Болезни Военный билет Призыв

Собственные движения и пространственные скорости звезд. Пространственные скорости звезд. Из наблюдений было обнаружено, что координаты звезд медленно изменяются вследствие их собственного движения. Собственное

Еще лет двадцать назад слово «звезды» часто употреб­ляли вместе с прилагательным «неподвижные», сохра­нившимся от старого противопоставления движущихся планет «неподвижным» звездам. Но звезды движутся, как и все в природе. Термин «неподвижные», по-видимо­му, больше никогда не найдет себе применения в астро­номии. Правда, вследствие большой удаленности звезд их видимые смещения на небесной сфере происходят медленно и для их обнаружения требуется значительное искусство и терпение. Астрономы сравнивают положение звезд на двух фотографических пластинках, из которых вторая снята много лет спустя после первой. Обычно промежуток времени превосходит 20 лет и часто лицо, снявшее вторую пластинку, продолжает дело, начатое снявшим первую пластинку. Поделив обнаруженное сме­щение звезды, выраженное в секундах дуги, на число прошедших лет, находят так называемое собственное движение звезды - смещение звезды на небесной сфере в секундах дуги в год, вызванное ее движением поперек луча зрения. В табл. 5 приводится список десяти звезд с самым большим собственным движением. Естественно, что все эти звезды - близкие к Солнцу, иначе у них не могло бы быть больших собственных движений.

Точность определения собственного движения звезды зависит главным образом от величины промежутка вре­мени, прошедшего между двумя снимками. Чем он больше, тем выше точность. Сейчас лучшие определения до­стигли точности 0,001 в год.

Скорости звезд поперек луча зрения составляют обычно 20-30 км/с Если поперечная скорость равна 30 км/с, то можно подсчитать, что смещение 0″,001 в год она даст, если расстояние до звезды равно 6000 пс. Значит, это предельное расстояние, до которого можно еще как-то обнаружить движение звезды поперек луча зре­ния. А чтобы определение было надежным, оно должно раз в пять превышать ошибку, которая в нем допущена; Значит, собственные движения могут быть надежны только у звезд, расстояния которых не превышают 1200 пс, Для более далеких звезд сейчас нет средств для определения их скорости поперек луча зрения. Но лучевую скорость, т. е. ту часть скорости, которая направлена к нам или от нас, измерить можно.

Лучевые скорости звезд удалось обнаружить при ис­следовании их спектров. Если источник, распространяющий какое-нибудь волновое движение - свет, радиовол­ны, звук и т. д. - приближается к нам, то число волн, достигающих нас в единицу времени, возрастает Мы отметим увеличение частоты волнового движения и, сле­довательно, уменьшение его длины волны. Удаление же

Таблица 5. Десять звезд с самым большим собственным движением

Название звезды Собственное дви­жение Расстояние в парсеках
Звезда Барнарда 1011,27 1,8
Звезда Каптёйна. 8,79 4,0
Л&кайль 9352 ЪЬ ~ 37°15492 6,87 3,7
6,09 4,8
61 Лебедя 5.22 3,4
Вольф 389 4,84 2,5
Лаланд 21185 4,78 2,5
е Индейца 4,67 3,4
о Индейца 4,08 4,9
а Центавра 3,85 1,3

источника волнового движения вызовет уменьшение ча­стоты колебаний и увеличение их: длины волны. Величина этих изменений пропорциональна лучевой скорости и оп­ределяется законом Доплера т. е. приращение длины волны ДА, так относится к самой длине волны, как лучевая скорость V источника излуче­ния О относится к скорости света с.

Для определения лучевой скорости звезды астрономы снимают на одну и ту же пластинку спектр звезды и спектр элементов (находящихся в лаборатории), линии которых видны в спектре звезды. Сравнивая положение линий в полученных спектрах, можно найти изменение длины волны вызванное лучевой скоростью звезды, и тог­да при помощи равенства найти эту лучевую ско­рость. Если звезда движется от нас и расстояние ее уве­личивается, лучевую скорость условились считать положительной. Соответственно лучевые скорости звезд, движущихся к нам, считаются отрицательными.

Точность определения лучевых скоростей зависит от качества спектров, от того, насколько резки и тонки, удобны для измерения положения имеющиеся в нем ли­нии. Для спектров с удобными для измерений линиями точность может достигать 0,1 км/с. Разумеется, если спектр слабый и линии в нем не резкие, точность сильно падает. Но расстояние объекта не влияет на точность определения лучевой скорости, так как сама лучевая скорость не уменьшается с увеличением расстояния. По­этому, как бы ни был далек объект, если удалось полу­чить достаточно хороший его спектр, лучевая скорость может быть надежно определена.

По небесной сфере в течение года вследствие своего движения в пространстве.

Эффект Доплера заключается в следующем. Пусть длина волны света, принимаемого от неподвижного источника, равна λ 0 .Тогда от движущегося относитель-но наблюдателя тождественного источника придёт свет с длиной волны λ = λ 0 (l + v /c ), где v — скорость по лучу зрения; c — скорость света. Лучевая скорость положи-тельна, если источник удаляется от нас; в этом случае все спектральные линии смещаются в сторону больших длин волн, т. е. к красному концу спектра.

Сфотографировав спектр звезды (или любого друго-го объекта), измерив длины волн и сравнив их с дли-нами волн в стандартном спектре неподвижного источ-ника, можно определить его лучевую скорость.

Если каким-то образом удаётся определить угол меж-ду направлениями на звезду и полной скорости v (а это ино-гда удаётся, причём сразу для группы звёзд), то приведённая формула даёт возможность определить расстояния до этих звёзд.

А.А.КИСЕЛЕВ

Санкт-Петербургский государственный университет

Введение

Обоснование инерциальной системы координат в астрономии

Открытие движений "неподвижных" звезд принадлежит знаменитому английскому астроному Эдмунду Галлею, обнаружившему в 1718 году, что некоторые яркие звезды из каталога Гиппарха-Птоломея заметно изменили свои положения среди других звезд. Это были Сириус, сместившийся к югу почти на полтора диаметра Луны, Арктур - на два диаметра к югу и Альдебаран, сместившийся на 1/4 диаметра Луны к востоку. Замеченные изменения нельзя было приписать ошибкам каталога Птоломея, не превосходившим, как правило, 6" (1/5 диаметра Луны). Открытие Галлея вскоре (1728 год) было подтверждено другим английским астрономом, Джеймсом Брадлеем, который известен более как первооткрыватель годичной звезд. В дальнейшем определениями движений звезд занимались Тобиас Майер (1723-1762), Никола Лакайль (1713-1762) и многие другие астрономы вплоть до Фридриха Бесселя (1784-1846), положившие начало современной фундаментальной системе положений звезд.

Любопытно, что потребовалось почти 2000 лет, чтобы разрушить сложившееся представление о неподвижных звездах, чтобы начать искать и найти движения звезд. Эта революция в астрономии конечно же произошла благодаря торжеству Ньютоновой механики, установившей законы движения небесных тел, включая звезды, о которых уже и в XVIII веке астрономы знали, что это тела, похожие на Солнце. Но главный интерес для астрономов того времени представляли Луна (для навигации), планеты и Земля как планета. Ньютонова механика создала условия для математически строгого изучения движений этих тел, оставалось только найти систему координат, которую можно было бы признать покоящейся или находящейся в состоянии равномерного прямолинейного движения, то есть инерциальную систему координат, удовлетворяющую первому закону Ньютона, такую систему координат, к которой легко и просто можно было бы отнести все наблюдаемые движения Луны, планет, и Земли в том числе. Такую систему координат, казалось бы, воплощали "неподвижные" звезды. И вот астрономы начали определять сферические координаты звезд, относя их к экваториальной системе, где в качестве основной плоскости принимается плоскость, параллельная земному экватору, а началом отсчета долгот (прямых восхождений) служит точка весеннего равноденствия. Развитие инструментальной техники и мастерства наблюдателей (Дж. Брадлей, Т. Майер) способствовало резкому улучшению точности определения координат звезд в экваториальной системе. На основе таких наблюдений были составлены первые каталоги положений некоторого числа избранных звезд. Точность положений звезд в этих каталогах уже в XVIII веке приближалась к 1", а в XIX веке еще заметно повысилась. Различие координат звезд в каталогах, составленных и отнесенных к различным эпохам, обнаружило, что принятая система экваториальных координат неинерциальна. Ньютонова механика позволила строго обосновать причины и характер изменений координат звезд, отнесенных к системе экваториальных координат - к системе отсчета, заданной свободным вращением Земли, обращающейся около Солнца и испытывающей возмущения со стороны Луны и планет. Эти изменения координат: 1) явление прецессии, которое было известно еще древним как "предварение равноденствий"; 2) явление нутации, которое было открыто Брадлеем. Оба эти явления вместе с аберрацией были прослежены и подробно изучены несколькими поколениями астрономов в XVIII и XIX веках, начиная Брадлеем и кончая Бесселем. В итоге были надежно определены численные значения постоянных , и аберрации, то есть тех величин, которые и в настоящее время составляют часть в перечне так называемых фундаментальных постоянных астрономии. Таким образом, были созданы все условия для перехода от видимых (мгновенных) координат звезд к координатам, отнесенным к некоторой постоянной (остановленной) системе осей, которую с хорошим приближением можно считать инерциальной. На языке астрономов - небесных механиков - этот переход называется преобразованием от видимых положений звезд к их средним положениям в системе экватора и равноденствия заданной эпохи. Это преобразование было подробно обосновано и изложено в фундаментальной работе Бесселя "Fundamenta astronomiae" в 1818 году, которая до сих пор сохраняет свое значение. Обоснование инерциальной системы координат в астрономии создало необходимые условия для определения и исследований реальных движений небесных тел, в том числе и звезд, в окружающем Землю звездном мире.

Собственные движения звезд

Меридианные собственные движения

Идея этого проекта была одновременно высказана в 30-х годах американским астрономом Райтом и Б.В. Нумеровым в СССР. Согласно этой идее, предлагалось определять фотографические собственные движения звезд непосредственно относительно внегалактических туманностей (галактик). Американцы предполагали использовать изображения галактик в качестве опорных звезд, советские астрономы - лишь в качестве контрольных звезд в процессе абсолютизации. Ввиду крайней удаленности галактик (большинство наблюдаемых галактик удалены от нашей Галактики более чем на 10 6 пк) можно пренебречь их собственными движениями, значительно меньшими, чем 0,001"/год. Поэтому фотографические собственные движения звезд, определенные относительно галактик, можно считать абсолютными и из сравнения с меридианными собственными движениями тех же звезд проверить, удовлетворяют ли меридианные собственные движения звезд условию инерциальности, то есть правильно ли они выведены.

Как показывают наблюдения и расчеты, звезды движутся в пространстве с большими скоростями вплоть до сотен километров в секунду. Скорость, с которой звезда движется в пространстве, называется пространственной скоростью этой звезды.

Пространственная скорость V звезды разлагается на две составляющие: лучевую скорость звезды относительно Солнца V r (она направлена по лучу зрения) и тангенциальную скорость V t (направлена перпендикулярно лучу зрения). По­скольку V r и V t взаимно перпендикулярны, пространственная скорость звезды равна

Лучевая скорость звезды определяется по доплеровскому смещению линий в спектре звезды. Но непосредственно из наблюдений можно найти лучевую скорость относительно Земли v r :

где l и l ¤ - эклиптические долготы соответственно звезды и Солнца, b - эклиптическая широта звезды (см. § 1.9). Соотношение (6.3) указывает на то, что для нахождения V r необходимо из скорости v r исключить проекцию скорости обращения Земли вокруг Солнца v Å = 29,8 км/с на направление к звезде.

Наличие тангенциальной скорости звезды V t приводит к угловому смещению звезды по небу. Смещение звезды на небесной сфере за год называется собственным движением звезды m . Оно выражается в секундах дуги в год.

Собственные движения у разных звезд различны по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1" в год. Самое большое известное собственное движение m = 10”,27 (у “летящей” звезды Барнарда). Громадное же большинство измеренных собственных движений у звезд составляют сотые и тысячные доли секунды дуги в год. Из-за малости собственных движений изменение видимых положений звезд не заметно для невооруженного глаза.

Выделяют две составляющие собственного движения звезды: собственное движение по прямому восхождению m a и собственное движение по склонению m d . Собственное же движение звезды m вычисляется по формуле

Зная обе составляющие V r и V t , можно определить величину и направление пространственной скорости звезды V .

Анализ измеренных пространственных скоростей звезд позволяет сделать следующие выводы.



1) Наше Солнце движется относительно ближайших к нам звезд со скоростью около 20 км/с по направлению к точке, расположенной в созвездии Геркулеса. Эта точка называется апексом Солнца.

2) Кроме этого, Солнце вместе с окружающими звездами движется со скоростью около 220 км/с по направлению к точке в созвездии Лебедя. Это движение есть следствие вращения Галактики вокруг собственной оси . Если подсчитать время полного оборота Солнца вокруг центра Галактики, то получается примерно 250 млн лет. Этот промежуток времени называется галактическим годом .

Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса, находящегося в созвездии Волосы Вероники. Угловая скорость вращения зависит от расстояния до центра и убывает по мере удаления от него.