Болезни Военный билет Призыв

Решение уравнения диффузии. Уравнение диффузии

В частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

История происхождения

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D уравнение имеет вид:

\frac{\partial}{\partial t}c(x,\;t)=\frac{\partial}{\partial x}D\frac{\partial}{\partial x}{c(x,\;t)}+f(x,\;t).

При постоянном D приобретает вид:

\frac{\partial}{\partial t}c(x,\;t)=D\frac{\partial^2}{\partial x^2}{c(x,\;t)}+f(x,\;t),

где c(x,\;t) - концентрация диффундирующего вещества, a f(x,\;t) - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=(\nabla,\;D\nabla c(\vec{r},\;t))+f(\vec{r},\;t),

где \nabla=(\partial_x,\;\partial_y,\;\partial_z) - оператор набла , а (\;,\;) - скалярное произведение. Оно также может быть записано как

\partial_t c=\mathbf{div}\,(D\,\mathbf{grad}\,c)+f,

а при постоянном D приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=D\Delta c(\vec{r},\;t)+f(\vec{r},\;t),

где \Delta=\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} - оператор Лапласа .

n -мерный случай

n-мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n-мерные версии соответствующих операторов:

\nabla=(\partial_1,\;\partial_2,\;\ldots,\;\partial_n), \Delta=\nabla^2=\partial_1^2+\partial_2^2+\ldots+\partial_n^2.

Это касается и двумерного случая n=2.

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

\Phi=-\varkappa\frac{\partial c}{\partial x} (одномерный случай), \mathbf j=-\varkappa\nabla c (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

\frac{\partial c}{\partial t}+\frac{\partial\Phi}{\partial x}=0 (одномерный случай), \frac{\partial c}{\partial t}+\mathrm{div}\,\mathbf j=0 (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n-мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c(x,\;t)=\int\limits_{-\infty}^{+\infty}c(x",\;0)c_f(x-x",\;t)\,dx"=\int\limits_{-\infty}^{+\infty}c(x",\;0)\frac{1}{\sqrt{4\pi Dt}}\exp\left(-\frac{(x-x")^2}{4Dt}\right)\,dx".

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

-(\nabla,\;D\nabla c(\vec{r}))=f(\vec{r}).

  • При D, не зависящем от \vec{r}, стационарное уравнение диффузии становится уравнением Пуассона (неоднородное), или уравнением Лапласа (однородное, то есть при f=0):
\Delta c(\vec{r})=-\frac{f(\vec{r})}{D}, \Delta c(\vec{r})=0.

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и t\geqslant t_0, удовлетворяющее условию u(x,\;t_0)=\varphi(x)\quad(-\infty, где \varphi(x) - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области -\infty\leqslant x\leqslant +\infty и t\geqslant t_0, удовлетворяющее условиям

\left\{\begin{array}{l}

u(x,\;t_0)=\varphi(x),\quad(0 где \varphi(x) и \mu(t) - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0\leqslant x\leqslant l и -\infty, удовлетворяющее условиям

\left\{\begin{array}{l}

u(0,\;t)=\mu _1(t), \\ u(l,\;t)=\mu _2(t), \end{array}\right. где \mu_1(t) и \mu_2(t) - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u_t=a^2 u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f(x,\;t)=0, то такое уравнение называют однородным , в противном случае - неоднородным .

u(x,\;0)=\varphi(x),\quad 0\leqslant x\leqslant l - начальное условие в момент времени t=0, температура в точке x задается функцией \varphi(x). \left.\begin{array}{l}

u(0,\;t)=\mu_1(t), \\ u(l,\;t)=\mu_2(t), \end{array}\right\}\quad 0\leqslant t\leqslant T - краевые условия. Функции \mu_1(t) и \mu_2(t) задают значение температуры в граничных точках 0 и l в любой момент времени t.

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай (\alpha_i^2+\beta_i^2\ne 0,\;(i=1,\;2)).

\begin{array}{l}

\alpha_1 u_x(0,\;t)+\beta_1 u(0,\;t)=\mu_1(t), \\ \alpha_2 u_x(l,\;t)+\beta_2 u(l,\;t)=\mu_2(t). \end{array}

Если \alpha_i=0,\;(i=1,\;2), то такое условие называют условием первого рода , если \beta_i=0,\;(i=1,\;2) - второго рода , а если \alpha_i и \beta_i отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция u(x,\;t) в пространстве D\times,\;D\in\R^n, удовлетворяет однородному уравнению теплопроводности \frac{\partial u}{\partial t}-a^2\Delta u=0, причем D - ограниченная область. Принцип максимума утверждает, что функция u(x,\;t) может принимать экстремальные значения либо в начальный момент времени, либо на границе области D.

{{#ifeq: Image:Wiki_letter_w.svg|none||Шаблон:!class ="ambox-image"Шаблон:! }}

В гл. ХIII, § 2, 6, мы исследовали интегральное уравнение (56) для теплопроводности и диффузии. Из метода его вывода ясно, что это уравнепие применимо и в более общем случае, рассматриваемом в этом пункте. Мы увидим, что в действительности оно имеет еще более общее значение. В самом деле, согласно принципу, изложенному в гл. ХIII, § 2, 3, функции, входящие в это уравнение, можно рассматривать как некоторые вероятности. Поэтому, если состояние некоторой физической системы определяется переменной зависящей от времени статистическим образом, т. е. совершающей некоторого рода броуновское движение, то это движение опять-таки будет описываться интегральным уравнением (51).

Если есть вероятность того, что система в момент времени находится между вероятность того, что система в течение времени переходит из начального положения, лежащего между конечное положение, лежащее между то удовлетворяет линейному интегральному уравнению:

ядро которого вообще говоря, несимметрично.

В случае обыкновенного броуновского движения, при отсутствии внешних сил, ядро симметрично относительно и имеет вид, определенный в гл. ХIII, §2, (56а). Там же указано решение "уравнения (8) в этом случае. Чтобы найти решение в общем случае, целесообразно преобразовать интегральное уравнение (8) в дифференциальное уравнепие следующим способом.

Введем сначала в уравнепие (8) вместо новую переменную представляющую собой смещение системы за время Тогда уравнение (8) примет вид:

где выражение очевидно, равно вероятности того, что система сместится за время из начального положения х на расстояние между и Примем теперь, что очень мало, и разложим левую часть (9) по степеням

с точностью до членов первого порядка, а правую часть по степеням у. Тогда мы получим

где величины имеют значение:

Из определения функции как вероятности непосредственно следует, что Предположим теперь, что существуют предельные значения:

Тогда из (10) получается дифференциальное уравнение для функции

где есть оператор

Это уравнение называется в статистическоё физике дифференциальным уравнением Фоккера-Планка Оно имеет самые разнообразные применения.

Если механическая система испытывает беспорядочные флуктуации иод действием внешних сил, с одной стороны, и вследствие теплового движения молекул - с другой, как это имеет место при обыкновенном броуновском движении, то функция согласно (11) и (12), есть средняя скорость приобретаемая частицами под действием внешних сил. Далее, в этом случае а все при тождественно равны нулю. Таким, образом, (13) переходит в обобщенное уравнение диффузии (6), где есть коэффициент диффузии. Согласно (11) и (12):

т. е. равно среднему квадрату смещения, деленному на соотношение, которое мы уже встречали в гл. XIII, § 2, (23) под названием формулы Эйнштейна.

Если внешние силы отсутствуют, т. е. если функция в (8) симметрична относительно то функция согласно (12), тождественно равна нулю, и (13) переходит в обыкновенное дифференциальное уравнение диффузии гл. XIII, § 1 (22). Поэтому всякая функция, определяемая интегральным уравнением (50) гл. § 2, должна одновременно удовлетворять уравнению (22) гл.

Если же внешние силы не равны нулю, то можно найти стационарное решение и уравнения Фоккера-Планка, соответствующее состоянию, устанавливающемуся через достаточно большой промежуток времени независимо от начального состояния. В этом случае и есть вероятность пребывания системы в промежутке между или относительное число тождественных систем, находящихся в этом интервале, если в начальный момент они были распределены

· Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение

См. также: Портал:Физика

Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

\frac{\partial\varphi(\mathbf{r},t)}{\partial t} = \nabla \cdot \big[ D(\varphi,\mathbf{r}) \ \nabla\varphi(\mathbf{r},t) \big],

где φ(r , t ) - плотность диффундирующего вещества в точке r и во время t и D (φ, r ) - обобщённый диффузионный коэффициент для плотности φ в точке r ; ∇ - оператор набла . Если коэффициент диффузии зависит от плотности - уравнение нелинейно, в противном случае - линейно.

Если D - симметричный положительно определённый оператор , уравнение описывает анизотропную диффузию:

\frac{\partial\varphi(\mathbf{r},t)}{\partial t} = \sum_{i=1}^3\sum_{j=1}^3 \frac{\partial}{\partial x_i}\left

Если D постоянное, то уравнение сводится к линейному дифференциальному уравнению:

\frac{\partial\phi(\mathbf{r},t)}{\partial t} = D\nabla^2\phi(\mathbf{r},t),

История происхождения

Нестационарное уравнение

Нестационарное уравнение диффузии классифицируется как параболическое дифференциальное уравнение . Оно описывает распространение растворяемого вещества вследствие диффузии или перераспределение температуры тела в результате теплопроводности .

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D уравнение имеет вид:

\frac{\partial}{\partial t}c(x,\;t)=\frac{\partial}{\partial x}D\frac{\partial}{\partial x}{c(x,\;t)}+f(x,\;t).

При постоянном D приобретает вид:

\frac{\partial}{\partial t}c(x,\;t)=D\frac{\partial^2}{\partial x^2}{c(x,\;t)}+f(x,\;t),

где c(x,\;t) - концентрация диффундирующего вещества, a f(x,\;t) - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=(\nabla,\;D\nabla c(\vec{r},\;t))+f(\vec{r},\;t),

где \nabla=(\partial_x,\;\partial_y,\;\partial_z) - оператор набла , а (\;,\;) - скалярное произведение. Оно также может быть записано как

\partial_t c=\mathbf{div}\,(D\,\mathbf{grad}\,c)+f,

а при постоянном D приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=D\Delta c(\vec{r},\;t)+f(\vec{r},\;t),

где \Delta=\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} - оператор Лапласа .

n -мерный случай

n-мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n-мерные версии соответствующих операторов:

\nabla=(\partial_1,\;\partial_2,\;\ldots,\;\partial_n), \Delta=\nabla^2=\partial_1^2+\partial_2^2+\ldots+\partial_n^2.

Это касается и двумерного случая n=2.

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

\Phi=-\varkappa\frac{\partial c}{\partial x} (одномерный случай), \mathbf j=-\varkappa\nabla c (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

\frac{\partial c}{\partial t}+\frac{\partial\Phi}{\partial x}=0 (одномерный случай), \frac{\partial c}{\partial t}+\mathrm{div}\,\mathbf j=0 (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n-мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c(x,\;t)=\int\limits_{-\infty}^{+\infty}c(x",\;0)c_f(x-x",\;t)\,dx"=\int\limits_{-\infty}^{+\infty}c(x",\;0)\frac{1}{\sqrt{4\pi Dt}}\exp\left(-\frac{(x-x")^2}{4Dt}\right)\,dx".

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

-(\nabla,\;D\nabla c(\vec{r}))=f(\vec{r}).

  • При D, не зависящем от \vec{r}, стационарное уравнение диффузии становится уравнением Пуассона (неоднородное), или уравнением Лапласа (однородное, то есть при f=0):
\Delta c(\vec{r})=-\frac{f(\vec{r})}{D}, \Delta c(\vec{r})=0.

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и t\geqslant t_0, удовлетворяющее условию u(x,\;t_0)=\varphi(x)\quad(-\infty, где \varphi(x) - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области -\infty\leqslant x\leqslant +\infty и t\geqslant t_0, удовлетворяющее условиям

\left\{\begin{array}{l}

u(x,\;t_0)=\varphi(x),\quad(0 где \varphi(x) и \mu(t) - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0\leqslant x\leqslant l и -\infty, удовлетворяющее условиям

\left\{\begin{array}{l}

u(0,\;t)=\mu _1(t), \\ u(l,\;t)=\mu _2(t), \end{array}\right. где \mu_1(t) и \mu_2(t) - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u_t=a^2 u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f(x,\;t)=0, то такое уравнение называют однородным , в противном случае - неоднородным .

u(x,\;0)=\varphi(x),\quad 0\leqslant x\leqslant l - начальное условие в момент времени t=0, температура в точке x задается функцией \varphi(x). \left.\begin{array}{l}

u(0,\;t)=\mu_1(t), \\ u(l,\;t)=\mu_2(t), \end{array}\right\}\quad 0\leqslant t\leqslant T - краевые условия. Функции \mu_1(t) и \mu_2(t) задают значение температуры в граничных точках 0 и l в любой момент времени t.

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай (\alpha_i^2+\beta_i^2\ne 0,\;(i=1,\;2)).

\begin{array}{l}

\alpha_1 u_x(0,\;t)+\beta_1 u(0,\;t)=\mu_1(t), \\ \alpha_2 u_x(l,\;t)+\beta_2 u(l,\;t)=\mu_2(t). \end{array}

Если \alpha_i=0,\;(i=1,\;2), то такое условие называют условием первого рода , если \beta_i=0,\;(i=1,\;2) - второго рода , а если \alpha_i и \beta_i отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция u(x,\;t) в пространстве D\times,\;D\in\R^n, удовлетворяет однородному уравнению теплопроводности \frac{\partial u}{\partial t}-a^2\Delta u=0, причем D - ограниченная область. Принцип максимума утверждает, что функция u(x,\;t) может принимать экстремальные значения либо в начальный момент времени, либо на границе области D.

Напишите отзыв о статье "Уравнение диффузии"

Примечания

Изучение процессов диффузии велось также в направлении создания на основе экспериментальных результатов более точных моделей, которые давали бы возможность предсказывать протекание процесса диффузии путем теоретического анализа. Конечная цель исследования процесса диффузии – возможность расчетным путем определять электрические характеристики полупроводниковых приборов на основе технологических параметров процесса. Диффузионные модели развивались с позиции двух основных приближений: 1) теории сплошных сред с использованием уравнения диффузии Фика и 2) атомистической теории, которая принимает во внимание взаимодействие между точечными дефектами (вакансиями и межузельными атомами), с одной стороны, и примесными атомами – с другой. Теория сплошных сред описывает явление диффузии исходя из диффузионного уравнения Фика с учетом соответствующих коэффициентов диффузии. Коэффициенты диффузии легирующих элементов могут быть определены путем экспериментальных измерений поверхностной концентрации, глубины р п -перехода или профиля концентрации и из решения уравнения диффузии Фика.

При низких значениях концентрации примеси измеренные диффузионные профили хорошо согласуются с решениями уравнения диффузии Фика с постоянными значениями коэффициентов диффузии. При высоких значениях концентрации примеси форма диффузионных профилей отклоняется от предсказанной простой диффузионной теорией, что обусловлено влиянием на процесс диффузии примесей других факторов.

В 1855 Фик предложил теорию диффузии. В основу этой Теории положена аналогия между процессами переноса в жидких растворах и тепла за счет теплопроводности. Фик предложил следующие уравнение, получившее название I закона Фика :

Для одномерного случая:

, (3.2)

Здесь: j – поток атомов диффундирующего вещества через единичную площадку (например, через см 2) за единицу времени (с), N – количество таких атомов в единице объема, t (с)– время диффузии, а D –коэффициент пропорциональности, связывающий j и grad N, имеющий размерность см 2 /с, D (см 2 /с)называют коэффициентом диффузии . Знак (-) отражает тот факт, что поток атомов идет в направлении уменьшения их концентрации. Диффузия идет всегда, но направленный поток имеет место только в случае неоднородного по пространству распределения диффундирующих частиц и исчезает, когда система становится однородной.

Выполнив дифференцирование по координате, в одномерном варианте получим:

(3.3)

Легко устанавливается факт, что

поскольку изменение потока по координате обусловлено изменением числа частиц в единичном объеме. Из комбинации этих выражений следует основная форма уравнения диффузии, называемая II законом Фика .

Чтобы привыкнуть к теореме, разберем на примере, как ее применяют. Обратимся опять к распространению тепла, скажем в металле. Рассмотрим совсем простой случай: все тепло было подведено к телу заранее, а теперь тело остывает. Источников тепла нет, так что количество тепла сохраняется. Сколько же тогда тепла должно оказаться внутри некоего определенного объема в какой-то момент времени? Оно должно уменьшаться как раз на то количество, которое уходит с поверхности объема. Если этот объем — маленький кубик, то, следуя формуле (3.17), можно написать

Но это должно быть равно скорости потери тепла внутренностью куба. Если q — количество тепла в единице объема, то весь запас тепла в кубе V , а скорость потерь равна

Сравнивая (3.19) с (3.20), мы видим, что

Внимательно вглядитесь в форму этого уравнения; эта форма часто встречается в физике. Она выражает закон сохранения, в данном случае закон сохранения тепла. В уравнении (3.13) тот же физический факт был выражен иначе. Там была интегральная форма уравнения сохранения, а здесь у нас — дифференциальная форма.

Уравнение (3.21) мы получили, применив формулу (3.13) к бесконечно малому кубу. Можно пойти и по другому пути. Для большого объема V , ограниченного поверхностью S , закон Гаусса утверждает, что

Интеграл в правой части можно, используя (3.21), преобразовать как раз к виду —dQ/dt , и тогда получится формула (3.13).

Теперь рассмотрим другой случай. Представим, что в блоке вещества имеется маленькая дырочка, а в ней идет химическая реакция, генерирующая тепло. Можно еще представить себе, что к маленькому сопротивлению внутри блока подведены проволочки, нагревающие его электрическим током. Предположим, что тепло создается практически в одной точке, a W представляет собой энергию, возникающую в этой точке за секунду. В остальной же части объема пусть тепло сохраняется и, кроме того, пусть генерация тепла началась так давно, что сейчас температура уже нигде больше не изменяется. Вопрос состоит в следующем: как выглядит вектор потока тепла h в разных точках металла? Сколько тепла перетекает через каждую точку?

Мы знаем, что если мы будем интегрировать нормальную составляющую h по замкнутой поверхности, окружающей источник, то всегда получится W . Все тепло, которое генерируется в точечном источнике, должно протечь через поверхность, ибо предполагается, что поток постоянен. Перед нами трудная задача отыскания такого векторного поля, которое после интегрирования по произвольной поверхности всегда давало бы W . Но мы сравнительно легко можем найти это поле, выбрав поверхность специального вида. Возьмем сферу радиусом R с центром в источнике и предположим, что поток тепла радиален (фиг. 3.6). Интуиция нам подсказывает, что h должен быть направлен по радиусу, если блок вещества велик и мы не приближаемся слишком близко к его границам; кроме того, величина h во всех точках сферы должна быть одинакова. Вы видите, что для получения ответа к нашим выкладкам мы вынуждены добавить известное количество домыслов (обычно это именуют «физической интуицией»).

Когда h радиально и сферически симметрично, интеграл от нормальной компоненты h по площади поверхности вычисляется очень просто, потому что нормальная компонента в точности равна h и постоянна. Площадь, по которой интегрируется, равна 4πR 2 . Тогда мы получаем

где h — абсолютная величина h. Этот интеграл должен быть равен W — скорости, с которой источник генерирует тепло. Получается

где, как всегда, е r обозначает единичный вектор в радиальном направлении. Этот результат говорит нам, что h пропорционален W и меняется обратно квадрату расстояния от источника.

Только что полученный результат применим к потоку тепла вблизи точечного источника тепла. Теперь попытаемся найти уравнения, которые справедливы для теплового потока самого общего вида (придерживаясь единственного условия, что количество тепла должно сохраняться). Нас будет интересовать только то, что происходит в местах вне каких-либо источников или поглотителей тепла.

Дифференциальное уравнение распространения тепла было получено в гл. 2. В соответствии с уравнением (2.44),

(Помните, что это соотношение приближенное, но для некоторых веществ вроде металлов выдерживается неплохо.) Применимо оно, конечно, только в тех частях тела, где нет ни выделения, ни поглощения тепла. Выше мы вывели другое соотношение (3.21), которое выполняется тогда, когда количество тепла сохраняется. Если мы это уравнение скомбинируем с (3.25), то получим

если x — величина постоянная. Напоминаю, что q — это количество тепла в единичном объеме, a v·v = v 2 — лапласиан, т. е. оператор

Если мы теперь сделаем еще одно допущение, сразу возникнет одно очень интересное уравнение. Допустим, что температура материала пропорциональна содержанию тепла в единице объема, т. е. что у материала есть определенная удельная теплоемкость. Когда это допущение верно (а так бывает часто), мы можем писать

Скорость изменения количества тепла пропорциональна скорости изменения, температуры. Коэффициент пропорциональности c v здесь — удельная теплоемкость на единицу объема материала. Подставляя (3.27) в (3.26), получаем

Мы обнаружили, что быстрота изменения со временем температуры Т в каждой точке пропорциональна лапласиану от Т, т. е. вторым производным от пространственного распределения температур. Мы имеем дифференциальное уравнение — в переменных х, у, z и t — для температуры Т.

Дифференциальное уравнение (3.28) называется уравнением диффузии тепла, или уравнением теплопроводности. Часто его пишут в виде

где D — постоянная. Она равна x/c v .

Уравнение диффузии появляется во многих физических задачах: о диффузии газов, диффузии нейтронов и других. Мы уже обсуждали физику некоторых таких явлений в вып. 4, гл. 43. Теперь перед вами полное уравнение, описывающее диффузию в самом общем виде. Немного позже мы займемся решением уравнения диффузии, чтобы посмотреть, как распределяется температура в некоторых случаях. А сейчас вернемся к рассмотрению других теорем о векторных полях.