Болезни Военный билет Призыв

Шаг электрона в магнитном поле. Движение электронов в магнитном поле

Пример первый: пусть сначала имеется постоянное поле в направлении . Ему соответствуют два стационарных состояния с энергиями . Добавим небольшое поле в направлении . Тогда уравнения получатся такими же, как в нашей старой задаче о двух состояниях. Опять, в который раз, получается знакомый уже нам переброс, и уровни энергии немного расщепляются. Пусть, далее, -компонента поля начнет меняться во времени, скажем, как . Тогда уравнения станут такими, как для молекулы.аммиака и колеблющемся электрическом пале (см. гл. 7). И тем же способом, что и прежде, вы можете рассчитать процесс во всех деталях. При этом вы увидите, что колеблющееся поле приводит к переходам от -состояния к -состоянию и обратно, если только горизонтальное поле колеблется с частотой, близкой к резонансной, . Это приводит к квантовомеханической теории явлений магнитного резонанса, описанной нами в гл. 35 (вып. 7).

Можно еще сделать мазер, в котором используется система со спином . Прибор Штерна - Герлаха создает пучок частиц, поляризованных, скажем, в направлении , и они потом направляются в полость, находящуюся в постоянном магнитном поле. Колеблющиеся в полости поля, взаимодействуя с магнитным моментом, вызовут переходы, которые будут снабжать полость энергией.

Рассмотрим теперь второй пример. Пусть у нас имеется магнитное поле , направление которого характеризуется полярным углом и азимутальным углом (фиг. 8.10). Допустим еще, что имеется электрон, спин которого направлен по полю. Чему равны амплитуды и для этого электрона? Иными словами, обозначая состояние электрона , мы хотим написать

,

где и равны

а и обозначают то же самое, что раньше обозначалось и (по отношению к выбранной нами оси ).

Ответ на этот вопрос также содержится в наших общих уравнениях для систем с двумя состояниями. Во-первых, мы знаем, что раз спин электрона параллелен , то электрон находится в стационарном состоянии с энергией . Поэтому и , и должны изменяться как [см. уравнение (7.18)]; и их коэффициенты и даются формулой (8.5):

Вдобавок и должны быть нормированы так, чтобы было . Величины и мы можем взять из (8.22), используя равенства

Тогда мы имеем

(8.25).

Кстати, скобка во втором уравнении есть просто , так что проще писать

(8.28)

Подставляя эти матричные элементы в (8.24) и сокращая на , находим

Зная это отношение и зная условие нормировки, можно найти и , и . Сделать это нетрудно, но мы сократим нуть, прибегнув к одному трюку. Известно, что и Значит, (8.27) совпадает с

. (8.28)

Один из ответов, следовательно, таков:

. (8.29)

Он удовлетворяет и уравнению (8.28), и условию

Вы знаете, что умножение и на произвольный фазовый множитель ничего не меняет. Обычно формуле (8.29) предпочитают более симметричную запись, умножая на . Принято писать так:

. (8.30)

Это и есть ответ на наш вопрос. Числа и - это амплитуды того, что электрон будет замечен спином вверх или вниз (но отношению к оси ), если известно, что его спин направлен вдоль оси . [Амплитуды и равны просто и , умноженным на .]

Заметьте теперь занятную пещь. Напряженность магнитного поля нигде в (S.30) не появляется. Тот же результат, разумеется, получится в пределе, если поле устремить к нулю. Это означает, что мы дали общий ответ на вопрос, как представлять частицу, спин которой направлен вдоль произвольной оси. Амплитуды (8.30) - это проекционные амплитуды для частиц со спином , подобные проекционным амплитудам для частиц со спином 1, приведенным в гл. 3 [уравнения (3.38)]. Теперь мы сможем находить для фильтрованных пучков частиц со спином амплитуды проникновения через тот или иной фильтр Штерна - Герлаха.

Пусть представляет состояние со спином, направленным по оси вверх, а - состояние со спином вниз. Если представляет состояние со спином, направленным вверх по оси , образующей с осью углы и , то в обозначениях гл. 3 мы имеем

Эти результаты эквивалентны тому, что мы нашли из чисто геометрических соображений в гл. 4 [уравнение (4.36)], (Если вы в свое время решили пропустить гл. 4, то вот перед вами один из ее существенных результатов.)

Напоследок вернемся еще раз к тому примеру, о котором уже не раз говорилось. Рассмотрим такую задачу. "Сперва имеется электрон с определенным образом направленным спином, затем на 25 минут включается магнитное поле в направлении , а затем выключается. Каким окажется конечное состояние? Опять представим состояние в виде линейной комбинации . Но в нашей задаче состояния с определенной энергией являются одновременно нашими базисными состояниями и . Значит, и меняются только по фазе. Мы знаем, что

Мы сказали, что вначале у спина электрона было определенное направление. Это означает, что вначале и были двумя числами, определяемыми формулами (8.30). Переждав секунд, новые и мы получим из прежних умножением соответственно на / и . Что это будут за состояния? Узнать это легко, ведь это все равно, что измеить угол , вычтя из него , и не трогать угол .

Это значит, что к концу интервала времени состояние будет представлять электрон, выстроенный в направлении, отличающемся от первоначального только поворотом вокруг оси на угол . Раз этот угол пропорционален , то можно говорить, что направление спина прецессирует вокруг оси с угловой скоростью . Этот результат мы уже получали раньше несколько раз, но не так полно и строго. Теперь мы получили полное и точное квантовомеханическое описание прецессии атомных магнитов.. И неважно, какая физика там была первоначально - молекула ли аммиака или что другое, - вы можете перевести ее на язык соответствующей задачи об электроне. Стало быть, если мы в состоянии решить в общем случае задачу об электроне, мы уже решили все задачи о двух состояниях., и изменяйте скорость вращения так, чтобы она все время была пропорциональна напряженности (фиг. 8.11). Если все время это делать, вы остановитесь на какой-то конечной ориентации спиновой оси, и амплитуды и получатся просто как ее проекции [при помощи (8.30)] на вашу систему координат.

Фигура 8.11. Направление спина электрона и изменяющемся магнитном поле прецессирует с частотой вокруг оси, параллельной

Вы видите, что задача эта чисто геометрическая: надо заметить, где закончились все ваши вращения. Хотя сразу видно, что для этого требуется, но эту геометрическую задачу (отыскание окончательного итога вращений с переменным вектором угловой скорости) нелегко в общем случае решить явно. Во всяком случае, мы в принципе видим общее решение любой задачи для двух состояний. В следующей главе мы глубже исследуем математическую технику обращения с частицами спина и, следовательно, обращения с системами, обладающими двумя состояниями, в общем случае.

Если два плоских, параллельно расположенных электрода поместить в вакуум и подключить к источнику электродвижущей силы, то в пространстве между электродами образуется электрическое поле, силовые линии которого будут прямолинейны, параллельны друг другу и перпендикулярны к поверхностям обоих электродов.

На рис. 1 буквой а обозначен электрод, подключенный к «+» батареи Е Б, а буквой к - электрод, подключенный к «-» батареи Е Б. Если в такое электрическое поле поместить заряд -е, не меняющий конфигурации поля, то на этот заряд будет действовать сила F, равная произведению напряженности поля Е на величину заряда -е:

Знак минус свидетельствует о том, что сила F, действующая на отрицательный заряд -е, и напряженность поля Е имеют противоположные направления. Для однородного электрического поля произведение напряженности Е на расстояние между электродами h равно приложенной разности потенциалов между электронами:

Eh = U к -U а,

и U к и U а - потенциалы электродов к и а.

Работа, совершаемая полем при перемещении электрона от одного электрода к другому, соответственно будет равна

А = Fh = e(U а - U к). (3)

Электрон приобретает кинетическую энергию и будет двигаться от электрода к к электроду а равномерно ускоренно. Скорость υ, с которой электрон достигает электрода а, может быть определена из равенства

(4)

где m - масса электрона; υ а - скорость электрона у электрода а; υ к - скорость электрона у электрода к (начальная скорость).

Если пренебречь начальной скоростью электрона, то формула (4) может быть упрощена: заменив отношение заряда электрона к его массе числовым значением и выражая потенциалы в вольтах, а скорость в м/сек, получаем

(5)

Время пролета электроном расстояния h между электродами определяется формулой

где υ ср =υ а -υ к /2 - средняя скорость электрона.

Если электрон будет двигаться в направлении, совпадающем с направлением вектора напряженности электрического поля Е, то направление перемещения окажется противоположным силе, действующей на электрон, и он будет расходовать ранее приобретенную кинетическую энергию. Таким образом, двигаться навстречу действия поля электрон сможет лишь при условии, если он обладает некоторой начальной скоростью, т. е. некоторым запасом кинетической энергии.

Практически однородное электрическое поле в электровакуумных приборах встречается крайне редко. В неоднородном поле напряженность изменяется от точки к точке как по величине, так и по направлению. Поэтому и сила, действующая на электрон, тоже меняется как по величине, так и по направлению.

В электровакуумных приборах, наряду с электрическим полем, для воздействия на движение электронов используется также магнитное поле. Если электрон находится в состоянии покоя или если он движется параллельно силовой линии магнитного поля, то на него никакая сила не действует. Поэтому при определении взаимодействия движущегося электрона и магнитного поля следует учитывать только составляющую скорости, перпендикулярную силовым линиям магнитного поля.

Сила F, действующая на электрон, всегда перпендикулярна вектору напряженности магнитного поля тору скорости электрона (рис. 3 ).

Рис. 3. Движение электрона в магнитном поле.

Направление силы F можно определять по «правилу буравчика»: если ручку буравчика вращать в направлении от вектора Н к вектору скорости электрона υ по кратчайшему угловому направлению, то поступательное движение буравчика совпадает с направлением силы F. Так как действие силы F всегда перпендикулярно направлению движения электрона, то эта сила не может совершать работы и влияет лишь на направление его движения. Кинетическая энергия электрона остается прежней, он движется с постоянной скоростью. Величина силы F определяется по формуле

где е - заряд электрона; Н - напряженность магнитного поля; υ п - составляющая скорости электрона, перпендикулярная полю Н. Сила F сообщает электрону значительное центростремительное ускорение, изменяя при этом траекторию его движения. Радиус кривизны траектории электрона определяют по формуле

(8)

где Н - в эрстедах; υ п - в вольтах; r - в сантиметрах.

Изменяя напряженность магнитного поля, можно менять радиус траектории электрона. Если электрон имеет также и составляющую скорости вдоль силовых линий магнитного поля, то траектория электрона будет винтовой с постоянным шагом.

Часто электрон движется в пространстве, в котором одновременно имеются электрическое и магнитное поля. При этом, в зависимости от величины и направления начальной скорости электрона, а также от напряженности электрического и магнитного полей, траектория электрона будет иметь различную форму.

Как только у электрона проявляется какая-то скорость, возникает поперечная отклоняющая сила F, и чем больше будет скорость электрона с, которую он приобретает за счет взаимодействия с электрическим полем, тем больше становится сила F. В точке В движение электрона происходит перпендикулярно силовым линиям электрического поля. В этой точке электрон обладает наибольшей скоростью, а следовательно, и максимальной кинетической энергией.

Дальнейшее движение электрона происходит под действием магнитного и ставшего для него тормозящим электрического поля. В точке С вся кинетическая энергия, запасенная электроном ранее, будет израсходована на преодоление тормозящего электрического поля. Потенциал точки С равен потенциалу точки А. Электрон, описав циклоидную траекторию, возвращается на прежний потенциальный уровень.

Рассмотрим оператор Паули для случая постоянного магнитного поля. Вычисления мы проведем для наглядности в прямоугольных декартовых координатах. Если магнитное поле достаточно слабо, то членами в операторе содержащими квадрат

векторного потенциала, мы можем пренебречь, в линейных же членах мы можем заменить выражениями

которые дают

где составляющие орбитального момента количества движения электрона (см. (1) § 1).

Используя (2), мы получим для приближенное выражение

Добавляя к согласно (19) § 5, члены, зависящие от спина, мы будем иметь

В это выражение входит скалярное произведение магнитного поля на вектор магнитного момента электрона

Этот вектор складывается из двух частей: орбитальной и спиновой. Орбитальная часть пропорциональна орбитальному моменту количества движения электрона

и спиновая часть пропорциональна собственному (спиновому) моменту

При этом множитель пропорциональности между магнитным и механическим моментом для спиновой части вдвое больше, чем для орбитальной. Этот факт иногда называют магнитной аномалией спина.

В задаче со сферической симметрией зависящая от магнит» иого поля поправочная часть оператора энергии (4) коммутирует

с главной частью (оператором (7) § 5). Поэтому поправка к уровню энергии на магнитное поле состоит просто в добавлении к нему собственного значения поправочного члена в (4). Если направить ось вдоль магнитного поля, то добавка будет равна

где есть собственное значение оператора

Однако происходящая от спина поправка к состоящая в замене на не вносит новых уровней, поскольку есть целое число. Существенную роль играют здесь лишь поправки на теорию относительности.

В операторе энергии Паули Я [формула (4)] эти поправки не учитываются. Учет их приводит к тому, что в поле со сферической симметрией уравнение для радиальных функций будет содержать не только квантовое число I теории Шредингера, но и квантовое число входящее в уравнение для шаровых функций со спином

[формула (22) § 1] и связанное с соотношением

[формула (20) § 1].

Мы знаем, что при будет единственное значение но при возможны два значения а именно, . В результате Шредингеровский уровень, соответствующий данному значению I (и определенному значению главного квантового числа распадается при на два близких уровня, которые образуют дублет. Этот дублет принято называть релятивистским дублетом.

В уравнении для радиальных функций порядок величины релятивистского поправочного члена по отношению к главному (потенциальной энергии) может характеризоваться величиной где

есть безразмерная постоянная, которую принято называть постоянной тонкой структуры. Влияние же магнитного поля на уровни энергии характеризуется величиной (8).

Расщепление уровней энергии в магнитном поле носит название явления Зеемана (Zeeman).

Полная теория явления Зеемана для атома водорода будет изложена в конце этой книги на основе теории Дирака. Здесь же мы хотели бы только подчеркнуть тот факт, что поведение

электрона в магнитном поле убедительно доказывает наличие у него новой степени свободы, связанной со спином.

Существование этой новой степени свободы электрона играет особенно важную роль в квантовомеханической теории системы многих электронов (например, атома или молекулы), которую нельзя даже формулировать, не учитывая свойств симметрии волновой функции по отношению к перестановкам электронов. Эти свойства заключаются в требовании, чтобы волновая функция системы электронов, выраженная через совокупности переменных относящихся к каждому электрону, меняла знак при перестановке двух таких совокупностей, относящихся к двум электронам. Требование это называется принципом Паули или принципом антисимметрии волновой функции. Существенно отметить, что в число переменных каждого электрона входит, кроме его координат, также и его спиновая переменная а. Это показывает, что введение спиновой степени свободы электрона необходимо уже в нерелятивистской теории.

Многоэлектронной задаче квантовой механики будет посвящена следующая часть этой книги.

Цель работы.

Приборы и принадлежности: э

Введение

е , скорость света с , постоянная Планка h Кл∙кг -1 .

Магнитное поле. В B B q , движущийся со скоростью V

F л = q∙ [ V∙B ] или F л = |q |VB∙sin α (1)

где α V В .

». B

q > I

Рис.1

q >q< 0) направления тока I и скорости V V B r определяется из условия

, (2)

где α – угол между векторами V и B .

В случае α = 90 0 , sinα

ΔА = F л. Δr

или ΔА = F л. Δr cosβ , (4)

где β F Δr .

F л Δr , β = 90 0 и cosβ

r

V направлена под углом α к силовым линиям В V // = V∙cosα и равномерного

V ┴ = V∙sinα .

V //

h = VТcos, (7)

Подставив это выражение для Т в (7), получим

. (8)

B .

Электрическое поле. На точечный заряд q, E , действует сила

F = qE , (9)

Направление силы F E E .

По второму закону Ньютона F = ma

qE = (10)

Х со скоростью V

Движение заряда вдоль оси X x = x 0 + Vt (x 0 начальная координата, t время),V = const, x 0 = 0. равно .

Движение вдоль оси Y , Е y = V y = V 0 y + at. У , где С t = 0) V 0 y = 0 получим C = 0. .

Y согласно формуле .

U,

В E , то результирующая сила F

F эм = qE + q [V∙B ]. (11)

U V V << скорости света c ) имеющего вид

где е m

Из (12) скорость электрона

. (13)

U, B r


Экспериментальная установка

3 – источник питания ИП1 катушек Гельмгольца; 4 − катушки Гельмгольца; 5 − источник питания ИП2 электронно-лучевой трубки.

Функциональные части экспериментальной установки и схемы их подключения

Катушки Гельмгольца (кольца Гельмгольца) представляют собой два коаксиальных кольцевых проводника одинакового радиуса с n числом витков, расположенные в параллельных плоскостях соосно, таким образом, что расстояние между ними равно радиусу колец (рис.8).

На рис. 9 показана схема подключения катушек Гельмгольца к источнику питания ИП1 .

При пропускании тока через катушки в пространстве между ними возникает магнитное поле, характеризующееся высокой степенью однородности. Оно является результатом суперпозиции магнитных полей, индуцируемых каждым витком с током кольцевого проводника и в целом системы из двух кольцевых проводников (рис.8).

Индукция магнитного поля в центре кольцевого проводника с током, содержащего один виток, выражается формулой

где R – радиус кривизны проводника, I – сила тока в нём, µ– магнитная проницаемость, µ 0 – магнитная постоянная (µ 0 = 4π·10 -7 Гн/м).

Величина индукции магнитного поля на оси катушек пропорциональна току I, протекающему в обмотке каждого из кольцевых проводников и числу витков в них n . Теоретический расчёт магнитной индукции поля катушек Гельмгольца с использованием закона Био–Савара–Лапласа и принципа суперпозиции на оси X в центре системы приводит к адаптированной формуле для расчёта В , используемой в данной работе

. (15)

где R – радиус кольцевого проводника, µ 0 = 4π·10 -7 Гн/м (магнитная постоянная).

На рис.10 показано распределение индукции магнитного поля в пространстве между катушками Гельмгольца вдоль оси x , совпадающей с осью симметрии катушек. Пунктиром показаны распределения магнитных полей, создаваемых каждым из кольцевых проводников.

Неоднородность генерируемого поля при соответствующей юстировке катушек может не превышать 5%.

Электронно-лучевая трубка (ЭЛТ ), используемая в экспериментальной установке, показана на рис.11. Фото (вид сверху) иллюстрирует также её месторасположение в пространстве между катушками Гельмгольца в области однородного магнитного поля. ЭЛТ представляет собой лучевой тетрод в стеклянной колбе сферической формы с вакуумом. В колбе расположена электронная пушка - катод косвенного накала, закреплённый на металлической траверсе с перемычками. Для визуализации электронного пучка используется наполнение стеклянной колбы водородом при низком давлении.

Рис.11. Электронно-лучевая трубка с катушками Гельмгольца (вид сверху):

1 – электронная пушка; 2 – траверса с перемычками, используемая как шкала для оценки радиуса траектории электронов;

3 – катушки Гельмгольца.

Испускаемые катодом вследствие термоэлектронной эмиссии электроны фокусируются электродами электронно-лучевой пушки в виде пучка и движутся по прямолинейной траектории вертикально вверх. При подаче на катушки Гельмгольца напряжения от источника питания ИП1 в области размещения ЭЛТ , создаётся однородное магнитное поле. Траектория электронного пучка изменяется из прямолинейной в кольцевую кольцевую.

Эффект наблюдается визуально по слабому свечению голубоватого цвета внутри стеклянной колбы, соответствующему траектории пучка электронов. Диаметр визуализированной траектории электронов оценивается с помощью расположенной в колбе перекладины с несколькими перемычками, покрытыми люминофором (рис.12).

На рис.13 показана схема подключения к источнику питания ИП2

электронно-лучевой трубки с указанием диапазонов изменения параметров источника.

Рис. 14. Источник питания катушек Гельмгольца (ИП1 ) (фото передней панели).


Рис. 15. Источник питания электронно– лучевой трубки (ИП2 ) (фото передней панели).

Порядок выполнения работы

ПРИМЕЧАНИЕ 1.

Все приборы и функциональные элементы установки соединены, соединительными шнурами.

НЕ ТРОГАТЬ!

ВНИМАНИЕ.

При выполнении работы необходимо строго соблюдать правила техники безопасности, установленные на рабочем месте и в лаборатории.

ВНИМАНИЕ.

ДОПУСТИМЫЕ ДИАПАЗОНЫ ИЗМЕНЕНИЯ ПАРАМЕТРОВ ИСТОЧНИКОВ ПИТАНИЯ. ИП1 ТОК В КАТУШКАХ ГЕЛЬМГОЛЬЦА от 0 до 3 А. ИП2 УСКОРЯЮЩЕЕ НАПРЯЖЕНИЕ ЭЛТ от 100 до 300 В

ВНИМАНИЕ.

Измерения необходимо проводить в затемнённом помещении, чтобы наблюдать траекторию пучка электронов.

ПРИМЕЧАНИЕ 4.

На экспериментальной установке возможно проводить также измерения радиуса траектории пучка электронов с использованием для регистрации третьей слева перемычки шкалы, расположенной в стеклянной колбе ЭЛТ. Она, соответствует радиусу пучка электронов r 3 = 0,03 м (рис.12).

14. Эти измерения проводить по требованию преподавателя. Повторить пункты 11 и 12 несколько раз, наблюдая пересечение электронного пучка с третьей перемычкой.

15. Данные измерений соответствующих пар характеристик: ускоряющего напряжения U и тока в катушках I и для каждого опыта при r 3 = 0,03 м занести в табл. 2.

16. Выключить измерительную установку.

Порядок выключения:

а) ручками регулировки уменьшить ток в катушках Гельмгольца до нуля (повернуть в крайнее левое положение). На ИП1 левую и правую ручку установить на 0.

б) ручками регулировки уменьшить ускоряющее напряжение электронно-лучевой трубки до нуля (повернуть в крайнее левое положение на ИП2 2– ую и 3– ю ручки).

в) выключить источники питания ИП1 и ИП2 (тумблеры на задней панели).

Таблица 1

r 1 = 0,05 м
№ п/п U, B I ,A В∙ 10 -6 , Тл ∙10 11, Кл/кг
() ср. , Кл/кг
r 2 = 0,04 м
№ п/п U ,B I ,A В ∙10 -6 , Тл ∙10 11 Кл/кг
() ср. Кл/кг

Таблица 2

r 3 = 0,03 м
N. п/п U, B I, A В ∙10 -6 , Тл ∙10 11 Кл/кг
() ср. Кл/кг

Список литературы

1. Яворский Б.М., Детлаф А.А. Курс физики. – М.: Изд-во «Академия», 2005 и далее. – 720 с.

2. Трофимова Т.И. Курс физики. – М.: Высшая школа, 2004 и далее. – 544 с.

3. Савельев И.В. Курс общей физики в 3-х тт. – М.: Астрель АСТ, 2007 и далее.

Захарова Т.В.(общ. ред.) Физика. Сборник заданий в тестовой форме ч.2. – М.: МИИТ, 2010 – 192 с.

ДВИЖЕНИЕ ЭЛЕКТРОНОВ В МАГНИТНОМ ПОЛЕ

Цель работы. Определение удельного заряда электрона по известной траектории пучка электронов в электрическом и переменноммагнитном полях.

Приборы и принадлежности: э кспериментальная установка марки «PHYWE» фирмы HYWE Systems GmbH & Co. (Германия) в составе: электронно-лучевая трубка; катушки Гельмгольца (1 пара); источник питания универсальный (2 шт.); цифровой мультиметр (2 шт.); разноцветные соединительные шнуры.

Введение

Удельным зарядом элементарной частицы называют отношение заряда частицы к её массе. Эта характеристика широко применяется для идентификации частиц, так как позволяет отличать друг от друга разные частицы, имеющие одинаковые заряды (например, электроны от отрицательно заряженных мюонов, пионов и др.).

Удельный заряд электрона относится к фундаментальным физическим постоянным, таким как заряд электрона е , скорость света с , постоянная Планка h и др. Его теоретическое значение составляет величину = (1,75896 ± 0,00002)∙10 11 Кл∙кг -1 .

Многочисленные экспериментальные методы определения удельного заряда частиц основаны на исследованиях особенностей их движения в магнитном поле. Дополнительные возможности представляет использование конфигурации магнитного и электрического полей и варьирование их параметров. В данной работе определяется удельный заряд электрона на экспериментальной установке марки «PHYWE» немецкого производства. В ней для изучения траекторий движения электронов в магнитном поле реализован метод, основанный на сочетании возможностей варьирования параметров однородных магнитного и электрического полей при их взаимно перпендикулярной конфигурации. Данное методическое пособие разработано с использованием документации, поставленной в комплекте с установкой.

Магнитное поле. Опыты показывают, что магнитное поледействует на движущиеся в нём заряженные частицы.Силовой характеристикой, определяющей подобное его действие, является магнитная индукция – векторная величина В .Магнитное поле изображают с помощью силовых линий магнитной индукции, касательные к которым в каждой точке совпадают с направлением вектора B . При однородном магнитном поле вектор B постоянен по величине и направлению в любой точке поля. Сила, действующая на заряд q , движущийся со скоростью V в магнитном поле, была определена немецким физиком Г. Лоренцем (сила Лоренца). Она выражается формулой

F л = q∙ [ V∙B ] или F л = |q |VB∙sin α (1)

где α угол, образованный вектором скорости V движущейся частицы и вектором индукции магнитного поля В .

На неподвижный электрический заряд магнитное поле не действует. В этом его существенное отличие от поля электрического.

Направление силы Лоренца определяется с помощью правила «левой руки». Если ладонь левой руки расположить так, чтобы в неё входил вектор B , а четыре вытянутых пальца направить вдоль

направления движения положительных зарядов (q >0), совпадающие с направлением тока I (), то отогнутый большой палец

Рис.1

покажет направление силы, действующей на положительный заряд (q >0) (рис. 1). В случае отрицательных зарядов (q< 0) направления тока I и скорости V движения противоположны. Направление силы Лоренца определяется по направлению тока. Таким образом, сила Лоренца перпендикулярна вектору скорости, поэтому модуль скорости не будет меняться под действием этой силы. Но при постоянной скорости, как следует из формулы (1), остаётся постоянным и значение силы Лоренца. Из механики известно, что постоянная сила, перпендикулярная скорости, вызывает движение по окружности, то есть является центростремительной. При отсутствии других сил, согласно второму закону Ньютона, она сообщает заряду центростремительное или нормальное ускорение . Траектория движения заряда в однородном магнитном поле при V B представляет собой окружность (рис.2), радиус которой r определяется из условия

, (2)

где α – угол между векторами V и B .

В случае α = 90 0 , sinα = 1 из формулы (2) радиус круговой траектории заряда определяется формулой

Работа, совершаемая над движущейся зарядом в магнитном поле постоянной силой Лоренца, равна

ΔА = F л. Δr

или ΔА = F л. Δr cosβ , (4)

где β – угол между направлением векторов силы F л. и направлением вектора перемещения Δr .

Так как всегда выполняется условие F л Δr , β = 90 0 и cosβ = 0, то работа, совершаемая силой Лоренца, как следует из (4), всегда равна нулю. Следовательно, абсолютное значение скорости заряда и его кинетическая энергия при движении в магнитном поле остаются постоянными.

Период вращения (время одного полного оборота), равен

Подставив в (5) вместо радиуса r его выражение из (3), получим, что кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: период обращения не зависит от энергии частицы, зависит только от индукции магнитного поля и величины, обратной удельному заряду:

Если магнитное поле однородно, но начальная скорость заряженной частицы V направлена под углом α к силовым линиям В , то движение можно представить как суперпозицию двух движений: равномерного прямолинейного в направлении, параллельном магнитному полю со скоростью V // = V∙cosα и равномерного

вращения под действием силы Лоренца в плоскости, перпендикулярной магнитному полю cо скоростью V ┴ = V∙sinα .

В результате траектория движения частицы будет представлять собой винтовую линию (рис.3).

Шаг винтовой линии равен расстоянию, пройденному зарядом вдоль поля со скоростью V // за время, равное периоду вращения

h = VТcos, (7)

Подставив это выражение для Т в (7), получим

. (8)

Ось спирали параллельна силовым линиям магнитного поля B .

Электрическое поле. На точечный заряд q, помещённый в электрическое поле, характеризующееся вектором напряжённости E , действует сила

F = qE , (9)

Направление силы F совпадает с направлением вектора E , если заряд положительный, и противоположно E в случае отрицательного заряда. В однородном электрическом поле вектор напряжённости в любой точке поля постоянен по величине и направлению. Если движение происходит только вдоль силовых линий однородного электрического поля, оно является равноускоренным прямолинейным.

По второму закону Ньютона F = ma уравнение движения заряда в электрическом поле выражается формулой

qE = (10)

Предположим, что точечный отрицательный заряд, двигающийся первоначально вдоль оси Х со скоростью V , попадает в однородное электрическое поле между пластинами плоского конденсатора, как показано на рис. 4.

Движение заряда вдоль оси X является равномерным, его кинематическое уравнение x = x 0 + Vt (x 0 начальная координата, t время),V = const, x 0 = 0. Время пролёта зарядом конденсатора с длиной пластин равно .

Движение вдоль оси Y определяется электрическим полем внутри конденсатора. Если зазор между пластинами мал по сравнению с их длиной, краевыми эффектами можно пренебречь и электрическое поле в пространстве между пластинами считатьоднородным (Е y = const). Движение заряда будет равноускоренным V y = V 0 y + at. У скорение определяется с формулой (10). Выполнив интегрирование (10), получим , где С постояннаяинтегрирования. При начальном условии (t = 0) V 0 y = 0 получим C = 0. .

Траектория и характер движения заряженной частицы в однородном электрическом поле плоского конденсатора подобны аналогичным характеристикам движения в гравитационном поле брошенного горизонтально тела. Отклонение заряженной частицы вдоль оси Y равно . С учётом характера действующей силы оно зависит от согласно формуле .

При перемещении заряда в электрическом поле между точками, имеющими разность потенциалов U, электрическим полем совершается работа, вследствие чего заряд приобретает кинетическую энергию. В соответствии с законом сохранения энергии

Если на движущийся электрический заряд помимо магнитного поля с индукцией В действует и электрическое поле с напряжённостью E , то результирующая сила F , определяющая его движение, равна векторной сумме силы, действующей со стороны электрического поля и силы Лоренца

F эм = qE + q [V∙B ]. (11)

Это выражение называется формулой Лоренца.

В данной лабораторной работе исследуется движение электронов в магнитном и электрическом полях. Все соотношения, рассмотренные выше для произвольного заряда, справедливы и для электрона.

Считаем, что начальная скорость электрона равняется нулю. Попадая в электрическое поле, заряд ускоряется в нём, и, пройдя разность потенциалов U , приобретает некоторую скорость V . Её можно определить из закона сохранения энергии. В случае нерелятивистских скоростей (V << скорости света c ) имеющего вид

где е = –1,6∙10 -19 Кл – заряд электрона, m e = 9,1∙10 -31 кг – его масса.

Из (12) скорость электрона

Подставляя её в (3), получим формулу для нахождения радиуса окружности, по которой движется электрон в магнитном поле:

. (13)

Таким образом, зная разность потенциалов U, ускоряющую электроны при их движении в электрическом поле до нерелятивистских скоростей, индукцию однородного магнитного поля B , в котором эти электроны движутся, описывая круговую траекторию, и, экспериментально определяя радиус указанной круговой траектории r , можно вычислить удельный заряд электрона по формуле


Экспериментальная установка

Фото измерительного стенда представлено на рис.5.

На рис. 6 приведено фото экспериментальной установки марки «PHYWE».

На рис. 7 приведены основные узлы экспериментальной установки с обозначениями функциональных частей.

Рис.7. Экспериментальная установка:

1 − электронно−лучевая трубка; 2, 6 − цифровые мультиметры;

3 – источник питания ИП1 катушек Гельмгольца; 4 − катушки Гельмгольца; 5 − источник п

Рассмотрим движение электрона в однородном магнитном поле. Если неоднородность поля незначительна, или если нет необходимости в получении точных количественных оценок, то для изучения движения в неоднородном поле также можно пользоваться более простыми законами, полученными для однородного поля.

Пусть электрон влетает в однородное магнитное поле с начальной скоростью V 0 , направленной перпендикулярно магнитным силовым линиям, рис. 5. В этом случае на электрон действует сила Лоренца F, которая перпендикулярна вектору V 0 и вектору магнитной индукции В, а численно равна:

При V 0 =0 сила F также равна нулю (на неподвижный электрон магнитное поле не действует). Сила F искривляет траекторию электрона в дугу окружности. Так как сила F действует под прямым углом к скорости V 0 , она не совершает работы. Энергия электрона и его скорость не изменяются. Изменяется лишь направление движения.


Направление движения электрона определяется следующему мнемоническому правилу: поворот электрона совпадает с вращательным движением винта, который ввинчивается в направлении магнитных силовых линий. Это правило часто называют правилом буравчика.

Известно, что движение тела по окружности с постоянной скоростью происходит под действием направленной к центру (центростремительной) силы. В нашем случае в качестве центростремительной выступает сила Лоренца F. Из механики известно, что центростремительная сила может быть рассчитана по формуле:

где r – радиус окружности вращения электрона. Приравняв центростремительную силу, получаемую из последнего выражения к выражению для силы Лоренца, получим:

.

Откуда найдем радиус:

Чем больше скорость электрона, тем больше и радиус окружности, описываемой им в магнитном поле. Выйдя за пределы магнитного поля, электрон летит равномерно и прямолинейно по инерции. Если же радиус окружности мал, то электрон может описывать в магнитном поле замкнутые окружности.

Рассмотрим случай, когда электрон влетает в магнитное поле под любым углом, рис. 6. Выберем координатную плоскость так, чтобы вектор начальной скорости электрона V 0 лежал в этой плоскости и чтобы ось Х совпадала по направлению с вектором В. Разложим V 0 на составляющие V x и V y . Движение электрона со скоростью V x эквивалентно току вдоль силовых линий. На такой ток магнитное поле не действует. Следовательно скорость V x не испытывает никаких изменений. Если бы электрон имел только эту скорость, он бы двигался прямолинейно и равномерно. Влияние поля на скорость V y такое же, как и в первом случае, отображенном на рис. 6. имея только скорость V y электрон двигался бы по окружности в плоскости, перпендикулярной магнитным силовым линиям.




Результирующее движение электрона происходит по винтовой линии (по спирали). В зависимости о значений B, V x и V y , эта спираль более или менее растянута. Радиус спирали легко определить по последней формуле, подставив в нее скорость V y .