Болезни Военный билет Призыв

Солнечная система (Астрономия и астрофизика). История наблюдения и изучения астероидов. Определение размеров и формы астероидов

Натан Эйсмонт,
кандидат физико-математических наук, ведущий научный сотрудник (Институт космических исследований РАН)
Антон Ледков,
научный сотрудник (Институт космических исследований РАН)
«Наука и жизнь» №1, 2015 , №2, 2015

Солнечную систему воспринимают обычно как пустое пространство, в котором кружатся восемь планет, некоторые - со своими спутниками. Кто-то вспомнит о нескольких малых планетах, к которым недавно приписали Плутон, о поясе астероидов, о метеоритах, иногда падающих на Землю, и о кометах, изредка украшающих небосвод. Это представление вполне справедливо: ни один из многочисленных космических аппаратов не пострадал от столкновения с астероидом или кометой, - космос довольно просторен.

И тем не менее в огромном объёме Солнечной системы содержатся не сотни тысяч и не десятки миллионов, а квадриллионы (единицы с пятнадцатью нулями) космических тел различных размеров и масс. Все они движутся и взаимодействуют по законам физики и небесной механики. Часть их образовалась в самой ранней Вселенной и состоит из её первозданного вещества, и это интереснейшие объекты астрофизических исследований. Но есть и очень опасные тела - крупные астероиды, столкновение которых с Землёй способно погубить на ней жизнь. Отслеживание и ликвидация астероидной опасности - не менее важное и увлекательное направление работы астрофизиков.

История открытия астероидов

Первый астероид обнаружил в 1801 году Джузеппе Пиази, директор обсерватории в Палермо (Сицилия). Назвал он его Церера и поначалу считал малой планетой. Термин «астероид», в переводе с древнегреческого - «подобный звезде», предложил астроном Уильям Гершель (см. «Наука и жизнь» №7, 2012 г., статья «Сказка о музыканте Уильяме Гершеле, который расширил космос вдвое»). Церера и аналогичные объекты (Паллада, Юнона и Веста), открытые в последующие шесть лет, были видны как точки, а не как диски в случае планет; в то же время, в отличие от неподвижных звёзд, они двигались подобно планетам. Следует отметить, что наблюдения, в результате которых были открыты эти астероиды, велись целенаправленно в попытках обнаружить «пропавшую» планету. Дело в том, что уже открытые планеты располагались на орбитах, отстоящих от Солнца на расстояниях, соответствующих закону Бодэ. В соответствии с ним между Марсом и Юпитером должна была находиться планета. Как известно, планеты на такой орбите не нашлось, зато примерно в этом районе позже обнаружили пояс астероидов, названный главным. К тому же и закон Бодэ, как оказалось, не имеет какого-либо физического обоснования и рассматривается в настоящее время просто как некое случайное сочетание чисел. Более того, открытый позже (1848) Нептун оказался на орбите, с ним не согласующейся.

После открытия четырёх упомянутых астероидов дальнейшие наблюдения за восемь лет не привели к успеху. Их прекратили из-за Наполеоновских войн, в ходе которых сгорел городок Лилиенталь близ Бремена, где проходили заседания астрономов - охотников за астероидами. Возобновились наблюдения в 1830 году, но успех пришёл лишь в 1845-м с открытием астероида Астрея. С этого времени астероиды стали открывать с частотой не менее одного в год. Бóльшая их часть принадлежит к главному поясу астероидов, между Марсом и Юпитером. К 1868 году насчитывалось уже около сотни открытых астероидов, к 1981-му - 10 000 и к 2000-му - более 100 000.

Химический состав, форма, размеры и орбиты астероидов

Если классифицировать астероиды по их расстоянию от Солнца, то в первую группу попадают вулканоиды - некий гипотетический пояс малых планет между Солнцем и Меркурием. Ни одного объекта из этого пояса до сих пор не обнаружено, и хотя на поверхности Меркурия наблюдаются многочисленные кратеры ударного происхождения, образованные падением астероидов, это не может служить доказательством существования указанного пояса. Ранее наличием там астероидов пытались объяснить аномалии в движении Меркурия, но затем их объяснили на основе учёта релятивистских эффектов. Так что окончательный ответ на вопрос о возможном присутствии Вулканоидов пока не получен. Далее следуют околоземные астероиды, принадлежащие четырём группам.

Астероиды главного пояса движутся по орбитам, находящимся между орбитами Марса и Юпитера, то есть на расстояниях от 2,1 до 3,3 астрономической единицы (а.е.) от Солнца. Плоскости их орбит находятся вблизи эклиптики, их наклонение к эклиптике лежит в основном до 20 градусов, доходя у некоторых до 35 градусов, эксцентриситеты - от нуля до 0,35. Очевидно, что первыми были открыты самые большие и яркие астероиды: средние диаметры Цереры, Паллады и Весты равны 952, 544 и 525 километрам соответственно. Чем меньше размер астероидов, тем их больше: только 140 астероидов главного пояса из 100 000 имеют средний диаметр больше 120 километров. Суммарная масса всех его астероидов относительно невелика, составляя всего около 4% массы Луны. Самый большой астероид - Церера - имеет массу 946·10 15 тонн. Сама по себе величина кажется очень большой, но это всего лишь 1,3% массы Луны (735·10 17 тонн). В первом приближении размер астероида можно определить по его яркости и по расстоянию от Солнца. Но надо учитывать и отражательные характеристики астероида - его альбедо. Если поверхность астероида тёмная, светится он слабее. Именно в силу этих причин в списке десяти астероидов, расположенных на рисунке в порядке их открытия, третий по размерам астероид Гигея находится на последнем месте.

На рисунках, иллюстрирующих главный астероидный пояс, как правило, показывают множество булыжников, которые движутся довольно близко друг к другу. На самом деле картина весьма далека от действительности, поскольку, вообще говоря, небольшая суммарная масса пояса распределена по его большому объёму, так что пространство довольно пустое. Все запущенные к настоящему времени за пределы орбиты Юпитера космические аппараты пролетели сквозь астероидный пояс без ощутимого риска столкновения с астероидом. Однако по меркам астрономического времени столкновения астероидов друг с другом и с планетами уже не выглядят столь маловероятными, о чём можно судить по числу кратеров на их поверхностях.

Троянцы - астероиды, движущиеся вдоль орбит планет, первый из которых обнаружил в 1906 году немецкий астроном Макс Вульф. Астероид движется вокруг Солнца по орбите Юпитера, опережая его в среднем на 60 градусов. Далее была открыта целая группа небесных тел, движущихся впереди Юпитера.

Первоначально они получали имена в честь героев легенды о троянской войне, воевавших на стороне осаждавших Трою греков. Помимо опережающих Юпитер астероидов существует группа астероидов, отстающих от него примерно на тот же угол; они были названы троянцами в честь защитников Трои. В настоящее время астероиды обеих групп называют троянцами, и они движутся в окрестности точек Лагранжа L 4 и L 5 , точек устойчивого движения в задаче трёх тел. Небесные тела, попавшие в их окрестности, совершают колебательное движение, не уходя слишком далеко. По необъяснённым пока причинам астероидов, опережающих Юпитер, примерно на 40% больше, чем отстающих. Подтвердили это выполненные совсем недавно американским спутником NEOWISE измерения с помощью 40-сантиметрового телескопа, снабжённого детекторами, работающими в инфракрасном диапазоне. Измерения в ИК-диапазоне существенно расширяют возможности изучения астероидов по сравнению с теми, что даёт видимый свет. Об их эффективности можно судить по числу астероидов и комет Солнечной системы, внесённых в каталоги с помощью NEOWISE. Их насчитывается более 158 000, и миссия аппарата продолжается. Интересно, что троянцы заметно отличаются от большей части астероидов главного пояса. Они имеют матовую поверхность, красновато-коричневатый цвет и относятся в основном к так называемому D-классу. Эти астероиды с очень низким альбедо, то есть со слабо отражающей поверхностью. Подобные им можно найти только во внешних областях главного пояса.

Троянцы есть не только у Юпитера; другие планеты Солнечной системы, включая Землю (но не Венеру и Меркурий), также сопровождают троянцы, группирующиеся в окрестности их точек Лагранжа L 4 , L 5 . Астероид-троянец Земли 2010 ТК7 открыли с помощью телескопа NEOWISE совсем недавно - в 2010 году. Он движется, опережая Землю, при этом амплитуда его колебаний около точки L 4 очень велика: астероид достигает точки, противоположной Земле в движении вокруг Солнца, и необычно далеко выходит из плоскости эклиптики.

Столь большая амплитуда колебаний приводит к возможному его сближению с Землёй вплоть до 20 миллионов километров. Однако столкновение с Землёй, по крайней мере в ближайшие 20 000 лет, полностью исключено. Движение земного троянца сильно отличается от движения троянцев Юпитера, которые не покидают на столь значительные угловые расстояния свои точки Лагранжа. Такой характер движения делает затруднительными миссии к нему космических аппаратов, поскольку вследствие значительного наклонения орбиты троянца к плоскости эклиптики для достижения астероида с Земли и посадки на него требуются слишком высокая характеристическая скорость и, следовательно, большие затраты топлива.

Пояс Койпера лежит за пределами орбиты Нептуна и простирается вплоть до 120 а.е. от Солнца. Он близок к плоскости эклиптики, населён огромным числом объектов, включающих в свой состав водяной лёд и замёрзшие газы, и служит источником так называемых короткопериодических комет. Первый объект из этой области был обнаружен в 1992 году, а к настоящему времени их открыто уже более 1300. Поскольку небесные тела пояса Койпера расположены очень далеко от Солнца, их размеры определить трудно. Делается это на базе измерений яркости отражаемого ими света, а точность расчёта зависит от того, насколько хорошо мы знаем величину их альбедо. Измерения в инфракрасном диапазоне намного надёжнее, поскольку дают уровни собственного излучения объектов. Такие данные были получены космическим телескопом Спитцер (Spitzer) для наиболее крупных объектов пояса Койпера.

Один из интереснейших объектов пояса - Хаумеа (Haumea), названный по имени гавайской богини плодородия и деторождения; он представляет собой часть семейства, образовавшегося в результате столкновений. Этот объект, по-видимому, столкнулся с другим, размером вдвое меньшим. Удар привёл к разбросу больших ледяных кусков и вызвал вращение Хаумеа с периодом около четырёх часов. Столь быстрое вращение придало ему форму мяча для американского футбола или дыни. Хаумеа сопровождают два спутника - Хииака (Hi’iaka) и Намака (Namaka).

Согласно принятым к настоящему времени теориям, около 90% объектов пояса Койпера движутся по удалённым круговым орбитам за орбитой Нептуна - там, где они образовались. Несколько десятков объектов этого пояса (их называют кентаврами, поскольку в зависимости от расстояния до Солнца они проявляют себя то как астероиды, то как кометы), возможно, образовались в более близких к Солнцу областях, а затем гравитационное воздействие Урана и Нептуна перевело их на высокие эллиптические орбиты с афелиями вплоть до 200 а.е. и большими наклонениями. Они образовали диск толщиной 10 а.е., но на самом деле внешняя кромка пояса Койпера до сих пор не определена. Ещё совсем недавно Плутон и Харон рассматривали как единственные примеры наиболее крупных объектов ледяных миров во внешней части Солнечной системы. Но в 2005 году было открыто ещё одно планетное тело - Эрида (по имени греческой богини раздора), диаметр которого чуть меньше диаметра Плутона (первоначально предполагали, что оно на 10% больше). Эрида движется по орбите с перигелием 38 а.е. и афелием 98 а.е. У неё есть небольшой спутник - Дисномия (Dysnomia). Сначала Эриду планировали считать десятой (вслед за Плутоном) планетой Солнечной системы, но затем вместо этого Международный астрономический союз исключил Плутон из списка планет, образовав новый класс, названный карликовыми планетами, куда вошли Плутон, Эрида и Церера. Предполагается, что в поясе Койпера находятся сотни тысяч ледяных тел с поперечником 100 километров и не менее триллиона комет. Однако эти объекты в основном сравнительно невелики - 10–50 километров в поперечнике - и не очень яркие. Период их обращения около Солнца составляет сотни лет, что сильно затрудняет их обнаружение. Если согласиться с предположением, что всего около 35 000 объектов пояса Койпера имеют диаметр больше 100 километров, то их общая масса в несколько сотен раз превышает массу тел такой величины из главного астероидного пояса. В августе 2006 года сообщалось, что в архиве данных по измерению рентгеновского излучения нейтронной звезды Скорпион Х-1 обнаружены её затмения небольшими объектами. Это дало основание утверждать, что число объектов пояса Койпера размерами около 100 метров и более составляет примерно квадриллион (10 15). Первоначально, на более ранних стадиях эволюции Солнечной системы, масса объектов пояса Койпера была много больше, чем теперь, - от 10 до 50 масс Земли. В настоящее время суммарная масса всех тел пояса Койпера, а также расположенного ещё дальше от Солнца облака Оорта много меньше массы Луны. Как показывает компьютерное моделирование, почти вся масса первозданного диска за пределами 70 а.е. была утрачена из-за вызванных Нептуном столкновений, приведших к измельчению объектов пояса в пыль, которую вымел в межзвёздное пространство солнечный ветер. Все эти тела вызывают большой интерес, поскольку предполагается, что они сохранились в первозданном виде со времени образования Солнечной системы.

Облако Оорта содержит самые удалённые объекты Солнечной системы. Оно представляет собой сферическую область, которая простирается на расстояния от 5 до 100 тысяч а.е. от Солнца и рассматривается как источник долгопериодических комет, долетающих до внутренней области Солнечной системы. Само облако до 2003 года инструментально не наблюдалось. В марте 2004 года группа астрономов объявила об открытии планетоподобного объекта, который движется по орбите вокруг Солнца на рекордном удалении, что означает его уникально низкую температуру.

Этот объект (2003VB12), названный Седна (Sedna) по имени эскимосской богини, дающей жизнь обитателям арктических морских глубин, приближается к Солнцу на очень короткое время, двигаясь по сильно вытянутой эллиптической орбите с периодом 10 500 лет. Но даже во время сближения с Солнцем Седна не достигает внешней границы пояса Койпера, которая находится в 55 а.е. от Солнца: её орбита лежит в пределах от 76 (перигелий) до 1000 (афелий) а.е. Это позволило первооткрывателям Седны отнести её к впервые наблюдаемому небесному телу из облака Оорта, постоянно находящемуся за пределами пояса Койпера.

По спектральным характеристикам наиболее простая классификация распределяет астероиды на три группы:
C - углеродные (75% известных),
S - кремниевые (17% известных),
U - не входящие в первые две группы.

В настоящее время приведённая классификация всё более расширяется и детализируется, включая в себя новые группы. К 2002 году их число увеличилось до 24. Как пример новой группы можно указать М-класс в основном металлических астероидов. Однако следует учесть, что классификация астероидов по спектральным характеристикам их поверхности - задача очень трудная. Астероиды одного класса необязательно имеют идентичный химический состав.

Космические миссии к астероидам

Астероиды слишком малы для детального исследования с помощью наземных телескопов. Их изображения можно получить с использованием радаров, но для этого они должны подлететь к Земле достаточно близко. Довольно интересный метод определения размеров астероидов - наблюдение затмений астероидами звёзд из нескольких точек вдоль трассы на прямой звезда - астероид - точка на поверхности Земли. Метод состоит в том, что по известной траектории астероида вычисляют точки пересечения направления звезда - астероид с Землёй и вдоль этой трассы на некоторых удалениях от неё, определяемых предполагаемыми размерами астероида, устанавливаются телескопы, следящие за звездой. В какой-то момент астероид затеняет звезду, она пропадает для наблюдателя, а затем вновь появляется. По длительности времени затенения и известной скорости астероида определяют его поперечник, а при достаточном числе наблюдателей можно получить и силуэт астероида. В настоящее время организовано сообщество астрономов-любителей, которые успешно проводят скоординированные измерения.

Полёты космических аппаратов к астероидам открывают несравнимо больше возможностей для их исследования. Впервые астероид (951 Гаспра) был сфотографирован космическим аппаратом Галилео в 1991 году на пути к Юпитеру, затем в 1993-м он снял астероид 243 Ида и его спутник Дактиль. Но это было сделано, так сказать, попутно.

Первым специально разработанным для исследования астероидов аппаратом стал NEAR Shoemaker, который сфотографировал астероид 253 Матильда и далее вышел на орбиту около 433 Эроса с посадкой на его поверхность в 2001 году. Надо сказать, что посадка первоначально не планировалась, но после успешного исследования этого астероида с орбиты его спутника приняли решение попытаться совершить мягкую посадку. Хотя аппарат не был снабжён устройствами для посадки и его система управления не предусматривала таких операций, по командам с Земли удалось посадить аппарат, причём его системы продолжали функционировать и на поверхности. Кроме того, облёт Матильды позволил не только получить серию снимков, но и по возмущению траектории аппарата определить массу астероида.

В качестве попутной задачи (в ходе выполнения основной) аппарат Deep Space исследовал астероид 9969 Брайль в 1999 году и аппарат Stardust - астероид 5535 Аннафранк.

С помощью японского аппарата Хайабуса (в переводе - «ястреб») в июне 2010 года удалось вернуть на Землю образцы грунта с поверхности астероида 25 143 Итокава, который относится к околоземным астероидам (аполлоны) спектрального класса S (кремниевые). На фотографии астероида можно видеть пересечённую местность с множеством валунов и булыжников, из которых более 1000 имеют поперечник свыше 5 метров, а размер некоторых доходит до 50 метров. Далее мы вернёмся к этой особенности Итокавы.

Космический аппарат Розетта, запущенный Европейским космическим агентством в 2004 году к комете Чурюмова - Герасименко, 12 ноября 2014 года благополучно посадил на её ядро модуль Филы (Philae). По пути аппарат совершил облёт астероидов 2867 Штейнс (Steins) в 2008 году и 21 Лютеция (Lutetia) в 2010-м. Своё имя аппарат получил по названию камня (Розетта), найденного в Египте наполеоновскими солдатами вблизи древнего города Розетта на нильском острове Филы, давшем имя посадочному модулю. На камне высечены тексты на двух языках: древнеегипетском и древнегреческом, что дало ключ к раскрытию тайн цивилизации древних египтян - расшифровке иероглифов. Выбирая исторические названия, разработчики проекта подчёркивали цель миссии - раскрыть тайны происхождения и эволюции Солнечной системы.

Миссия интересна тем, что в момент посадки модуля Филы на поверхность ядра кометы та находилась далеко от Солнца и поэтому была неактивна. По мере приближения к Солнцу поверхность ядра разогревается и начинается выброс газов и пыли. Развитие всех этих процессов можно будет наблюдать, находясь в центре событий.

Очень интересна ныне продолжающаяся миссия Dawn (Рассвет), выполняемая по программе NASA. Аппарат был запущен в 2007 году, в июле 2011-го достиг астероида Веста, затем переведён на орбиту его спутника и проводил там исследования вплоть до сентября 2012 года. В настоящее время аппарат находится на пути к самому крупному астероиду - Церере. На нём стоит электроракетный ионный двигатель малой тяги. Его эффективность, определяемая скоростью истечения рабочего тела (ксенона), почти на порядок превышает эффективность традиционных химических двигателей (см. «Наука и жизнь» №9, 1999 г., статья «Космический электровоз»). Это и позволило перелететь с орбиты спутника одного астероида на орбиту спутника другого. Хотя астероиды Веста и Церера движутся по довольно близким орбитам главного пояса астероидов и самые крупные в нём, по физическим характеристикам они сильно различаются. Если Веста - это «сухой» астероид, то на Церере, согласно данным наземных наблюдений, обнаружены вода, сезонные полярные шапки из водяного льда и даже есть очень тонкий слой атмосферы.

Китайцы также внесли вклад в исследования астероидов, направив свой космический аппарат Чанъэ к астероиду 4179 Таутатис. Он сделал серию снимков его поверхности, при этом минимальное расстояние пролёта составило всего 3,2 километра; правда, лучший снимок был сделан на удалении 47 километров. На снимках видно, что астероид имеет неправильную вытянутую форму - 4,6 километра в длину и 2,1 километра в поперечнике. Масса астероида 50 миллиардов тонн, весьма любопытная его особенность - очень неравномерная плотность. Одна часть объёма астероида имеет плотность 1,95 г/см 3 , другая - 2,25 г/см 3 . В этой связи высказываются предположения, что Таутатис образовался в результате соединения двух астероидов.

Что касается проектов полётов к астероидам в ближайшем будущем, то можно начать с японского аэрокосмического агентства, которое планирует продолжить свою программу исследований запуском в 2015 году космического аппарата Хайабуса-2 с тем, чтобы вернуть на Землю в 2020 году образцы грунта астероида 1999 JU3. Астероид принадлежит спектральному классу C, находится на орбите, пересекающей орбиту Земли, его афелий почти достигает орбиты Марса.

Годом позже, то есть в 2016-м, стартует проект NASA OSIRIS-Rex, цель которого - возврат грунта с поверхности околоземного астероида 1999 RQ36, недавно получившего имя Бенну и отнесённого к спектральному классу C. Планируется, что аппарат достигнет астероида в 2018 году и в 2023-м доставит на Землю 59 граммов его породы.

Перечислив все эти проекты, невозможно не упомянуть астероид массой около 13 000 тонн, который 15 февраля 2013 года упал вблизи Челябинска, как бы подтвердив высказывание известного американского специалиста по астероидной проблеме Дональда Йоманса: «Если мы не летим к астероидам, то они летят к нам». Тем самым подчёркивалась важность ещё одной стороны исследования астероидов - астероидной опасности и решения задач, связанных с возможностью столкновения астероидов с Землёй.

Весьма неожиданный способ исследования астероидов был предложен проектом по перемещению астероида (Asteroid Redirect Mission), или, как его называют, проектом Keck. Его концепцию разработал Институт космических исследований имени Кека в Пасадене (Калифорния). Уильям Майрон Кек - известный американский филантроп, основавший в 1954 году фонд поддержки научных исследований в США. В проекте в качестве исходного условия принималось, что задача исследования астероида решается с участием человека, иначе говоря, миссия к астероиду должна быть пилотируемая. Но в этом случае длительность всего полёта с возвращением на Землю неизбежно составит по крайней мере несколько месяцев. И что самое неприятное для пилотируемой экспедиции, в случае аварийной ситуации это время не может быть сокращено до приемлемых пределов. Поэтому было предложено, вместо того чтобы лететь к астероиду, поступить наоборот: доставить, используя беспилотные аппараты, астероид к Земле. Но не на поверхность, как само собой получилось с челябинским астероидом, а на орбиту, подобную лунной, и отправить пилотируемый корабль к ставшему близким астероиду. Этот корабль сблизится с ним, захватит, и космонавты изучат его, возьмут образцы породы и доставят их на Землю. А при аварийной ситуации космонавты смогут вернуться на Землю за время в пределах недели. В качестве основного кандидата на роль перемещаемого таким образом астероида NASA уже выбрало околоземный астероид 2011 MD, относящийся к амурам. Его диаметр от 7 до 15 метров, плотность 1 г/см 3 , то есть он может выглядеть как рыхлая груда щебня массой около 500 тонн. Его орбита очень близка к орбите Земли, наклонена к эклиптике на 2,5 градуса, а период равен 396,5 суток, чему соответствует большая полуось в 1,056 а.е. Интересно отметить, что астероид открыли 22 июня 2011 года, а 27 июня он пролетел очень близко от Земли - всего в 12 000 километров.

Миссию по захвату астероида на орбиту спутника Земли планируют на начало 2020-х годов. Космический аппарат, предназначенный для захвата астероида и его перевода на новую орбиту, будет снабжён электроракетными двигателями малой тяги, работающими на ксеноне. В состав операций по изменению орбиты астероида входит и гравитационный манёвр у Луны. Суть этого манёвра состоит в таком управлении движением с помощью электроракетных двигателей, которое обеспечит пролёт окрестности Луны. При этом за счёт воздействия её гравитационного поля скорость астероида изменяется от начальной гиперболической (то есть приводящей к уходу из поля земного тяготения) до скорости спутника Земли.

Образование и эволюция астероидов

Как уже упоминалось в разделе об истории открытия астероидов, первые из них были обнаружены в ходе поисков гипотетической планеты, которая должна была в соответствии с законом Бодэ (сейчас он признан ошибочным) находиться на орбите между Марсом и Юпитером. Оказалось, что вблизи орбиты так и не обнаруженной планеты существует пояс астероидов. Это послужило основанием для построения гипотезы, согласно которой этот пояс образовался в результате её разрушения.

Планету назвали Фаэтон по имени сына древнегреческого бога Солнца Гелиоса. Расчёты, моделирующие процесс разрушения Фаэтона, не подтвердили эту гипотезу во всех её разновидностях, начиная от разрыва планеты гравитацией Юпитера и Марса и кончая столкновением с другим небесным телом.

Образование и эволюцию астероидов можно рассматривать только как составляющую процессов возникновения Солнечной системы в целом. В настоящее время общепринятая теория предполагает, что Солнечная система возникла из первозданного газопылевого скопления. Из скопления образовался диск, неоднородности которого привели к возникновению планет и малых тел Солнечной системы. В пользу этой гипотезы говорят современные астрономические наблюдения, позволяющие обнаруживать развитие планетных систем молодых звёзд в их ранних стадиях. Компьютерное моделирование также подтверждает её, конструируя картины, удивительно похожие на снимки планетных систем на определённых фазах их развития.

На начальной стадии формирования планет возникали так называемые планетезимали - «зародыши» планет, на которые затем в силу гравитационного воздействия налипала пыль. В качестве примера такой изначальной фазы образования планет указывают на астероид Лютеция. Этот довольно большой астероид, достигающий в поперечнике 130 километров, состоит из твёрдой части и налипшего толстого (до километра) слоя пыли, а также разбросанных по поверхности валунов. По мере нарастания массы протопланет увеличивалась сила притяжения и вследствие этого сила сжатия формирующегося небесного тела. Происходили нагрев вещества и его расплавление, ведущее к расслоению протопланеты по плотности её материалов, и переход тела к сферической форме. Большинство исследователей склоняются к гипотезе, что в ходе начальных фаз эволюции Солнечной системы образовалось гораздо больше протопланет, чем планет и малых небесных тел, наблюдаемых сегодня. В то время образовавшиеся газовые гиганты - Юпитер и Сатурн - мигрировали внутрь системы, ближе к Солнцу. Это привнесло существенный беспорядок в движение возникающих тел Солнечной системы и вызвало развитие процесса, названного периодом тяжёлой бомбардировки. В результате резонансных воздействий со стороны главным образом Юпитера часть образовавшихся небесных тел была выкинута на окраины системы, а часть сброшена на Солнце. Этот процесс шёл от 4,1 до 3,8 миллиарда лет тому назад. Следы периода, который называют поздней стадией тяжёлой бомбардировки, остались в виде множества кратеров ударного происхождения на Луне и Меркурии. То же самое происходило с образующимися телами между Марсом и Юпитером: частота столкновений между ними была достаточно высокой, чтобы не дать им превратиться в объекты более крупные и более правильной формы, чем мы наблюдаем сегодня. Предполагается, что среди них есть фрагменты тел, которые прошли определённые фазы эволюции, а затем раскололись при столкновениях, а также объекты, которые не успели стать частями более крупных тел и, таким образом, представляют собой образцы более древних образований. Как упоминалось выше, астероид Лютеция именно такой образец. Подтверждением этому стали проведённые космическим аппаратом «Розетта» исследования астероида, включая съёмку во время близкого пролёта в июле 2010 года.

Таким образом, в эволюции главного астероидного пояса существенная роль принадлежит Юпитеру. В силу его гравитационного воздействия мы получили ныне наблюдаемую картину распределения астероидов внутри главного пояса. Что касается пояса Койпера, то к роли Юпитера здесь добавляется влияние Нептуна, приводящее к выбросу небесных объектов в эту удалённую область Солнечной системы. Предполагается, что влияние планет-гигантов простирается и на ещё более далёкое облако Оорта, которое, однако, сформировалось ближе к Солнцу, чем находится сейчас. На ранних фазах эволюции сближения с планетами-гигантами первородные объекты (планетезимали) в своём естественном движении выполняли то, что мы называем гравитационными манёврами, пополняя пространство, относимое к облаку Оорта. Будучи на столь больших расстояниях от Солнца, они подвержены воздействию и со стороны звёзд нашей Галактики - Млечного Пути, что приводит к их хаотическому переходу на траектории возвращения в близкую область околосолнечного пространства. Мы наблюдаем эти планетезимали как долгопериодические кометы. В качестве примера можно указать самую яркую комету ХХ столетия - комету Хейла-Боппа, открытую 23 июля 1995 года и достигшую перигелия в 1997-м. Период её обращения вокруг Солнца составляет 2534 года, а афелий находится на расстоянии 185 а.е. от Солнца.

Астероидно-кометная опасность

Многочисленные кратеры на поверхности Луны, Меркурия и других тел Солнечной системы часто упоминаются в качестве иллюстрации уровня астероидно-кометной опасности для Земли. Но такая ссылка не вполне корректна, поскольку подавляющая доля этих кратеров образовалась в «период тяжёлой бомбардировки». Тем не менее на поверхности Земли с помощью современных технологий, включая анализ спутниковой съёмки, можно обнаружить следы столкновений с астероидами, которые относятся к существенно более поздним периодам эволюции Солнечной системы. Наибольший и самый древний из известных кратеров - Вредефорт - находится в Южной Африке. Его диаметр около 250 километров, возраст оценивается в два миллиарда лет.

Кратер Чиксулуб на берегу полуострова Юкатан в Мексике образовался после удара астероида 65 миллионов лет назад, эквивалентного энергии взрыва в 100 тератонн (10 12 тонн) тротила. В настоящее время полагают, что исчезновение динозавров было следствием этого катастрофического события, вызвавшего цунами, землетрясения, извержения вулканов и климатические изменения из-за образовавшегося в атмосфере пылевого слоя, закрывшего Солнце. Один из наиболее молодых - кратер Бэрринджера - находится в пустыне штата Аризона, США. Его диаметр 1200 метров, глубина 175 метров. Он возник 50 тысяч лет назад в результате удара железного метеорита диаметром около 50 метров и массой несколько сотен тысяч тонн.

Всего сейчас насчитывают около 170 кратеров ударного происхождения, образованных падением небесных тел. Наибольшее внимание привлекло событие под Челябинском, когда 15 февраля 2013 года в этом районе вошёл в атмосферу астероид, размер которого оценили примерно в 17 метров и массу в 13 000 тонн. Он взорвался в воздухе на высоте 20 километров, самая крупная его часть массой 600 килограммов упала в озеро Чебаркуль.

Его падение не привело к жертвам, разрушения были заметны, но не катастрофичны: на довольно обширной территории выбиты стёкла, обрушилась крыша Челябинского цинкового завода, осколками стёкол ранены около 1500 человек. Полагают, что катастрофы не случилось в силу элемента везения: траектория падения метеорита была пологой, в противном случае последствия оказались бы значительно тяжелее. Энергия взрыва эквивалентна 0,5 мегатонны тротила, что соответствует 30 бомбам, сброшенным на Хиросиму. Челябинский астероид стал наиболее подробно описанным событием такого масштаба после взрыва Тунгусского метеорита 17 (30) июня 1908 года. Согласно современным оценкам, падение небесных тел, подобных Челябинскому, во всем мире происходит примерно один раз в 100 лет. Что касается Тунгусского события, когда были выжжены и повалены деревья на площади диаметром 50 километров в результате взрыва на высоте 18 километров с энергией 10–15 мегатонн тротила, то такие катастрофы случаются примерно один раз в 300 лет. Однако известны случаи, когда тела меньшего размера, сталкивающиеся с Землёй чаще упомянутых, наносили заметный ущерб. В качестве примера можно назвать четырёхметровый астероид, упавший в Сихотэ-Алине к северо-востоку от Владивостока 12 февраля 1947 года. При том, что астероид был небольшим, он состоял почти целиком из железа и оказался крупнейшим из когда-либо наблюдавшихся на поверхности Земли железных метеоритов. На высоте 5 километров он взорвался, и вспышка была ярче Солнца. Территория эпицентра взрыва (его проекция на земную поверхность) была необитаемой, но на площади с поперечником 2 километра повреждён лес и образовалось более сотни кратеров диаметром до 26 метров. Если бы такой объект упал на крупный город, погибли бы сотни и даже тысячи людей.

В то же время совершенно очевидно, что вероятность гибели конкретного человека в результате падения астероида очень низка. Это не исключает того, что могут пройти сотни лет без существенных жертв, а затем падение крупного астероида приведёт к смерти миллионов людей. В табл. 1 даны вероятности падения астероида, соотнесённые с уровнем смертности от других событий.

Неизвестно, когда случится следующее падение астероида, сопоставимое или более тяжёлое по своим последствиям с челябинским событием. Он может упасть и через 20 лет, и через несколько столетий, но может и завтра. Получение раннего предупреждения о событии вроде челябинского не просто желательно - оно необходимо для эффективного отклонения потенциально опасных объектов размером, скажем, более 50 метров. Что касается столкновений с Землёй астероидов меньших размеров, то эти события случаются чаще, чем нам кажется: примерно один раз в две недели. Это иллюстрирует приведённая карта падений астероидов размерами метр и более в течение последних двадцати лет, подготовленная НАСА.

.

Способы отклонения потенциально опасных околоземных объектов

Открытие в 2004 году астероида Апофис, вероятность столкновения которого с Землёй в 2036 году тогда рассматривали как довольно высокую, привело к существенному росту интереса к проблеме астероидно-кометной защиты. Были развёрнуты работы по обнаружению и каталогизации опасных небесных объектов, запущены программы исследований по решению задачи предотвращения их столкновений с Землёй. В результате резко выросло число найденных астероидов и комет, так что к настоящему времени их открыто больше, чем стало известно до начала работ по программе. Предлагались и различные способы отклонения астероидов от траекторий соударения с Землёй, включая довольно экзотические. Например, покрывать поверхности опасных астероидов краской, которая изменит их отражательные характеристики, приведя к требуемому отклонению траектории астероида за счёт давления солнечного света. Продолжались исследования по способам изменения траекторий опасных объектов путём столкновения с ними космических аппаратов. Последние способы представляются достаточно перспективными и не требующими применения технологий, выходящих за пределы возможностей современной ракетно-космической техники. Однако их эффективность ограничивается массой наводимого космического аппарата. Для наиболее мощного российского носителя «Протон-М» она не может превышать 5–6 тонн.

Оценим изменение скорости, например, Апофиса, масса которого около 40 миллионов тонн: соударение с ним космического аппарата массой 5 тонн при относительной скорости 10 км/с даст 1,25 миллиметра в секунду. Если удар нанести задолго до ожидаемого столкновения, создать требуемое отклонение можно, но это «задолго» составит много десятков лет. Так далеко спрогнозировать траекторию астероида с приемлемой точностью в настоящее время невозможно, особенно если учесть, что существует неопределённость в знании параметров динамики удара и, следовательно, в оценке ожидаемого изменения вектора скорости астероида. Таким образом, для отклонения опасного астероида от столкновения с Землёй требуется найти возможность направить на него более массивный снаряд. В качестве такового можно предложить другой астероид с массой, значительно превышающей массу космического аппарата, скажем 1500 тонн. Но для управления движением такого астероида понадобится слишком много топлива, чтобы на практике реализовать идею. Поэтому для требуемого изменения траектории астероида-снаряда предложили использовать так называемый гравитационный манёвр, не требующий сам по себе какого-либо расхода топлива.

Под гравитационным манёвром понимают облёт космическим объектом (в нашем случае - астероидом-снарядом) достаточно массивного тела - Земли, Венеры, других планет Солнечной системы, а также их спутников. Смысл манёвра заключается в таком выборе параметров траектории относительно облетаемого тела (высоты, начального положения и вектора скорости), который позволит за счёт его гравитационного воздействия изменить орбиту объекта (в нашем случае - астероида) вокруг Солнца так, что он окажется на траектории соударения. Иными словами, вместо того чтобы сообщить управляемому объекту импульс скорости с помощью ракетного двигателя, мы получаем этот импульс за счёт притяжения планеты, или, как его ещё называют, эффекта пращи. Причём величина импульса может быть значительной - 5 км/с и более. Чтобы его создать стандартным ракетным двигателем, необходимо затратить количество топлива, которое в 3,5 раза больше массы аппарата. А для метода гравитационного манёвра топливо необходимо лишь для того, чтобы вывести аппарат на расчётную траекторию манёвра, что уменьшает его расход на два порядка. Следует отметить, что такой способ изменения орбит космических аппаратов не нов: его предложил в начале тридцатых годов прошлого века пионер советской ракетной техники Ф.А. Цандер. В настоящее время такую методику широко применяют в практике космических полётов. Достаточно ещё раз назвать, например, европейский космический аппарат «Розетта»: при реализации миссии за десять лет он выполнил три гравитационных манёвра у Земли и один около Марса. Можно вспомнить советские космические аппараты «Вега-1» и «Вега-2», впервые облетевшие комету Галлея, - на пути к ней они совершили гравитационные манёвры с использованием поля тяготения Венеры. Для достижения Плутона в 2015 году космический аппарат НАСА «New Horizons» применил манёвр в поле Юпитера. Этими примерами список миссий, использующих гравитационный манёвр, далеко не исчерпывается.

Использовать гравитационный манёвр для наведения относительно небольших околоземных астероидов на опасные небесные объекты для их отклонения от траектории столкновения с Землёй предложили сотрудники Института космических исследований Российской академии наук на международной конференции по проблеме астероидной опасности, организованной на Мальте в 2009 году. А в следующем году появилась журнальная публикация с изложением этой концепции и её обоснованием.

Для подтверждения реализуемости концепции в качестве примера опасного небесного объекта был выбран астероид Апофис.

Изначально приняли условие, что опасность астероида устанавливается примерно за десять лет до предполагаемого его столкновения с Землёй. Соответственно строился сценарий отклонения астероида от траектории, проходящей через неё. Прежде всего из списка околоземных астероидов, орбиты которых известны, выбрали один, который переведут в окрестность Земли на орбиту, пригодную для выполнения гравитационного манёвра, обеспечивающего попадание астероида в Апофис не позже 2035 года. В качестве критерия отбора приняли величину импульса скорости, которую надо сообщить астероиду для перевода его на такую траекторию. Максимально допустимым посчитали импульс 20 м/с. Далее численный анализ возможных операций по наведению астероида на Апофис проводили в соответствии со следующим сценарием полёта.

После выведения головного блока ракеты-носителя «Протон-М» на низкую околоземную орбиту с помощью разгонного блока «Бриз-М» космический аппарат переводят на траекторию перелёта к астероиду-снаряду с последующей посадкой на его поверхность. Аппарат закрепляется на поверхности и движется вместе с астероидом до точки, в которой включает двигатель, сообщая астероиду импульс, переводящий его на рассчитанную траекторию гравитационного манёвра - облёта Земли. В процессе движения проводят необходимые измерения для определения параметров движения как астероида-цели, так и астероида-снаряда. По результатам измерений вычисляют траекторию снаряда и производят её коррекцию. С помощью двигательной установки аппарата астероиду сообщают импульсы скорости, исправляющие ошибки в параметрах траектории движения к цели. Такие же операции выполняются и на траектории перелёта аппарата к астероиду-снаряду. Ключевым параметром в разработке и оптимизации сценария служит импульс скорости, который нужно сообщить астероиду-снаряду. Для кандидатов на эту роль определяют даты сообщения импульса, прибытия астероида к Земле и соударения с опасным объектом. Эти параметры подбираются таким образом, чтобы величина импульса, сообщённого астероиду-снаряду, была минимальной. В процессе исследований в качестве кандидатов проанализирован весь список астероидов, параметры орбит которых к настоящему времени известны, - их около 11 000.

В результате расчётов нашли пять астероидов, характеристики которых, включая размеры, приведены в табл. 2. В неё попали астероиды, размеры которых заметно превышают величины, соответствующие максимально допустимой массе: 1500–2000 тонн. В этой связи нужно сделать два замечания. Первое: для анализа использовали далеко не полный список околоземных астероидов (11 000), в то время как, по современным оценкам, их по меньшей мере 100 000. Второе: рассматривается реальная возможность использовать в качестве снаряда не астероид целиком, а, например, находящиеся на его поверхности валуны, масса которых укладывается в обозначенные пределы (можно вспомнить астероид Итокава). Заметим, что именно такой подход оценивается как реалистичный в американском проекте по доставке малого астероида на лунную орбиту. Из табл. 2 видно, что наименьший импульс скорости - всего 2,38 м/с - необходим, если использовать в качестве снаряда астероид 2006 XV4. Правда, сам он великоват и превышает предполагаемый лимит в 1500 тонн. Но если использовать его фрагмент или валун на поверхности с такой массой (при его наличии), то указанный импульс создаст стандартный ракетный двигатель со скоростью истечения газов 3200 м/с, истратив 1,2 тонны топлива. Как показали расчёты, на поверхность этого астероида можно посадить аппарат с общей массой более 4,5 тонны, так что доставка топлива не создаст проблем. А применение электроракетного двигателя позволит снизить расход топлива (точнее - рабочего тела) до 110 килограммов.

Однако следует учитывать, что приведённые в таблице данные по необходимым импульсам скорости относятся к идеальному случаю, когда требуемое изменение вектора скорости реализуется абсолютно точно. На самом деле это не так, и, как уже отмечалось, необходимо иметь запас рабочего тела для коррекций орбиты. При достигнутых к настоящему времени точностях на коррекцию может потребоваться суммарно до 30 м/с, что превышает номинальные значения величины изменения скорости для решения задачи перехвата опасного объекта.

В нашем случае, когда управляемый объект имеет массу на три порядка больше, требуется другое решение. Оно существует - это применение электроракетного двигателя, позволяющее снизить расход рабочего тела в десять раз для того же корректирующего импульса. Кроме того, для повышения точности наведения предлагается использовать навигационную систему, включающую в себя небольшой аппарат, снабжённый приёмопередатчиком, который заблаговременно размещают на поверхности опасного астероида, и два субспутника, сопровождающие основной аппарат. С помощью приёмопередатчиков измеряют расстояние между аппаратами и их относительные скорости. Такая система позволяет обеспечить попадание астероида-снаряда в цель с отклонением в пределах 50 метров при условии использования на последней фазе подлёта к цели небольшого химического двигателя с тягой в несколько десятков килограммов, выдающего импульс скорости в пределах 2 м/с.

Из вопросов, возникающих при обсуждении реализуемости концепции использования малых астероидов для отклонения опасных объектов, существенен вопрос о риске столкновения с Землёй астероида, переведённого на траекторию гравитационного манёвра вокруг неё. В табл. 2 приводятся расстояния астероидов от центра Земли в перигее при выполнении гравитационного манёвра. Для четырёх они превышают 15 000 километров, а у астероида 1994 GV равно 7427,54 километра (средний радиус Земли - 6371 километр). Расстояния выглядят безопасными, но гарантировать отсутствие всякого риска всё же нельзя, если размеры астероида таковы, что он может достичь поверхности Земли, не сгорев в атмосфере. Как предельно допустимый размер рассматривают диаметр в 8–10 метров при условии, что астероид не железный. Радикальный способ решения проблемы - использовать для манёвра Марс или Венеру.

Захват астероидов для проведения исследований

Базовая идея проекта Asteroid Redirect Mission (ARM) - перевод астероида на другую орбиту, более удобную для проведения исследований с непосредственным участием человека. В качестве таковой была предложена орбита, близкая к лунной. Как ещё один вариант изменения астероидной орбиты в ИКИ РАН рассмотрены способы управления движением астероидов с использованием гравитационных манёвров у Земли, подобные тем, что были разработаны для наведения малых астероидов на опасные околоземные объекты.

В качестве цели таких манёвров рассматривают перевод астероидов на орбиты, резонансные с орбитальным движением Земли, в частности с соотношением периодов астероида и Земли 1:1. Среди околоземных астероидов есть тринадцать, которые можно перевести на резонансные орбиты в указанном соотношении и при нижнем допустимом пределе радиуса перигея - 6700 километров. Для этого любому из них достаточно сообщить импульс скорости, не превышающий 20 м/с. Их список представлен в табл. 3, где указаны величины импульсов скорости, переводящих астероид на траекторию гравитационного манёвра у Земли, в результате которого период его орбиты становится равный земному, то есть одному году. Там же приведены максимальные и минимальные достижимые манёвром скорости астероида в его гелиоцентрическом движении. Интересно отметить, что максимальные скорости могут быть очень велики, позволяя в результате манёвра забросить астероид довольно далеко от Солнца. Например, астероид 2012 VE77 удастся отправить на орбиту с афелием на расстоянии орбиты Сатурна, а остальные - за пределы орбиты Марса.

Преимущество резонансных астероидов в том, что они возвращаются в окрестность Земли ежегодно. Это даёт возможность хоть каждый год отправлять космический аппарат c посадкой на астероид и доставлять на Землю образцы грунта, причём на возврат спускаемого аппарата на Землю почти не требуется тратить топливо. В этом плане астероид на резонансной орбите имеет преимущества относительно астероида на орбите, подобной лунной, как планируется в проекте Keck, поскольку он для возвращения требуют заметный расход топлива. Для беспилотных миссий это может стать решающим, но для пилотируемых полётов, когда необходимо обеспечить как можно более быстрое возвращение аппарата на Землю в аварийной ситуации (в течение недели или даже раньше), преимущество может оказаться на стороне проекта ARM.

С другой стороны, ежегодное возвращение резонансных астероидов к Земле позволяет периодически проводить гравитационные манёвры, всякий раз изменяя их орбиту для оптимизации условий исследований. Орбита при этом должна оставаться резонансной, что несложно осуществить, совершая многократные гравитационные манёвры. Используя такой подход, можно перевести астероид на орбиту, идентичную земной, но немного наклонённую к её плоскости (к эклиптике). Тогда астероид станет сближаться с Землёй дважды в год. В семейство орбит, получаемых в результате последовательности гравитационных манёвров, входит орбита, плоскость которой лежит в эклиптике, но имеет очень больший эксцентриситет и, как у астероида 2012 VE77, достигает орбиты Марса.

Если далее развить технологию гравитационных манёвров у планет, включающую построение резонансных орбит, то возникает идея использовать Луну. Дело в том, что гравитационный манёвр у планеты в чистом виде не позволяет захватить объект на орбиту спутника, поскольку при облёте планеты энергия его относительного движения не изменяется. Если же при этом он облетит естественный спутник планеты (Луну), то его энергию можно уменьшить. Проблема в том, что уменьшение должно быть достаточным для перехода на орбиту спутника, то есть начальная скорость относительно планеты должна быть невелика. Если это требование не выполнено, объект покинет окрестность Земли навсегда. Но если выбрать геометрию комбинированного манёвра так, что в результате астероид останется на резонансной орбите, то через год можно повторить манёвр. Таким образом, существует возможность захватить астероид на орбиту спутника Земли, применив гравитационные манёвры у Земли с сохранением условия резонанса и координированный облёт Луны.

Очевидно, что отдельно взятые примеры, подтверждающие возможность реализации концепции управления движением астероидов с помощью гравитационных манёвров, не гарантируют решение проблемы астероидно-кометной опасности для любого небесного объекта, угрожающего столкновением с Землёй. Может случиться, что в конкретном случае не найдётся подходящего астероида, который можно на него направить. Но, как показывают последние результаты расчётов, проведённые с учётом самых «свежих» каталогизированных астероидов, при предельно допустимом импульсе скорости, необходимом для перевода астероида в окрестность планеты, равном 40 м/с, число подходящих астероидов составляет 29, 193 и 72 для Венеры, Земли и Марса соответственно. Они входят в список небесных тел, движением которых можно управлять средствами современной ракетно-космической техники. Список стремительно пополняется, поскольку в настоящее время открывают в среднем от двух до пяти астероидов в день. Так, за период с 1 по 21 ноября 2014 года открыто 58 околоземных астероидов. До сих пор на движение естественных небесных тел мы не могли влиять, но наступает новая фаза развития цивилизации, когда это становится возможным.

Словарик к статье

Закон Боде (правило Тициуса - Боде, установленное в 1766 году немецким математиком Иоганном Тициусом и переформулированное в 1772 году немецким астрономом Иоганном Боде) описывает расстояния между орбитами планет Солнечной системы и Солнцем, а также между планетами и орбитами её естественных спутников. Одна из его математических формулировок:R i = (D i + 4)/10, где D i = 0, 3, 6, 12 ... n, 2n, а R i - средний радиус орбиты планеты в астрономических единицах (а. е.).

Этот эмпирический закон выполняется для большинства планет с точностью до 3%, но, похоже, физического смысла не имеет. Есть, однако, предположение, что на стадии формирования Солнечной системы в результате гравитационных возмущений возникла регулярная кольцевая структура областей, в которых орбиты протопланет оказались стабильными. Позднейшее изучение Солнечной системы показало, что закон Боде, вообще говоря, далеко не всегда выполняется: орбиты Нептуна и Плутона, например, находятся гораздо ближе к Солнцу, чем он предсказывает (см. таблицу).

(L-точки, или точки либрации, от лат. Libration - раскачиваю) - точки в системе двух массивных тел, например Солнца и планеты или планеты и её естественного спутника. Тело существенно меньшей массы - астероид или космическая лаборатория - будет оставаться в любой из точек Лагранжа, совершая колебания небольшой амплитуды, при условии, что на него действуют только силы тяготения.

Точки Лагранжа лежат в плоскости орбиты обоих тел и обозначены индексами от 1 до 5. Первые три - коллиниарные - лежат на прямой, соединяющей центры массивных тел. Точка L 1 находится между массивными телами, L 2 - за менее массивным, L 3 - за более массивным. Положение астероида в этих точках наименее устойчиво. Точки L 4 и L 5 - треугольные, или троянские, - находятся на орбите по обе стороны от линии, соединяющей тела большой массы, под углами 60 о от линии, соединяющей их (например, Солнце и Землю).

Точка L 1 системы Земля - Луна - удобное место для размещения обитаемой орбитальной станции, позволяющей космонавтам добраться до Луны с минимальными затратами топлива, или обсерватории для наблюдения за Солнцем, которое в этой точке никогда не заслоняется ни Землёй, ни Луной.

Точка L 2 системы Солнце - Земля удобна для постройки космических обсерваторий и телескопов. Объект в этой точке неограниченно долго сохраняет ориентацию относительно Земли и Солнца. В ней уже находятся американские лаборатории «Планк», «Гершель», WMAP, Gаia и др.

В точку L 3 , по ту сторону от Солнца, писатели-фантасты неоднократно помещали некую планету - Противоземлю, которая то ли прибыла издалека, то ли была создана одновременно с Землёй. Современные наблюдения её не обнаружили.


Эксцентриситет (рис. 1) - число, характеризующее форму кривой второго порядка (эллипса, параболы и гиперболы). Математически оно равно отношению расстояния любой точки кривой до её фокуса к расстоянию от этой точки до прямой, называемой директрисой. У эллипсов - орбит астероидов и большинства других небесных тел - имеются две директрисы. Их уравнения: x = ±(a/e), где a - большая полуось эллипса; e - эксцентриситет - величина, постоянная для любой данной кривой. Эксцентриситет эллипса меньше 1 (у параболы е = 1, у гиперболы е > 1); когда е > 0, форма эллипса приближается к окружности, при е > 1 эллипс становится всё более вытянутым и сжатым, в пределе вырождаясь в отрезок - собственную большую ось 2а. Другое, более простое и наглядное определение эксцентриситета эллипса - отношение разности его максимального и минимального расстояний до фокуса к их сумме, то есть длине большой оси эллипса. Для околосолнечных орбит это отношение разности удаления небесного тела от Солнца в афелии и перигелии к их сумме (большой оси орбиты).

Солнечный ветер - постоянный поток плазмы солнечной короны, то есть заряженных частиц (протонов, электронов, ядер гелия, ионов кислорода, кремния, железа, серы) по радиальным направлениям от Солнца. Он занимает сферический объём радиусом не менее 100 а. е., границу объёма определяет равенство динамического давления солнечного ветра и давления межзвёздного газа, магнитного поля Галактики и галактических космических лучей.

Эклиптика (от греч. ekleipsis - затмение) - большой круг небесной сферы, по которому происходит видимое годичное движение Солнца. В действительности, поскольку Земля движется вокруг Солнца, эклиптика - это сечение небесной сферы плоскостью земной орбиты. Линия эклиптики проходит по 12 созвездиям Зодиака. Её греческое название связано с тем, что с древности известно: солнечные и лунные затмения происходят, когда Луна находится вблизи точки пересечения её орбиты с эклиптикой.

Астероидом, называют сравнительно небольшое, каменистое космическое тело, похожее на планету Солнечной системы. Множество астероидов вращается вокруг Солнца, а самое большое их скопление, расположено между орбитами Марса и Юпитера и называется поясом астероидов. Здесь же, находится самый большой, из известных астероидов – Церера. Его размеры составляют 970х940 км, т. е. практически округлую форму. Но есть и такие, чьи размеры, сопоставимы с частицами пыли. Астероида, как и кометы – это остатки того вещества, из которых миллиарды лет назад формировалась наша Солнечная система.

Ученые предполагают, что в нашей галактике можно найти более полумиллиона астероидов диаметром больше 1,5 километров. Последние исследования показали, что метеориты и астероиды имеют схожий состав, поэтому астероиды вполне могут быть теми телами, из которых образуются метеориты.

Изучение астероидов

Изучение астероидов, датируется 1781 годом, после того как Ульям Гершель открыл миру планету Уран. В конце 18-го века Ф. Ксавер собрал группу известных ученых-астрономов, которая искала планету. По расчетам Ксавера должна была находиться между орбитами Марса и Юпитера. Сначала поиск не давал ни каких результатов, но в 1801 году, был обнаружен первый астероид – Церера. Но его открывателем стал итальянский астроном Пиацци, который даже не входил в состав группы Ксавера. В последующие несколько лет, были обнаружены еще три астероида: Паллада, Веста и Юнона, а затем поиски прекратились. Лишь спустя 30 лет, проявивший интерес к исследованию звездного неба Карл Людовик Хенке, возобновил их поиски. С этого периода, астрономы обнаруживали не менее одного астероида в год.

Характеристики астероидов

Классифицируют астероиды по спектру отраженного солнечного света: 75% из них очень темные углистые астероиды класса С, 15% — серовато-кремнистые класса S, а в оставшиеся 10% входят металлические класса М и несколько других редких видов.

Неправильная форма астероидов подтверждается еще и тем, что их блеск достаточно быстро падает с ростом фазового угла. Из-за большого расстояния от Земли и своих малых размеров, получить более точные данные об астероидах достаточно проблематично.Сила тяжести на астероида настолько мала, что не в состоянии придать им шарообразную форму, характерную для всех планет. Такая сила тяжести позволяет разбитым астероидам существовать виде отдельных блоков, которые удерживаются возле друг друга, не соприкасаясь. Поэтому только крупные астероиды, избежавшие столкновения с телами средних размеров, могут сохранять шарообразную форму, приобретенную в период формирования планет.


– это каменные и металлические объекты, которые вращаются вокруг , но слишком не значительные по размерам, чтобы считаться планетами.
Астероиды варьируются в размерах от Цереры, которая имеет диаметр около 1000 км, до размера обычных камней. Шестнадцать известных астероидов имеют диаметр 240 км и более. Их орбита эллиптическая, пересекает орбиту и доходит до орбиты . Большинство астероидов, однако, содержащиеся в главном поясе, который расположен между орбитами и . Некоторые имеют орбиты, которые пересекаются с Земной, а некоторые даже сталкивались с Землей в прошлом.
Один из примеров метеоритный кратер Barringer вблизи Уинслоу, штат Аризона.

Астероиды это материалы, оставшиеся от формирования солнечной системы. Одна из теорий предполагает, что они являются остатками планеты, которая была разрушена во время столкновения достаточно давно. Скорее всего, астероиды – это материал, который не смог сформироваться в планету. В самом деле, если предполагаемую общую массу всех астероидов собрать в единый объект, объект будет меньше, чем 1500 километров в диаметре, это меньше, чем половина диаметра нашей Луны.

Большая часть нашего понимания об астероидах происходит от изучения кусков космического мусора, которые попадают на поверхность Земли. Астероиды, которые находятся на пути к столкновению с Землей, называют метеорами. Когда метеор входит в атмосферу на большой скорости, трение разогревает его до высоких температур, и он сгорает в атмосфере. Если метеор не сгорает полностью, то, что осталось, попадает на поверхность Земли и называется метеоритом.

Как минимум 92,8 процентов метеоритов состоят из силиката (камень), и на 5,7 процента состоят из железа и никеля, а остальные представляют собой смесь из трех указанных материалов. Каменные метеориты наиболее трудно найти, поскольку они очень похожи на земные породы.

Поскольку астероиды – это материал из очень ранней Солнечной системы, ученые заинтересованы в изучении их состава. Космические аппараты, которые перелетели через пояс астероидов обнаружили, что пояс, достаточно разряженный и астероиды разделены большими расстояниями.

В октябре 1991 года, космический аппарат Галилео приблизился к астероиду 951 Гаспра и передал впервые в истории высокоточное изображение Землю. В августе 1993 года аппарат Галилео сделал близкое сближение с астероидом 243 Ида. Это был второй астероид, который посетил космический аппарат. Оба Гаспра и Ида классифицируются как S-тип астероидов, они состоят из богатых металлами силикатов.

27 июня 1997 года космический аппарат NEAR прошел недалеко от астероида 253 Матильда. Это впервые позволило передать на Землю общий вид астероида богатого углеродами, принадлежащему к C-типу астероидов.

Астероиды

Астероиды. Общие сведения

Рис.1 Астероид 951 Гаспра. Credit: NASA

Помимо 8 больших планет в состав Солнечной системы входит большое количество более мелких космических тел, похожих на планеты, - астероиды, метеориты, метеоры, объекты пояса Койпера, «Кентавры». В данной статье речь пойдёт об астероидах, которые до 2006 года назывались также малыми планетами.

Астероиды, это тела естественного происхождения, обращающиеся вокруг Солнца под действием гравитации, не относящиеся к большим планетам, имеющие размеры больше 10 м. и не проявляющие кометной активности. Большинство астероидов лежит в поясе между орбитами планет Марс и Юпитер. В пределах пояса насчитывается более 200 астероидов чей диаметр превышает 100 км и 26 с диаметром более 200 км. Число астероидов диаметром более одного километра по современным подсчётам превышает 750 тысяч или даже миллион.

В настоящее время существует четыре основных метода определения размеров астероидов. Первый метод основан на наблюдении астероидов в телескопы и определении количества отраженного от их поверхности солнечного света и выделенного тепла. Обе величины зависят от размера астероида и его расстояния от Солнца. Второй метод основывается на визуальном наблюдении астероидов при прохождении ими перед какой-либо звездой. Третий метод предполагает использование радиотелескопов для получения изображений астероидов. Наконец, четвёртый метод, который впервые был применён в 1991 году космическим аппаратом «Галилео», предполагает изучение астероидов с близкого расстояния.

Зная приблизительное количество астероидов в пределах главного пояса, их средний размер и состав, можно вычислить их общую массу, которая составляет 3.0-3.6 10 21 кг, что составляет 4% от массы естественного спутника Земли Луны. При этом на 3 крупнейших астероида: 4 Весту, 2 Палладу, 10 Гигею приходится 1/5 всей массы астероидов главного пояса. Если же учитывать также массу карликовой планеты Цереры, которая считалась астероидом до 2006 г, то получается, что масса более чем миллиона оставшихся астероидов составляет всего 1/50 массы Луны, что по астрономическим меркам крайне мало.

Средняя температура астероидов -75°C.

История наблюдения и изучения астероидов

рис.2 Первый открытый астероид Церера, позднее отнесённая к малым планетам. Credit: NASA, ESA, J.Parker (Southwest Research Institute), P.Thomas (Cornell University), L.McFadden (University of Maryland, College Park), and M.Mutchler and Z.Levay (STScI)

Первой обнаруженной малой планетой стала Церера, открытая итальянским астрономом Джузеппе Пиацци в сицилийском городе Палермо (1801 г.). Сначала Джузеппе подумал, что увиденный им объект является кометой, но после определения немецким математиком Карлом Фридрихом Гауссом параметров орбиты космического тела становится ясно, что оно скорее всего является планетой. Через год по эфемериде Гаусса Цереру находит немецкий астроном Г. Ольберс. Тело, названное Пиацци Церерой, в честь древнеримской богини плодородия, находилось на том расстоянии от Солнца, на котором согласно правилу Тициуса-Боде должна была располагаться большая планета солнечной системы, поисками которой занимались астрономы с конца XVIII века.

В 1802 году английский астроном У. Гершель вводит новый термин «астероид». Астероидами Гершель назвал космические объекты, который при наблюдении в телескоп выглядели как неяркие звёзды, в отличии от планет, при визуальном наблюдении имеющих форму диска.

В 1802-07 гг. были открыты астероиды Паллада, Юнона и Веста. Затем наступила эпоха затишья продолжительностью около 40 лет, в течении которой не было открыто ни одного астероида.

В 1845 году немецкий астроном-любитель Карл Людвиг Хенке после 15 лет поиска открывает пятый астероид главного пояса - Астрею. С этого времени начинается просто глобальная "охота" за астероидами всех астрономов мира, т.к. до открытия Хенке в научном мире считалось, что астероидов всего четыре и восемь лет безрезультатных поисков на протяжении 1807-15 гг. казалось бы лишь подтверждают эту гипотезу.

В 1847 г. английский астроном Джон Хайнд открыл астероид Ириду, после чего до настоящего времени каждый год открывали хотя бы один астероид (кроме 1945 г.).

В 1891 году немецкий астроном Максимилиан Вольф для обнаружения астероидов стал применять метод астрофотографии, при котором на фотографиях с с длинным периодом экспонирования (освещения фотослоя) астероиды оставляли короткие светлые линии. С помощью данного метода Вольф за короткий промежуток времени смог обнаружить 248 астероидов, т.е. лишь немногим меньше чем было обнаружено за полсотни лет наблюдений до него.

В 1898 г. был открыт Эрос, приближающийся к Земле на опасное расстояние. Впоследствии были открыты и другие астероиды, приближающиеся к земной орбите, и их выделили в отдельный класс Амуров.

В 1906 г. был обнаружен Ахиллес, разделяющий орбиту с Юпитером и следующий перед ним с той же скоростью. Все вновь открываемые подобные объекты стали называть Троянцами в честь героев Троянской войны.

В 1932 был открыт Аполлон - первый представитель класса Аполлонов, которые в перигелии приближаются к Солнцу ближе, чем Земля. В 1976 г. был открыт Атон, положивший начало новому классу - атонов, величина большой оси орбиты которых менее 1 а.е. А в 1977 была обнаружена первая малая планета, никогда не приближающаяся к орбите Юпитера. Такие малые планеты назвали Кентаврами в знак их близости к Сатурну.

В 1976 году был обнаружен первый астероид группы Атонов, сближающихся с Землей.

В 1991 г. был найден Дамокл, имеющий очень вытянутую и сильно наклоненную орбиту, характерную для комет, однако не образующий кометного хвоста при сближении с Солнцем. Такие объекты стали называть Дамоклоидами.

В 1992 удалось увидеть первый объект из предсказанного Джерардом Койпером в 1951 г. пояса малых планет. Его назвали 1992 QB1. После этого в поясе Койпера каждый год стали находить всё более крупные объекты.

В 1996 году наступила новая эра в изучении астероидов: Национальное управление по аэронавтике и исследованию космического пространства США отправило к астероиду Эрос космический аппарат «NEAR spacecraft», который должен был не просто сфотографировать астероид пролетев мимо него, но также стать искусственным спутником Эроса, а впоследствии совершить посадку на его поверхность.

27 июня 1997 года по пути к Эросу «NEAR» пролетел на расстоянии 1212 км. от небольшого астероида Матильда, сделав более 50м черно-белых и 7 цветных изображений, покрывающих 60% поверхности астероида. Были измерены также магнитное поле и масса Матильды.

В конце 1998 года в связи с потерей связи с аппаратом на 27 часов время выхода на орбиту Эроса было перенесено с 10 января 1999 года на 14 февраля 2000. В назначенный срок NEAR вышел на высокую орбиту астероида с перицентром 327 км и апоцентром 450 км. Начинается постепенное снижение орбиты: 10 марта аппарат вышел на круговую орбиту высотой 200 км, 11 апреля орбита снизилась до 100 км, 27 декабря произошло снижение до 35 км, после которого миссия аппарата вступила в заключительную стадию с целью посадки на поверхность астероида. На стадии снижения - 14 марта 2000 года «NEAR spacecraft» был переименован в честь американского геолога и планетолога Юджина Шумейкера, трагически погибшего в автокатастрофе в Австралии, в «NEAR Shoemaker».

12 февраля 2001 году «NEAR» начал торможение, которая продолжалось 2 суток, завершившись мягкой посадкой на астероид с последующим фотографированием поверхности и измерением состава поверхностного грунта. 28 февраля миссия аппарата была завершена.

В июле 1999 года космический аппарат «Deep Space 1» с расстояния 26 км. исследовал астероид Брайль, собрав большой массив данных о составе астероида и получив ценные изображения.

В 2000 году аппаратом «Кассини-Гюйгенс» произвёл фотографирование астероида 2685 Масурски.

В 2001 был открыт первый Атон, не пересекающий земную орбиту, а также первый Троянец Нептуна.

2 ноября 2002 года космическим аппаратом НАСА «Стардаст» было осуществлено фотографирование небольшого астероида Аннафранк.

9 мая 2003 года Японским агентством аэрокосмических исследований для изучения астероида Итокава и доставки на Землю образцов грунта астероида был запущен космический аппарат «Хаябуса».

12 сентября 2005 года «Хаябуса» приблизился к астероиду на расстояние 30 км и приступил к исследованиям.

В ноябре того же года аппаратом были осуществлены три посадки на поверхность астероида, в результате которых был потерян робот «Минерва», предназначенный для фотографирования отдельных пылинок и съёмки близких панорам поверхности.

26 ноября была осуществлена ещё одна попытка спуска аппарата с целью забора грунта. Незадолго до посадки связь с аппаратом была потеряна и восстановлена лишь спустя 4 месяца. Удалось ли сделать забор грунта оставалось неизвестным. В июне 2006 года JAXA сообщило, что «Хаябуса» скорее всего вернётся на Землю, что и произошло 13 июня 2010 года, когда спускаемая капсула с образцами частиц астероида была сброшена в районе полигона Вумера на юге Австралии. Исследовав образцы грунта японские учёные установили, что в составе астероида Итокава присутствуют Mg, Si и Al. На поверхности астероида имеется значительное количество минералов пироксена и оливина в соотношении 30:70. Т.е. Итокава является осколком более крупного хондритного астероида.

После аппарата «Хаябуса» фотографирование астероидов провели также АМС «Новые горизонты» (11 июня 2006 года - астероид 132524 APL) и космический аппарат «Розетта» (5 сентября 2008 года - фотографирование астероида 2867 Штейнс, 10 июля 2010 года - астероида Лютеция). Кроме того, 27 сентября 2007 г. с космодрома на мысе Канаверал стартовала автоматическая межпланетная станция «Dawn», которая уже в этом году (предположительно 16 июля) выйдет на круговую орбиту вокруг астероида Веста. В 2015 году аппарат достигнет Цереры - самого крупного объекта в главном поясе астероидов - проработав на орбите которой в течении 5 месяцев, завершит свою работу...

Астероиды различаются по размерам, строению, форме орбит и расположению в Солнечной системе. На основании характеристик орбит астероиды выделяются в отдельные группы и семейства. Первые - образованы осколками более крупных астероидов, и поэтому, большая полуось, эксцентриситет и наклонение орбиты у астероидов в пределах одной группы практически полностью совпадают. Вторые - объединяют астероиды со сходными орбитальными параметрами.

В настоящее время известно более 30 семейств астероидов. Большинство семейств астероидов располагаются в главном поясе. Между основными концентрациями астероидов в главном поясе существуют пустые области, известные как щели или люки Кирквуда. Подобные области возникают в результате гравитационного взаимодействия Юпитера из-за которого орбиты астероидов становятся нестабильными.

Групп астероидов меньше чем семейств. В представленном ниже описании группы астероидов перечислены в порядке их удаления от Солнца.


рис.3 Группы астероидов: белые - астероиды главного пояса; зелёные за внешней границей главного пояса - троянцы Юпитера; оранжевые - группа Хильды. . Источник: wikipedia

Ближе всего к Солнцу находится гипотетический пояс Вулканоидов - малых планет, орбиты которых лежат полностью внутри орбиты Меркурия. Компьютерные расчёты показывают, что область, лежащая между Солнцем и Меркурием, гравитационно стабильна и, скорее всего, там существуют маленькие небесные тела. Практическое обнаружение их затруднено близостью к Солнцу, и до сих пор ни одного Вулканоида не обнаружено. Косвенно в пользу существования вулканоидов говорят кратеры на поверхности Меркурия.

Следующая группа - Атоны, малые планеты, названные по имени первого представителя, открытого американским астрономом Элеанор Хелин в 1976 году. У атонов большая полуось орбиты меньше астрономической единицы. Таким образом, на большей части своего пути по орбите Атоны находятся ближе к Солнцу, чем Земля, а некоторые из них вообще никогда не пересекают земную орбиту.

Атонов известно более 500, из которых лишь 9 имеют собственные имена. Атоны - самые маленькие из всех групп астероидов: диаметр большинства из них не превышает 1 км. Самым большим атоном является Круитна, с диаметром 5 км.

Между орбитами Венеры и Юпитера выделяются группы небольших астероидов Амуров и Аполлонов.

Амуры - астероиды, лежащие между орбитами Земли и Юпитера. Амуры можно разделить на 4 подгруппы, различающиеся параметрами своих орбит:

К первой подгруппе относятся астероиды, лежащие между орбитами Земли и Марса. К ним относятся менее 1/5 всех амуров.

Ко второй подгруппе относятся астероиды, чьи орбиты лежат между орбитой Марса и главным астероидным поясом. К ним принадлежит и давний название всей группе астероид Амур.

Третья подгруппа амуров объединяет астероиды, чьи орбиты лежат в пределах главного пояса. К ней относится около половины всех амуров.

Последняя подгруппа включает немногочисленные астероиды, лежащие за пределами главного пояса и проникающие за орбиту Юпитера.

Амуров к настоящему времени известно более 600. Они вращаются по орбитам с большой полуосью более 1,0 а.е. и расстояниями в перигелии от 1,017 до 1,3 а. е. Диаметр самого большого амура - Ганимеда - 32 км.

К аполлонам относятся астероиды пересекающие орбиту Земли и имеющие большую полуось не менее 1 а.е. Аполлоны, наряду с атонами, являются самыми маленькими астероиды. Крупнейший их представитель - Сизиф в диаметре 8,2 км. Всего же аполлонов известно более 3,5 тысяч.

Вышеперечисленные группы астероидов образуют так называемый «главный» пояс, в предала которого сосредоточено.

За «главным» поясом астероидов находится класс малых планет, которые называются троянцами или троянскими астероидами.

Троянские астероиды находятся в окрестностях точек Лагранжа L4 и L5 в орбитальном резонансе 1:1 любых планет. Большинство троянских астероидов обнаружено у планеты Юпитер. Есть троянцы у Нептуна и Марса. Предполагают их существование у Земли.

Троянцы Юпитера делятся на 2 большие группы: в точке L4 находятся астероиды, называемые именами греческих героев, и двигающиеся впереди планеты; в точке L5 - астероиды, называемые именами защитников Трои и двигающиеся позади Юпитера.

У Нептуна на настоящий момент известно всего 7 троянцев, 6 из которых двигаются впереди планеты.

У Марса троянцев выявлено всего 4, 3 из которых лежат вблизи точки L4.

Троянцы - крупные астероиды с диаметром часто более 10 км. Самым крупным из них является грек Юпитера - Гектор, с диаметром 370 км.

Между орбитами Юпитера и Нептуна, располагается пояс Кентавров - астероидов проявляющих одновременно свойства и астероидов, и комет. Так, у первого из открытых Кентавров - Хирона, при сближении с Солнцем наблюдалась кома.

В настоящее время считается, что в Солнечной системе находятся более 40 тыс. кентавров с диаметром более 1 км. Самым же крупным из них является Харикло с диаметром около 260 км.

К группе дамоклоидов относят астероиды, имеющие очень вытянутые орбиты, и находящиеся в афелии дальше Урана, а в перигелии - ближе Юпитера, а иногда и Марса. Считается, что дамоклоиды - это потерявшие летучие вещества ядра планет, что было сделано на основе наблюдений, показавших наличие комы у ряда астероидов этой группы и на основании изучения параметров орбит дамоклоидов, в результате которого выяснилось, что они обращаются вокруг Солнца в направлении, противоположном движению больших планет и прочих групп астероидов.

Спектральные классы астероидов

По цветности, альбедо и характеристикам спектра астероиды условно подразделяются на несколько классов. Изначально, по классификации Кларка Р.Чапмена, Дэвида Моррисона и Бена Целлнера, спектральных классов астероидов было всего 3. Затем, по мере изучения учёными, число классов расширилось и на сегодняшний момент их 14.

К классу А относятся всего 17 астероидов, лежащих в пределах главного пояса и характеризующихся наличием в составе минерала оливина. Астероиды класса А характеризуемый умеренно высоким альбедо и красноватым цветом.

К классу B относятся углеродные астероиды с голубоватым спектром и почти полном отсутствием поглощения на длине волны ниже 0,5 мкм. Астероиды данного класса лежат в основном в пределах главного пояса.

Класс С образуют углеродные астероиды, по составу близкие к составу протопланетного облака из которого образовалась Солнечная система. Это наиболее многочисленный класс, к которому принадлежит 75% всех астероидов. Обращаются они во внешних областях главного пояса.

Астероиды с очень низким альбедо (0,02-0,05) и ровным красноватым спектром без чётких линий поглощения относятся к спектральному классу D. Лежат они во внешних областях главного пояса на расстоянии не менее 3 а.е. от Солнца.

Астероиды класса E являются скорее всего остатками внешней оболочки более крупного астероида и характеризуются очень высоким альбедо (0,3 и выше). По своему составу астероиды этого класса имеют сходство с метеоритами, известными как энстатитовые ахондриты.

Астероиды класса F относятся к группе углеродных астероидов и отличаются от похожих объектов ласса B отсутствием следов воды, поглощающей на длине волны около 3 мкм

Класс G объединяет углеродные астероиды с сильным ультрафиолетовым поглощением на длине волны 0,5 мкм.

К классу М относятся металлические астероиды с умеренно большим альбедо (0,1-0,2). На поверхности некоторых из них присутствуют выходы металлов (никелистого железа), как у некоторых метеоритов. К этому классу относятся менее 8% всех известных астероидов.

Астероиды с низким альбедо (0,02-0,07) и ровным красноватым спектром без конкретных линий поглощения относятся к классу P. В их составе углероды и силикаты. Преобладают подобные объекты во внешних областях главного пояса.

К классу Q относятся немногочисленные астероиды из внутренних областей главного пояса, по характеру спектра схожие с хондритами.

Класс R объединяет объекты с высокой концентрацией во внешних областях оливина и пироксена, возможно с добавкой плагиоклаза. Астероидов этого класса немного и все они лежат во внутренних областях главного пояса.

К классу S относятся 17% всех астероидов. Астероиды этого класса имеют кремниевый или каменный состав и располагаются в основном в областях главного астероидного пояса на расстоянии до 3 а.е.

К классу астероидов T учёные относят объекты с очень низким альбедо, тёмной поверхностью и умеренным поглощением на длине волны 0,85 мкм. Состав их неизвестен.

К последнему выделенному на сегодняшний день классу астероидов - V, относят объекты чьи орбиты близки к параметрам орбиты самого крупного представителя класса - астероида (4) Веста. По своему составу они близки к астероидам S класса, т.е. состоят их силикатов, камней и железа. Основным отличием их от астероидов класса S является высокое содержание пироксена.

Происхождение астероидов

Существует две гипотезы образования астероидов. По первой гипотезе предполагается существование в прошлом планеты Фаэтон. Она существовала недолго и разрушилась при столкновении с крупным небесным телом или благодаря процессам внутри планеты. Однако наиболее вероятно образование астероидов за счёт разрушения нескольких крупных объектов, оставшихся после формирования планет. Образование крупного небесного тела - планеты - в пределах главного пояса произойти не могло из-за гравитационного воздействия Юпитера.

Спутники астероидов

В 1993 г. аппарат «Галилео» получил снимок астероида Ида с небольшим спутником Дактиль. Впоследствии спутники были обнаружены у многих астероидов, а в 2001 году был обнаружен первый спутник у объекта пояса Койпера.

К недоумению астрономов, совместные наблюдения, проводившиеся с помощью наземных инструментов и телескопа «Хаббл», показали, что во многих случаях эти спутники своими размерами вполне сравнимы с центральным объектом.

Доктор Штерн провёл исследование с целью выяснить, каким образом могут образовываться подобные двойные системы. Стандартная модель формирования крупных спутников предполагает, что они образуются в результате столкновения родительского объекта с крупным объектом. Подобная модель позволяет удовлетворительно объяснить формирование двойных астероидов, системы Плутон- Харон, а также может быть непосредственно применена к объяснению процесса формирования системы Земля- Луна.

Исследование Штерна поставило под сомнение ряд положений этой теории. В частности, для образования объектов необходимы столкновения с энергией, которые весьма маловероятны с учётом возможного количества и массы объектов пояса Койпера как в его исходном состоянии, так и в современном.

Отсюда следуют два возможных объяснения - либо формирование двойных объектов происходило не в результате столкновений, либо коэффициент отражения поверхности объектов Койпера (с его помощью определяется их размер) существенно недооценен.

Разрешить дилему, по мнению Штерна, поможет новый космический инфракрасный телескоп НАСА SIRTF (Space Infrared Telescope Facility), запуск которого произошёл в 2003 году.

Астероиды. Столкновения с Землей и прочими космическими телами

Время от времени астероиды могут сталкиваться с космическими телами: планетами, Солнцем, другими астероидами. Сталкиваются они и с Землёй.

К настоящему времени на поверхности Земли известно более 170 крупных кратеров - астроблем («звёздных ран»), которые являются местам падения небесных тел. Самый крупный кратер, для которого с большой вероятностью установлено внеземное происхождение - Вредефорт в ЮАР, с диаметром до 300 км. Образовался кратер в результате падения астероида с диаметром около 10 км более 2 млрд. лет назад.

Вторым по размерам является ударный кратер Садбери в канадской провинции Онтарио, образовавшийся при падении кометы 1850 млн. лет назад. Его диаметр - 250 км.

На Земле известно ещё 3 ударных метеоритных кратера с диаметром более 100 км: Чиксулуб в Мексике, Маникуаган в Канаде и Попигай (Попигайская котловина) в России. С кратером Чиксулуб связывают падение астероида, послужившего 65 млн. лет назад причиной мел-палеогенового вымирания.

В настоящее время учёные считают, что небесные тела, по размерам равные чиксулубскому астероиду, падают на Землю примерно раз в 100 млн.лет. Тела меньшего размера падают на Землю гораздо чаще. Так, 50 тыс. лет назад, т.е. уже во времена, когда на Земле жили люди современного типа, в штате Аризона (США) упал небольшой астероид диаметром около 50 метров. При ударе образовался кратер Бэрринджер диаметром 1,2 км в поперечнике и 175 м в глубину. В 1908 году в районе р.Подкаменная Тунгуска на высоте 7 км. взорвался болид диаметром несколько десятков метров. На счёт природы болида до сих пор нет единого мнения: часть учёных полагают, что над тайгой взорвался небольшой астероид, другая часть полагает, что причиной взрыва послужило ядро кометы.

10 августа 1972 года над территорией Канады очевидцами наблюдался огромный огненный шар. По всей видимости речь идёт об астероиде с диаметром в 25 м.

23 марта 1989 года на расстоянии 700 тыс.км от Земли пролетел астероид 1989 FC диаметром около 800 метров. Самое интересное, что обнаружили астероид лишь после его удаления от Земли.

1 октября 1990 года над Тихим океаном взорвался болид диаметром 20 метров. Взрыв сопровождался очень яркой вспышкой, которая была зафиксирована двумя геостационарными ИСЗ.

В ночь с 8 на 9 декабря 1992 года мимо Земли многие астрономы наблюдали прохождение астероида 4179 Тоутатис диаметром около 3 км. Мимо Земли астероид проходит каждые 4 года, поэтому у вас тоже есть возможность исследовать его.

В 1996 году полукилометровый астероид прошел на расстоянии 200 тыс.км от нашей планеты.

Как можно видеть по этому далеко не полному списку, астероиды на Земле гости довольно частые. По некоторым оценкам астероиды с диаметром более 10 метров вторгаются в атмосферу Земли ежегодно.

Астероиды представляют собой небесные тела, которые были образованы за счет взаимного притяжения плотного газа и пыли, вращающихся по орбите вокруг нашего Солнца на раннем этапе его формирования. Некоторые из таких объектов, вроде астероида , достигли достаточной массы, чтобы сформировать расплавленное ядро. В момент достижения Юпитера своей массы, большая часть планетозималей (будущих протопланет) была расколота и выброшена с изначального пояса астероидов между Марсом и . В эту эпоху сформировалась часть астероидов за счет столкновения массивных тел в пределах воздействия гравитационного поля Юпитера.

Классификация по орбитам

Астероиды классифицируются по таким признакам как видимый отражения солнечного света и характеристики орбит.

Согласно характеристикам орбит астероиды объединяют в группы, среди которых могут выделять семейства. Группой астероидов считается некоторое число таких тел, характеристики орбит которых схожи, то бишь: полуось, эксцентриситет и орбитальный наклон. Семейством астероидов следует считать группу астероидов, которые не просто движутся по близким орбитам, но вероятно являются фрагментами одного большого тела, и образованы в результате его раскола.

Наиболее крупные из известных семей могут насчитывать несколько сотен астероидов, наиболее компактные же – в пределах десяти. Примерно 34% тел астероидов являются членами семей астероидов.

В результате образования большинства групп астероидов Солнечной системы, их родительское тело было уничтожено, однако встречаются и такие группы, родительское тело которых уцелело (например ).

Классификация по спектру

Спектральная классификация основывается на спектре электромагнитного излучения, который является результатом отражения астероидом солнечного света. Регистрация и обработка данного спектра дает возможность изучить состав небесного тела и определить астероид в один из следующих классов:

  • Группа углеродных астероидов или C-группа. Представители данной группы состоят по большей части из углерода, а также из элементов, которые входили в состав протопланетного диска нашей Солнечной системы на первых этапах ее формирования. Водород и гелий, а также другие летучие элементы практически отсутствуют в углеродных астероидах, однако возможно наличие различных полезных ископаемых. Другой отличительной чертой подобных тел является низкое альбедо – отражающая способность, что требует использования более мощных инструментов наблюдения, нежели при исследовании астероидов других групп. Более 75% астероидов Солнечной системы являются представителями C-группы. Наиболее известными телами данной группы есть Гигея, Паллада, и некогда — Церера.
  • Группа кремниевых астероидов или S-группа. Астероиды такого типа состоят в основном из железа, магния и некоторых других каменистых минералов. По этой причине кремниевые астероиды также называются каменными. Такие тела имеет достаточно высокий показатель альбедо, что позволяет наблюдать за некоторыми из них (например Ирида) просто при помощи бинокля. Число кремниевых астероидов в Солнечной системе составляет 17% от общего количества, и они наиболее распространены на расстоянии до 3-х астрономических единиц от Солнца. Крупнейшие представители S-группы: Юнона, Амфитрита и Геркулина.