Болезни Военный билет Призыв

Собственное движение звезды. Пространственные скорости звезд и движение солнечной системы

Как показывают наблюдения и расчеты, звезды движутся в пространстве с большими скоростями вплоть до сотен километров в секунду. Скорость, с которой звезда движется в пространстве, называется пространственной скоростью этой звезды.

Пространственная скорость V звезды разлагается на две составляющие: лучевую скорость звезды относительно Солнца V r (она направлена по лучу зрения) и тангенциальную скорость V t (направлена перпендикулярно лучу зрения). По­скольку V r и V t взаимно перпендикулярны, пространственная скорость звезды равна

Лучевая скорость звезды определяется по доплеровскому смещению линий в спектре звезды. Но непосредственно из наблюдений можно найти лучевую скорость относительно Земли v r :

где l и l ¤ - эклиптические долготы соответственно звезды и Солнца, b - эклиптическая широта звезды (см. § 1.9). Соотношение (6.3) указывает на то, что для нахождения V r необходимо из скорости v r исключить проекцию скорости обращения Земли вокруг Солнца v Å = 29,8 км/с на направление к звезде.

Наличие тангенциальной скорости звезды V t приводит к угловому смещению звезды по небу. Смещение звезды на небесной сфере за год называется собственным движением звезды m . Оно выражается в секундах дуги в год.

Собственные движения у разных звезд различны по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1" в год. Самое большое известное собственное движение m = 10”,27 (у “летящей” звезды Барнарда). Громадное же большинство измеренных собственных движений у звезд составляют сотые и тысячные доли секунды дуги в год. Из-за малости собственных движений изменение видимых положений звезд не заметно для невооруженного глаза.

Выделяют две составляющие собственного движения звезды: собственное движение по прямому восхождению m a и собственное движение по склонению m d . Собственное же движение звезды m вычисляется по формуле

Зная обе составляющие V r и V t , можно определить величину и направление пространственной скорости звезды V .

Анализ измеренных пространственных скоростей звезд позволяет сделать следующие выводы.



1) Наше Солнце движется относительно ближайших к нам звезд со скоростью около 20 км/с по направлению к точке, расположенной в созвездии Геркулеса. Эта точка называется апексом Солнца.

2) Кроме этого, Солнце вместе с окружающими звездами движется со скоростью около 220 км/с по направлению к точке в созвездии Лебедя. Это движение есть следствие вращения Галактики вокруг собственной оси . Если подсчитать время полного оборота Солнца вокруг центра Галактики, то получается примерно 250 млн лет. Этот промежуток времени называется галактическим годом .

Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса, находящегося в созвездии Волосы Вероники. Угловая скорость вращения зависит от расстояния до центра и убывает по мере удаления от него.

Вопросы программы:

Собственное движение и лучевые скорости звезд;

Пекулярные скорости звезд и Солнца в Галактике;

Вращение Галактики.

Краткое содержание:

Собственное движение и лучевые скорости звезд, пекулярные скорости звезд и Солнца в Галактике

Сравнение экваториальных координат одних и тех же звезд, определенных через значительные промежутки времени, показало, что именяются с течением времени. Значительная часть этих изменений вызывается прецессией, нутацией, аберрацией и годичным параллаксом. Если исключить влияние этих причин, то изменения уменьшаются, но не исчезают полностью. Оставшееся смещение звезды на небесной сфере за год называется собственным движением звезды. Оно выражается в секундах дуги в год.

Для определения этих движений сравниваются фотопластинки, отснятые через большие промежутки времени, составляющие 20 и более лет. Поделив полученное смещение на число прошедших лет, исследователи получают движение звезды в год. Точность определения зависит от величины промежутка времени, прошедшего между двумя снимками.

Собственные движения различны у разных звезд по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1″ в год. Самое большое известное собственное движение у “летящей” звезды Барнарда = 10″,27. Основное число звезд имеет собственное движение, равное сотым и тысячным долям секунды дуги в год. Лучшие современные определения достигают 0",001 в год. За большие промежутки времени, равные десяткам тысяч лет, рисунки созвездий сильно меняются.

Собственное движение звезды происходит по дуге большого круга с постоянной скоростью. Прямое движение изменяется на величину   , называемую собственным движением по прямому восхождению, а склонение - на величину  , называемую собственным движением по склонению.

Собственное движение звезды вычисляется по формуле:

Е
сли известно собственное движение звезды за год и расстояние до нее r в парсеках, то нетрудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью V t и вычисляется по формуле:

где r - расстояние до звезды, выраженное в парсеках.

Чтобы найти пространственную скорость V звезды, необходимо знать ее лучевую скорость V r , которая определяется по доплеровскому смещению линий в спектре и V t , которая определяется по годичному параллаксу и. Поскольку V t и V r взаимно перпендикулярны, пространственная скорость звезды равна:

V = V t  + V r ).

Для определения V обязательно указывается угол , отыскиваемый по его функциям:

sin  = V t /V,

cos  = V t /V.

Угол лежит в пределах от 0 до 180.

Система

Центавра

Солнечная

система

Истинное движение в пространстве V

Направление собственного движения вводится позиционным углом, отсчитываемым против часовой стрелки от северного направления круга склонения звезды. В зависимости от изменения экваториальных координат звезды, позиционный уголможет иметь значения от 0 до 360и вычисляется по формулам:

sin =  /,

cos =  /

с учетом знаков обеих функций. Пространственная скорость звезды на протяжении многих столетий остается практически неизменной по величине и направлению. Поэтому, зная V и r звезды в настоящую эпоху, можно вычислить эпоху наибольшего сближения звезды с Солнцем и определить для нее расстояние r min , параллакс, собственное движение, компоненты пространственной скорости и видимую звездную величину. Расстояние до звезды в парсеках равно r = 1/, 1 парсек = 3,26 св. года.

З

Движение системы Центавра

нание собственных движений и лучевых скоростей звёзд позволяет судить о движениях звёзд относительно Солнца, которое тоже движется в пространстве. Поэтому наблюдаемые движения звёзд складываются из двух частей, из которых одна является следствием движения Солнца, а другая - индивидуальным движением звезды.

Чтобы судить о движениях звёзд, следует найти скорость движения Солнца и исключить её из наблюдаемых скоростей движения звёзд.

Точка на небесной сфере, к которой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная точка - антиапексом.

Апекс Солнечной системы находится в созвездии Геркулеса, имеет координаты: = 270  ,= +30  . В этом направлении Солнце движется со скоростью около 20 км/с, относительно звезд, находящихся от него не далее 100 пс. В течение года Солнце проходит 630 000 000 км, или 4,2 а.е.

Вращение Галактики

Если какая-то группа звёзд движется с одинаковой скоростью, то находясь на одной из этих вёзд, нельзя обнаружить общее движение. Иначе обстоит дело, если скорость меняется так, как будто группа звёзд движется вокруг общего центра. Тогда скорость более близких к центру звёзд будет меньшей, чем удалённых от центра. Наблюдаемые лучевые скорости далёких звёзд демонстрируют такое движение. Все звёзды вместе с Солнцем движутся перпендикулярно к направлению на центр Галактики. Это движение является следствием общего вращения Галактики, скорость которого меняется с расстоянием от её центра (дифференциальное вращение).

Вращение Галактики имеет следующие особенности:

1. Оно происходит по часовой стрелке, если смотреть на Галактику со стороны северного её полюса, находящегося в созвездии Волос Вероники.

2. Угловая скорость вращения убывает по мере удаления от центра.

3. Линейная скорость вращения сначала возрастает по мере удаления от центра. Затем примерно на расстоянии Солнца достигает наибольшего значения около 250 км/с, после чего медленно убывает.

4. Солнце и звёзды в его окрестности совершают полный оборот вокруг центра Галактики примерно за 230 млн. лет. Этот промежуток времени называется галактическим годом.

Контрольные вопросы:

    Что такое собственное движение звезд?

    Как обнаруживается собственное движение звезд?

    У какой звезды обнаружено самое большое собственное движение?

    По какой формуле вычисляется собственное движение звезды?

    На какие составляющие разлагается пространственная скорость звезды?

    Как называется точка на небесной сфере, в направлении которой движется Солнца?

    В каком созвездии находится апекс?

    С какой скоростью движется Солнце относительно ближайших звезд?

    Какое расстояние проходит Солнце за год?

    Каковы особенности вращения Галактики?

    Каков период вращения Галактики?

Задачи:

1. Лучевая скорость звезды Бетельгейзе = 21 км/с, собственное движение= 0,032в год, а параллакср = 0,012. Определите полную пространственную скорость звезды относительно Солнца и угол, образованный направлением движения звезды в пространстве с лучом зрения.

Ответ := 31.

2. Звезда 83 Геркулеса находится от нас на расстоянии D = 100 пк, ее собственное движение составляет= 0,12. Какова тангенциальная скорость этой звезды?

Ответ :57 км/с.

3. Собственное движение звезды Каптейна, находящейся на расстоянии 4 пк, составляет 8,8в год, а лучевая скорость 242 км/с. Определите пространственную скорость звезды.

Ответ : 294 км/с.

4.На какое минимальное расстояние звезда 61 Лебедя приблизится к нам, если параллакс этой звезды равен 0,3и собственное движение 5,2. Звезда движется к нам с лучевой скоростью 64 км/с.

Ответ :2,6 пк.

Литература:

1. Астрономический календарь. Постоянная часть. М., 1981.

2. Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.

3. Ефремов Ю.Н. В глубины Вселенной. М., 1984.

4. Цесевич В.П. Что и как наблюдать на небе. М., 1979.

А.А.КИСЕЛЕВ

Санкт-Петербургский государственный университет

Введение

Обоснование инерциальной системы координат в астрономии

Открытие движений "неподвижных" звезд принадлежит знаменитому английскому астроному Эдмунду Галлею, обнаружившему в 1718 году, что некоторые яркие звезды из каталога Гиппарха-Птоломея заметно изменили свои положения среди других звезд. Это были Сириус, сместившийся к югу почти на полтора диаметра Луны, Арктур - на два диаметра к югу и Альдебаран, сместившийся на 1/4 диаметра Луны к востоку. Замеченные изменения нельзя было приписать ошибкам каталога Птоломея, не превосходившим, как правило, 6" (1/5 диаметра Луны). Открытие Галлея вскоре (1728 год) было подтверждено другим английским астрономом, Джеймсом Брадлеем, который известен более как первооткрыватель годичной звезд. В дальнейшем определениями движений звезд занимались Тобиас Майер (1723-1762), Никола Лакайль (1713-1762) и многие другие астрономы вплоть до Фридриха Бесселя (1784-1846), положившие начало современной фундаментальной системе положений звезд.

Любопытно, что потребовалось почти 2000 лет, чтобы разрушить сложившееся представление о неподвижных звездах, чтобы начать искать и найти движения звезд. Эта революция в астрономии конечно же произошла благодаря торжеству Ньютоновой механики, установившей законы движения небесных тел, включая звезды, о которых уже и в XVIII веке астрономы знали, что это тела, похожие на Солнце. Но главный интерес для астрономов того времени представляли Луна (для навигации), планеты и Земля как планета. Ньютонова механика создала условия для математически строгого изучения движений этих тел, оставалось только найти систему координат, которую можно было бы признать покоящейся или находящейся в состоянии равномерного прямолинейного движения, то есть инерциальную систему координат, удовлетворяющую первому закону Ньютона, такую систему координат, к которой легко и просто можно было бы отнести все наблюдаемые движения Луны, планет, и Земли в том числе. Такую систему координат, казалось бы, воплощали "неподвижные" звезды. И вот астрономы начали определять сферические координаты звезд, относя их к экваториальной системе, где в качестве основной плоскости принимается плоскость, параллельная земному экватору, а началом отсчета долгот (прямых восхождений) служит точка весеннего равноденствия. Развитие инструментальной техники и мастерства наблюдателей (Дж. Брадлей, Т. Майер) способствовало резкому улучшению точности определения координат звезд в экваториальной системе. На основе таких наблюдений были составлены первые каталоги положений некоторого числа избранных звезд. Точность положений звезд в этих каталогах уже в XVIII веке приближалась к 1", а в XIX веке еще заметно повысилась. Различие координат звезд в каталогах, составленных и отнесенных к различным эпохам, обнаружило, что принятая система экваториальных координат неинерциальна. Ньютонова механика позволила строго обосновать причины и характер изменений координат звезд, отнесенных к системе экваториальных координат - к системе отсчета, заданной свободным вращением Земли, обращающейся около Солнца и испытывающей возмущения со стороны Луны и планет. Эти изменения координат: 1) явление прецессии, которое было известно еще древним как "предварение равноденствий"; 2) явление нутации, которое было открыто Брадлеем. Оба эти явления вместе с аберрацией были прослежены и подробно изучены несколькими поколениями астрономов в XVIII и XIX веках, начиная Брадлеем и кончая Бесселем. В итоге были надежно определены численные значения постоянных , и аберрации, то есть тех величин, которые и в настоящее время составляют часть в перечне так называемых фундаментальных постоянных астрономии. Таким образом, были созданы все условия для перехода от видимых (мгновенных) координат звезд к координатам, отнесенным к некоторой постоянной (остановленной) системе осей, которую с хорошим приближением можно считать инерциальной. На языке астрономов - небесных механиков - этот переход называется преобразованием от видимых положений звезд к их средним положениям в системе экватора и равноденствия заданной эпохи. Это преобразование было подробно обосновано и изложено в фундаментальной работе Бесселя "Fundamenta astronomiae" в 1818 году, которая до сих пор сохраняет свое значение. Обоснование инерциальной системы координат в астрономии создало необходимые условия для определения и исследований реальных движений небесных тел, в том числе и звезд, в окружающем Землю звездном мире.

Собственные движения звезд

Меридианные собственные движения

Идея этого проекта была одновременно высказана в 30-х годах американским астрономом Райтом и Б.В. Нумеровым в СССР. Согласно этой идее, предлагалось определять фотографические собственные движения звезд непосредственно относительно внегалактических туманностей (галактик). Американцы предполагали использовать изображения галактик в качестве опорных звезд, советские астрономы - лишь в качестве контрольных звезд в процессе абсолютизации. Ввиду крайней удаленности галактик (большинство наблюдаемых галактик удалены от нашей Галактики более чем на 10 6 пк) можно пренебречь их собственными движениями, значительно меньшими, чем 0,001"/год. Поэтому фотографические собственные движения звезд, определенные относительно галактик, можно считать абсолютными и из сравнения с меридианными собственными движениями тех же звезд проверить, удовлетворяют ли меридианные собственные движения звезд условию инерциальности, то есть правильно ли они выведены.

Вопросы программы:

Собственное движение и лучевые скорости звезд;

Пекулярные скорости звезд и Солнца в Галактике;

Вращение Галактики.

Краткое содержание:

Собственное движение и лучевые скорости звезд, пекулярные скорости звезд и Солнца в Галактике

Сравнение экваториальных координат одних и тех же звезд, определенных через значительные промежутки времени, показало, что a и d меняются с течением времени. Значительная часть этих изменений вызывается прецессией, нутацией, аберрацией и годичным параллаксом. Если исключить влияние этих причин, то изменения уменьшаются, но не исчезают полностью. Оставшееся смещение звезды на небесной сфере за год называется собственным движением звезды m. Оно выражается в секундах дуги в год.

Для определения этих движений сравниваются фотопластинки, отснятые через большие промежутки времени, составляющие 20 и более лет. Поделив полученное смещение на число прошедших лет, исследователи получают движение звезды в год. Точность определения зависит от величины промежутка времени, прошедшего между двумя снимками.

Собственные движения различны у разных звезд по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1″ в год. Самое большое известное собственное движение у “летящей” звезды Барнарда m = 10″,27. Основное число звезд имеет собственное движение, равное сотым и тысячным долям секунды дуги в год. Лучшие современные определения достигают 0",001 в год. За большие промежутки времени, равные десяткам тысяч лет, рисунки созвездий сильно меняются.

Собственное движение звезды происходит по дуге большого круга с постоянной скоростью. Прямое движение изменяется на величину m a , называемую собственным движением по прямому восхождению, а склонение - на величину m d , называемую собственным движением по склонению.

Собственное движение звезды вычисляется по формуле:

Если известно собственное движение звезды за год и расстояние до нее r в парсеках, то нетрудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью V t и вычисляется по формуле:

где r - расстояние до звезды, выраженное в парсеках.

Чтобы найти пространственную скорость V звезды, необходимо знать ее лучевую скорость V r , которая определяется по доплеровскому смещению линий в спектре и V t , которая определяется по годичному параллаксу и m. Поскольку V t и V r взаимно перпендикулярны, пространственная скорость звезды равна:

V = Ö(V t 2 + V r 2).

Для определения V обязательно указывается угол q, отыскиваемый по его функциям:

Угол q лежит в пределах от 0 до 180°.

V r
V t

Направление собственного движения вводится позиционным углом y, отсчитываемым против часовой стрелки от северного направления круга склонения звезды. В зависимости от изменения экваториальных координат звезды, позиционный угол y может иметь значения от 0 до 360° и вычисляется по формулам:

с учетом знаков обеих функций. Пространственная скорость звезды на протяжении многих столетий остается практически неизменной по величине и направлению. Поэтому, зная V и r звезды в настоящую эпоху, можно вычислить эпоху наибольшего сближения звезды с Солнцем и определить для нее расстояние r min , параллакс, собственное движение, компоненты пространственной скорости и видимую звездную величину. Расстояние до звезды в парсеках равно r = 1/p, 1 парсек = 3,26 св. года.

Знание собственных движений и лучевых скоростей звёзд позволяет судить о движениях звёзд относительно Солнца, которое тоже движется в пространстве. Поэтому наблюдаемые движения звёзд складываются из двух частей, из которых одна является следствием движения Солнца, а другая - индивидуальным движением звезды.

Чтобы судить о движениях звёзд, следует найти скорость движения Солнца и исключить её из наблюдаемых скоростей движения звёзд.

Точка на небесной сфере, к которой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная точка - антиапексом.

Апекс Солнечной системы находится в созвездии Геркулеса, имеет координаты: a = 270 0 , d = +30 0 . В этом направлении Солнце движется со скоростью около 20 км/с, относительно звезд, находящихся от него не далее 100 пс. В течение года Солнце проходит 630 000 000 км, или 4,2 а.е.

Вращение Галактики

Если какая-то группа звёзд движется с одинаковой скоростью, то находясь на одной из этих вёзд, нельзя обнаружить общее движение. Иначе обстоит дело, если скорость меняется так, как будто группа звёзд движется вокруг общего центра. Тогда скорость более близких к центру звёзд будет меньшей, чем удалённых от центра. Наблюдаемые лучевые скорости далёких звёзд демонстрируют такое движение. Все звёзды вместе с Солнцем движутся перпендикулярно к направлению на центр Галактики. Это движение является следствием общего вращения Галактики, скорость которого меняется с расстоянием от её центра (дифференциальное вращение).

Вращение Галактики имеет следующие особенности:

1. Оно происходит по часовой стрелке, если смотреть на Галактику со стороны северного её полюса, находящегося в созвездии Волос Вероники.

2. Угловая скорость вращения убывает по мере удаления от центра.

3. Линейная скорость вращения сначала возрастает по мере удаления от центра. Затем примерно на расстоянии Солнца достигает наибольшего значения около 250 км/с, после чего медленно убывает.

4. Солнце и звёзды в его окрестности совершают полный оборот вокруг центра Галактики примерно за 230 млн. лет. Этот промежуток времени называется галактическим годом.

Контрольные вопросы:

  1. Что такое собственное движение звезд?
  2. Как обнаруживается собственное движение звезд?
  3. У какой звезды обнаружено самое большое собственное движение?
  4. По какой формуле вычисляется собственное движение звезды?
  5. На какие составляющие разлагается пространственная скорость звезды?
  6. Как называется точка на небесной сфере, в направлении которой движется Солнца?
  7. В каком созвездии находится апекс?
  8. С какой скоростью движется Солнце относительно ближайших звезд?
  9. Какое расстояние проходит Солнце за год?
  10. Каковы особенности вращения Галактики?
  11. Каков период вращения Галактики?

Задачи:

1. Лучевая скорость звезды Бетельгейзе = 21 км/с, собственное движение m = 0,032² в год, а параллакс р = 0,012². Определите полную пространственную скорость звезды относительно Солнца и угол, образованный направлением движения звезды в пространстве с лучом зрения.

Ответ : q = 31°.

2. Звезда 83 Геркулеса находится от нас на расстоянии D = 100 пк, ее собственное движение составляет m = 0,12². Какова тангенциальная скорость этой звезды?

Ответ : » 57 км/с.

3. Собственное движение звезды Каптейна, находящейся на расстоянии 4 пк, составляет 8,8² в год, а лучевая скорость 242 км/с. Определите пространственную скорость звезды.

Ответ : 294 км/с.

4.На какое минимальное расстояние звезда 61 Лебедя приблизится к нам, если параллакс этой звезды равен 0,3² и собственное движение 5,2². Звезда движется к нам с лучевой скоростью 64 км/с.

Ответ : » 2,6 пк.

Литература:

1. Астрономический календарь. Постоянная часть. М., 1981.

2. Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.

3. Ефремов Ю.Н. В глубины Вселенной. М., 1984.

4. Цесевич В.П. Что и как наблюдать на небе. М., 1979.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13




Звезда в созвездии Змееносца Барнарда обладает самым быстрым собственным движением. За 100 лет она проходит 17,26", а за 188 лет смещается на величину поперечника лунного диска. Звезда находится на расстоянии 1,81 пк. Смещение звезд за 100 лет


Звезды движутся с разными скоростями и удалены от наблюдателя на различные расстояния. Вследствие этого взаимное расположение звезд меняется с течением времени. В течение одной человеческой жизни обнаружить изменения контура созвездия практически невозможно. Если проследить эти изменения в течение тысячелетий, то они становятся вполне заметными.




Пространственная скорость звезды – скорость, с которой звезда движется в пространстве относительно Солнца. Сущность эффекта Доплера: Линии в спектре источника, приближающегося к наблюдателю, смещены к фиолетовому концу спектра, а линии в спектре удаляющегося источника – к красному концу спектра (по отношению к положению линий в спектре неподвижного источника). Компоненты собственного движения звезд μ – собственное движение звезды π – годичный параллакс звезды λ – длина волны в спектре звезды λ 0 – длина волны неподвижного источника Δλ – сдвиг спектральной линии с – скорость света (3·10 5 км/с)