурсора, потому что и прекурсор, и фрагментарные ионы имеют одинаковую скорость и поэтому достигают детектора в одно и то же время. Рефлектрон даёт преимущество в том, что фрагментарные ионы имеют разную кинетические энергии и разделяются на основании того, как глубоко ионы проникают в поле рефлектрона, тем самым давая спектр фрагментарных ионов (рис. 2.9 и 2.10 ).

Нужно заметить, что электроспрей также был адаптирован под TOF рефлектронные анализаторы, в которых ионы из непрерывного ESI-источника накапливаются в гексаполярном (или октаполярном) ионопроводе, а затем выталкиваются в TOF анализатор. Тем самым, необходимая электростатическая импульсность создаёт точку отсчёта, с которой можно начинать измерения TOF.


MALDI и времяпролётный анализ

На начальных этапах развития MALDI-TOF, эти приборы имели относительно низкое разрешение, которое серьёзно ограничивало их точность. Нововведением, которое оказало существенный эффект на увеличение разрешающей силы MALDI времяпролётных приборов было отложенное извлечение (DE), как показано на рис. 2.11 . В теории, отложенное извлечение означает просто охлаждение и фокусировку ионов сразу после акта MALDI, но на практике сначала было проблемой включать и выключать импульсы в 10000 вольт за наносекунды.

В традиционных приборах MALDI, ионы ускоряются из устройства ионизации сразу после образования. Однако, отложенное извлечение ионов позволяет им «остыть» в течение ~150 наносекунд перед ускорением в анализатор. Этот период охлаждения генерирует набор ионов с гораздо меньшим распределением кинетической энергии, значительно уменьшая временной разброс ионов, когда они входят в TOF анализатор. В общем, это приводит к увеличению разрешения и точности. Выгоды отложенного извлечения значительно сокращаются для больших макромолекул, таких как белки (>30000 Да).

Квадрупольная времяпролётная масс-спектрометрия

Квадрупольные времяпролётные анализаторы масс обычно совмещаются с устройствами ионизации электроспрея, а в последнее время успешно совмещаются с MALDI. ESIquad-TOF (рис. 2.12 ) комбинирует стабильность квадрупольного анализатора с высокой эффективностью, чувствительностью и точностью времяпролётного рефлектронного анализатора масс. Квадруполь может выступать как простой квадрупольный анализатор, чтобы сканировать определённый диапазон m / z . Однако он может быть также использован, чтобы селективно выделить ион-прекурсор и направить его в ячейку столкновения. Получившиеся фрагментарные ионы затем анализируются TOF рефлектронным анализатором масс. Квадрупольный TOF использует способность квадруполя выделять отдельный ион и способность TOF-MS совершать одновременное и точное измерение ионов по всему диапазону масс за короткий период времени. Квадрупольные TOF анализаторы выдают большую чувствительность и точность, нежели тандемные квадрупольные приборы при получении полных фрагментарных масс-спектров.

Квадрупольный TOF прибор может использовать квадрупольный или TOF анализаторы независимо или совместно для тандемных MSэкспериментов. TOF компонент прибора имеет больший m / z предел, превышающий 10000. Высокая разрешающая сила (~10000) TOF также обеспечивает хорошую точность измерения массы – порядка 10 ppm. Из-за своей высокой точности и чувствительности, ESIquad-TOF масс-спектрометр внедряются в решение проблем протеомики и фармакокинетики.


Масс-спектрометрия с Фурье-преобразованием (FTMS)

FTMS основана на принципе наблюдения за орбитальным движением заряженных частиц в магнитном поле (рис. 2.13-14 ). Пока ионы движутся по орбитам, импульсный радиочастотный (RF) сигнал используется для их возбуждения. Это RF возбуждение позволяет ионам продуцировать заметный экранирующий ток, вводя их в когерентное движение и увеличивая радиус орбиты. Экранирующий ток, генерируемый всеми ионами, может быть затем Фурье-преобразован, чтобы получить составляющие частоты различных ионов, которые соотносятся с их m / z . Так как частоты могут быть определены с высокой точностью, соответствующие им m / z также могут быть вычислены с высокой точностью. Важно отметить, что сигнал генерируется только когерентным движением ионов в условиях ультравысокого вакуума (10 -11 -10 -9 Торр). Этот сигнал должен быть измерен за минимальное время (обычно от 500 мс до 1 секунды), чтобы обеспечить высокое разрешение. По мере увеличения давления, сигнал затухает быстрее, вследствие потери когерентности движения из-за столкновений (например, меньше чем за 150 мс) и не позволяет провести измерения с высоким разрешением (рис. 2.14 ).



Ионы, находящиеся в когерентном циклотронном движении между двумя электродами изображено на рис. 2.13 . По мере того, как положительно заряженные ионы двигаются от верхнего электрона и приближаются к нижнему, электрическое поле ионов вынуждает электроны внешней цепи течь и накапливаться на нижнем электроде. На другой половине циклотронной орбиты электроны покидают нижний электрод и накапливаются на верхнем электроде, когда ионы приближаются. Колебательное движение электронов внешней цепи называется экранирующим током. Когда смесь ионов с различными значениями m / z одновременно ускоряется, сигнал экранирующего тока на выходе усилителя представляет собой составной установившийся сигнал с составляющими частотам, соответствующими каждому значению m / z . Проще говоря, все ионы, запертые в ячейке анализатора, возбуждаются до высоких циклотронных орбит при помощи радиочастотного импульса. Составной установившийся сигнал экранирующего тока ионов по мере их релаксации обрабатывается компьютером, и используется преобразование Фурье для выделения индивидуальных циклотронных частот. Влияние давления на сигнал и разрешение продемонстрировано на рис. 2.14.

Вдобавок к высокому разрешению, FTMS также обладает способностью обеспечивать эксперименты с многократными столкновениями (MS n). FTMS способна к исключению всех ионов, кроме нужного. Выделенный ион затем подвергается столкновению с газом (или другой форме возбуждения: лазерному облучению или электронному захвату) для вызывания фрагментации. Анализ масс может быть затем проведён для фрагментов, чтобы получить спектр фрагментации. Высокое разрешение FTMS/MS также даёт точные измерения масс фрагментов.

FTMS является довольно новым методом для биомолекулярного анализа, но множество её преимуществ делают её всё более и более интересной. Сейчас становится всё более обычным объединение ультравысокого разрешения (>10 5) FTMS с большим разнообразием способов ионизации, включая MALDI, ESI, APCI и EI. Результатом высокой разрешающей способности FTMS анализатора является высокая точность (часто порядка долей ppm) как показано для белка на рис. 2.16 , где можно видеть отдельные пики изотопов. Фурье преобразование сигнала ICR значительно увеличивает удобство ICR за счёт одновременного измерения перекрывающихся частот, произведённых внутри ячейки ICR. Индивидуальные частоты могут быть затем легко и точно переведены в m / z ионов.

В общем, увеличение магнитного поля (B) оказывает благоприятный эффект на характеристики. Фурье преобразование IRC сигнала, измеряя перекрывающиеся частоты одновременно, позволяет достичь высокого разрешения и большой точности определения масс без соответствующего уменьшения чувствительности. Это – чёткое отличие от двухсекторными приборами, которые подвержены потерям чувствительности при высочайших разрешении и точности. Высокие возможности разрешения FTMS прямо связаны с полем FTMS сверхпроводящего магнита, так как увеличение разрешения прямо пропорционально полю. Ионная вместимость, так же как MS/MS эксперименты по кинетической скорости увеличиваются пропорционально квадрату величины поля, тем самым увеличивая динамический диапазон и фрагментарную информацию. Одним из препятствий в увеличении B является эффект магнитного зеркала, когда перенос ионов внутрь магнитного поля становится всё более трудным из-за магнитных силовых линий. Также, изготовление высокопольных магнитов с большими отверстиями превосходной гомогенностью поля (для IRC) становится технически всё более сложным.

Магнитное поле влияет на FTMS оборудование следующими путями :


Так как частота иона = K*B*z/m, большее магнитное поле обеспечивает большую частоту для того же m / z , поэтому генерируется больше опорных точек для более точного определения частоты, что ещё больше увеличивает точность (рис. 2.17 ).

Квадрупольная FTMS и квадрупольной ионной ловушки FTMS анализаторы масс, которые в последнее время стали использоваться, обычно объединяются с ESI устройствами. Квадрупольная FTMS комбинирует стабильность квадрупольного анализатора с высокой точностью FTMS. Квадруполь может действовать как любой простой квадрупольный анализатор для сканирования по диапазону m / z . Однако он также может быть использован для селективного избирания иона-прекурсора и направления этого иона в ячейку столкновений или на FTMS. Полученные прекурсор и фрагментарные ионы могут быть затем анализированы при помощи FTMS.

Проведение MS/MS экспериментов вне магнитного поля предоставляет некоторые преимущества, так как высокое разрешение в FTMS зависит от высокого вакуума. MS/MS эксперименты включают в себя столкновения при установившемся высоком давлении (10 -6 – 10 -7 Торр), которое затем необходимо уменьшить, чтобы добиться высокого разрешения (10 -10 – 10 -9 Торр). Проведение MS/MS экспериментов вне ячейки, тем самым, оказывается быстрее, так как в IRC ячейке может поддерживаться ультравысокий вакуум. Это делает более новую гибридную компоновку прибора оптимальной по сравнению с комбинацией FTMS/MS с методами разделения, такими как ЖХ.

Таблица 2.2. Общее сравнение анализаторов масс, обычно используемых совместно с ESI. Эти значения могут меняться в зависимости от производителя прибора.

Квадрупольный Ионная
ловушка
Времяпролётный Времяпролётный рефлектрон Магнитный сектор FTMS Квадрупольный TOF
Точность 0.01% (100 ppm) 0.01% (100 ppm) 0.02 to 0.2% (200 ppm) 0.001% (10 ppm) <0.0005% (<5 ppm) <0.0005% (<5 ppm) 0.001% (10 ppm)
Разрешение 4,000 4,000 8,000 15,000 30,000 100,000 10,000
Диапазон m/z 4,000 4,000 >300,000 10,000 10,000 10,000 10,000
Скорость сканирования ~ секунда ~ секунда миллисекунды миллисекунды ~ секунда ~ секунда ~ секунда
Тандемная MS MS 2 (тройной квадруполь) MS n MS MS 2 MS 2 MS n MS 2

(масс-сиектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) – метод исследования вещества путем определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество. История масс-спектрометрии ведется с основополагающих опытов Джона Томсона в начале XX в. Окончание "-метрия" термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества (рис. 6.12).

Рис. 6.12.

Масс-спектрометрия в широком смысле – это наука получения и интерпретации масс-спектров, которые, в свою очередь, получаются при помощи масс-спектрометров.

Масс-спектрометр – это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, необходимый для получения масс-спектра.

Масс-спектр, как и любой спектр, в узком смысле – это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации, и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре. Так, ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле – это нечто большее, несущее специфическую информацию и делающее процесс его интерпретации более сложным и увлекательным. Ионы бывают однозарядные и многозарядные, причем как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды. Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы позволяет установить ее элементный состав. Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул. В органических веществах молекулы представляют собой определенные структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом можно получать данные о структуре вещества.

Принцип работы масс-спектрометра

Приборы, которые используются в масс-спектрометрии, называются масс-спектрометры или масс-спектрометрические детекторы. Эти приборы работают с материальным веществом, которое состоит из мельчайших частиц – молекул и атомов. Масс-спектрометры устанавливают, что это за молекулы (т.е. какие атомы их составляют, какова их молекулярная масса, какова структура их расположения) и что это за атомы (т.е. их изотопный состав). Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия имеет дело с самими частицами вещества. Масс-спектрометрия измеряет их массы, вернее, соотношение массы к заряду. Для этого используются законы движения заряженных частиц материи в магнитном или электрическом поле. Масс-спектр – это рассортировка заряженных частиц по их массам (отношениям массы к заряду).

Во-первых, для того чтобы получить масс-спектр, необходимо превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы – ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. В органических веществах молекулы представляют собой определенные структуры, образованные атомами.

Во-вторых, необходимо перевести ионы в газовую фазу в вакуумной части масс-спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

Условно способы ионизации органических веществ можно классифицировать по фазам, в которых находятся вещества перед ионизацией.

Газовая фаза:

  • электронная ионизация (ЭИ, El – Electron ionization);
  • химическая ионизация (ХИ, Cl – Chemical Ionization);
  • электронный захват (ЭЗ, ЕС – Electron capture);
  • ионизация в электрическом поле (ПИ, FI – Field ionization).

Жидкая фаза:

  • термоспрей;
  • ионизация при атмосферном давлении (АДИ, АР – Atmospheric Pressure Ionization);
  • электроспрей (ЭС, ESI – Electrospray ionization);
  • химическая ионизация при атмосферном давлении (ХИАД, APCI – Atmospheric pressure chemical ionization);
  • – фотоионизация при атмосферном давлении (ФИАД, APPI – Atmospheric pressure fotoionization).

Твердая фаза:

  • прямая лазерная десорбция – масс-спектрометрия (ПЛДМС, LDMS – Direct Laser Desorption – Mass Spectrometry);
  • матрично-активированная лазерная десорбция (ионизация) (МАЛДИ, MALDI – Matrix Assisted Laser Desorbtion (Ionization));
  • масс-спектрометрия вторичных ионов (МСВИ, SIMS – Secondary-Ion Mass Spectrometry);
  • бомбардировка быстрыми атомами (ББА, FAB – Fast Atom Bombardment);
  • десорбция в электрическом поле (ПД, FD – Field Desorption);
  • плазменная десорбция (ПД, PD – Plasma desorption).

В неорганической химии для анализа элементного состава

применяются жесткие методы ионизации, так как энергии связи атомов в твердом теле гораздо больше, значит, и значительно более жесткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы:

  • ионизация в индуктивно-связанной плазме (ИСП, IC – Pinductively coupled plasma);
  • термоионизация или поверхностная ионизация;
  • ионизация в тлеющем разряде и искровая ионизация;
  • ионизация в процессе лазерной абляции.

Исторически первые методы ионизации были разработаны для газовой фазы. К сожалению, очень многие органические вещества невозможно испарить, т.е. перевести в газовую фазу, без разложения. А это значит, что их нельзя ионизовать электронным ударом. Но среди таких веществ почти все, что составляет живую ткань (белки, ДНК и т.д.), физиологически активные вещества, полимеры, т.е. все то, что сегодня представляет особый интерес. Масс-спектрометрия не стояла на месте и в последние годы были разработаны специальные методы ионизации таких органических соединений. Сегодня используются в основном два из них – ионизация при атмосферном давлении и ее подвиды – электроспрей (ЭС), химическая ионизация при атмосферном давлении и фотоионизация при атмосферном давлении, а также ионизация лазерной десорбцией при содействии матрицы (МАЛДИ).

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс-спсктромстричсского анализа – сортировка ионов по массам (точнее, по отношению массы к заряду).

Существуют следующие типы масс-анализаторов.

  • 1. Непрерывные масс-анализаторы:
    • магнитный и электростатический секторный масс-анализатор;
    • квадрупольный масс-анализатор.
  • 2. Импульсные масс-анализаторы:
    • времяпролегный масс-анализатор;
    • ионная ловушка;
    • квадрупольная линейная ловушка;
    • масс-анализатор ионно-циклотронного резонанса с Фурье-прсобразованием;
    • орбитрэп.

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые – порциями, через определенные интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс-спектрометры применяются, как правило, вместе с "мягкими" методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространенными конфигурациями тандемных масс-спектрометров являются квадруполь – квадрупольная и квадруполь-времяпролетная.

Последним элементом описываемого нами упрощенного масс-спектрометра является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые, в свою очередь, попадая на следующий динод, выбивают из него еще большее количество электронов и т.д. Другой вариант – фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора.

Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Масс-спектрометры используются для анализа органических и неорганических соединений. Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (т.е. 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить, сколько компонентов составляют органическое вещество, узнать, какие это компоненты (идентифицировать их) и сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами ("Хромасс").

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно разделить с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрес и химической ионизации при атмосферном давлении, а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС. Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса.

Наиболее широкое распространение получил в последнее время масс-анализатор, позволяющий наиболее точно померить массу иона, и обладающий очень высоким разрешением. Высокое разрешение позволяет работать с полипротонированными ионами, образующимися при ионизации белков и пептидов в электроспрее, а высокая точность определения массы позволяет получать брутто-формулу ионов, делая возможным определять структуру последовательностей аминокислотных остатков в пептидах и белках, а также детектировать послетрансляционные модификации белков. Это сделало возможным секвенировать белки без их предварительного гидролиза на пептиды. Такой способ получил название "Top-down" протеомики. Получение уникальной информации стало возможно благодаря применению масс-анализатора ионно-циклотронного резонанса с Фурье-преобразованием. В этом анализаторе ионы влетают в сильное магнитное поле и вращаются там по циклическим орбитам (как в циклотроне, ускорителе элементарных частиц). Такой масс-анализатор обладает определенными преимуществами: имеет очень высокое разрешение, диапазон измеряемых масс весьма широк, может анализировать ионы, получаемые всеми способами. Однако для своей работы он требует сильного магнитного ноля, а значит, использования сильного магнита со сверхпроводящим соленоидом, поддерживаемым при очень низкой температуре (жидкого гелия, приблизительно -270°С).

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.

Важнейшая характеристика при анализе органических соединений – это чувствительность. Для того чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму, прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр – достоверность. Использование высокого разрешения на приборах с двойной фокусировкой позволяет добиваться высокого уровня достоверности, не жертвуя при этом чувствительностью.

Для достижения высокой чувствительности можно еще использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий одиночному иону, можно подтвердить масс-спектром дочерних ионов. Абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой.

По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения имеют улучшенные характеристики благодаря ряду инноваций, примененных в них, например использованию с целью снижения шума искривленного квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор.

Возможности масс-спектрометрии

По масс-спектру можно определить молекулярную массу вещества. Это необходимо для установления молекулярной формулы вещества (брутто-формула). Масса атома, измеренная с высокой точностью, отличается от массового числа. Так, для CO 2 и C 3 H 8 массовое число равно 44, но их точные относительные молекулярные массы равны соответственно 43,989828 и 44,062600, т.е. разница составляет 0,072772 а.е.м. Масс-спектрометр позволяет разделить пучки ионов CO 2 + и C 3 H 8 + , когда они получаются одновременно.

Определение атомного состава по точному значению массы проводится с использованием таблиц точных масс для различных соотношений числа атомов C, H, O и N как наиболее распространённых элементов. Точное измерение масс не заменяет элементного анализа. Оба метода взаимно дополняют друг друга.

При исследовании масс-спектра дополнительно к определению типа молекулярного иона (М + ) измеряют пики и для изотопных ионов, включающих более легкие или более тяжелые изотопы (с массовыми числами М ± 1, М ± 2, М ± 3 и т.п.). Одновременное присутствие нескольких изотопов в молекуле маловероятно, т.к. естественная распространенность более тяжелых изотопов C, H, O и N незначительна. Например, 13 C: 12 C = 1×10 -2 ; 2 H: 1 H = 1,6×10 -4 ; 15 N: 14 N = 4×10 -3 и т.д. Однако для хлора 35 Cl: 37 Cl = 3:1; для брома 79 Br: 81 Br = 1:1. Следовательно, в масс-спектре наряду с ионом М + будет присутствовать ион (М+1) + с интенсивностью, пропорциональной распространенности изотопов. В широко используемых справочных таблицах приводятся обычно соотношения интенсивностей пиков молекулярных ионов с массовыми числами М+1 и М+2.

Максимальное значение m/z в масс-спектре вещества может иметь молекулярный ион (М + ), масса которого равна молекулярной массе исследуемого соединения. Интенсивность пика молекулярного иона (М +) тем выше, чем этот ион стабильнее.

Практически редко удается установить полную структуру соединения только на основе масс-спектра. Наиболее эффективно совместное использование нескольких физико-химических методов. Масс-спектрометрия, особенно в сочетании с хроматографией, является одним из наиболее информативных методов исследования структуры вещества (хроматомасс-спектрометрия).

Таким образом, возможности метода: определение молекулярной массы и брутто-формул веществ; установление строения вещества по характеру образующихся фрагментов; количественный анализ смесей, включая определение микропримесей; определение степеней чистоты вещества; определение изотопного состава вещества.

Рассмотрим в качестве примера масс-спектр этанола (рис. 2). Обычно спектр представляют в виде гистограмм.

Рис. 2. Масс-спектр этанола

В современных приборах обработка интенсивности электрических импульсов, соответствующих пикам с различающимися значениями m/z, производится с помощью компьютера.

Масс-спектры приводят в такой записи: указывают значения m/z, а в скобках относительную интенсивность (%). Например, для этанола:

С 2 H 5 OH-масс-спектр (m/z): 15(9), 28(40), 31(100), 45(25), 46(14).

Вопросы для собеседования

1. Теоретические основы метода.

2. Энергия ионизации. Типы фрагментации.

3. Принципиальная схема масс-спектрометра.

4. Методы ионизации: электронный удар, химическая ионизация и др.

5. Закономерности фрагментации молекулярного иона.

6. Возможности масс-спектрометрии.

Тестовые задания

1. Типы фрагментации молекулярного иона:

а). Диссоциация - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал, образуются фрагменты с четными значениями отношения m/z.

Перегруппировка - изменение последовательности связей, образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула, фрагменты характеризуются нечетным значением отношения m/z.

б) Перегруппировка - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал, образуются фрагменты с нечетными значениями отношения m/z.

Диссоциация - изменение последовательности связей, образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула, фрагменты характеризуются четным значением отношения m/z.

в) Диссоциация - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал, образуются фрагменты с нечетными значениями отношения m/z.

Перегруппировка - изменение последовательности связей, образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула, фрагменты характеризуются четным значением отношения m/z.

2. Возможности метода масс-спектрометрии:

а) определение молекулярной массы и брутто-формул веществ, количественный анализ смесей;

б) установление строения вещества по характеру образующихся фрагментов, определение изотопного состава вещества;

в) определение молекулярной массы и брутто-формул веществ; установление строения вещества по характеру образующихся фрагментов; количественный анализ смесей, включая определение микропримесей; определение степеней чистоты вещества; определение изотопного состава вещества.

3. Выберите правильный ответ:

а) Вероятность разрыва связи С-Н уменьшается с увеличением цепи углеводорода; энергия разрыва связи С-С меньше; в ароматических производных наиболее вероятен разрыв β-связи с образованием перегруппировочного тропилиевого иона;

а) Вероятность разрыва связи С-Н уменьшается с увеличением цепи углеводорода; энергия разрыва связи С-С больше; в ароматических производных наиболее вероятен разрыв β-связи с образованием перегруппировочного тропилиевого иона;

в) Вероятность разрыва связи С-Н уменьшается с увеличением цепи углеводорода; энергия разрыва связи С-С меньше; в ароматических производных наиболее вероятен разрыв a-связи с образованием перегруппировочного тропилиевого иона;


1. Казин В.Н., Урванцева Г.А. Физико-химические методы исследования в экологии и биологии: учебное пособие (гриф УМО) / В.Н. Казин, Г.А. Урванцева; Яросл. гос. ун-т им. П.Г. Демидова. - Ярославль, 2002. - 173 с.

2. Под. ред. А.А. Ищенко. Аналитическая химия и физико-химические методы анализа / Н.В. Алов и др. - М.: Издательский центр «Академия», 2012. (в 2-х томах, 1 том -352 с., 2 том - 416 с.) - (Сер. Бакалавриат)

3. Васильев В.П. Аналитическая химия. - кн. 2. Физико-химические методы анализа. М.: Министерство образования РФ. 2007. 383 c.

4. Харитонов Ю.Я. Аналитическая химия, кн. 1, кн. 2, Высшая школа, 2008.

5. Отто М. Современные методы аналитической химии (в 2-х томах). Москва: Техносфера, 2008.

6. Под ред. Ю.А. Золотова. Основы аналитической химии, Высш.шк., 2004.

7. Васильев В.П. Аналитическая химия. - кн. 2. Физико-химические методы анализа. М.: Дрофа, 2009.

8. Казин В.Н.Физико-химические методы анализа: лабораторный практикум / В.Н. Казин, Т.Н. Орлова, И.В. Тихонов; Яросл. гос. ун-т им. П.Г. Демидова.- Ярославль: ЯрГУ, 2011. – 72 с.