Болезни Военный билет Призыв

Решение диофантовых уравнений c. Что такое «решение задач подбором», и можно ли их решать иначе? Решаем задачи на подбор чисел

Чтобы решить линейное диофантово уравнение, нужно найти значения переменных «x» и «y», которые являются целыми числами. Целочисленное решение сложнее обычного и требует определенного набора действий. Сначала необходимо вычислить наибольший общий делитель (НОД) коэффициентов, а затем найти решение. Если вы нашли одно целочисленное решение линейного уравнения, можно применить простой шаблон, чтобы найти бесконечное множество других решений.

Шаги

Часть 1

Как записать уравнение
  1. Запишите уравнение в стандартной форме. Линейное уравнение - это уравнение, в котором показатели степени переменных не превышают 1. Чтобы решить такое линейное уравнение, сначала запишите его в стандартной форме. Стандартная форма линейного уравнения выглядит так: A x + B y = C {\displaystyle Ax+By=C} , где A , B {\displaystyle A,B} и C {\displaystyle C} - целые числа.

    • Если уравнение дано в другой форме, приведите его к стандартной форме с помощью основных алгебраических действий. Например, дано уравнение 23 x + 4 y − 7 x = − 3 y + 15 {\displaystyle 23x+4y-7x=-3y+15} . Приведите подобные члены и запишите уравнение так: 16 x + 7 y = 15 {\displaystyle 16x+7y=15} .
  2. Упростите уравнение (если можно). Когда вы запишете уравнение в стандартной форме, посмотрите на коэффициенты A , B {\displaystyle A,B} и C {\displaystyle C} . Если у этих коэффициентов есть НОД, разделите на него все три коэффициента. Решение такого упрощенного уравнения также будет решением исходного уравнения.

    • Например, если все три коэффициента четные, разделите их как минимум на 2. Например:
      • 42 x + 36 y = 48 {\displaystyle 42x+36y=48} (все члены делятся на 2)
      • 21 x + 18 y = 24 {\displaystyle 21x+18y=24} (теперь все члены делятся на 3)
      • 7 x + 6 y = 8 {\displaystyle 7x+6y=8} (это уравнение больше нельзя упростить)
  3. Проверьте, можно ли решить уравнение. В некоторых случаях можно сразу заявить, что уравнение не имеет решений. Если коэффициент «С» не делится на НОД коэффициентов «А» и «В», у уравнения нет решений.

    • Например, если оба коэффициента A {\displaystyle A} и B {\displaystyle B} четные, то и коэффициент C {\displaystyle C} должен быть четным. Но если C {\displaystyle C} нечетный, то решения нет.
      • У уравнения 2 x + 4 y = 21 {\displaystyle 2x+4y=21} нет целочисленных решений.
      • У уравнения 5 x + 10 y = 17 {\displaystyle 5x+10y=17} нет целочисленных решений, так как левая часть уравнения делится на 5, а правая - нет.
  4. Проанализируйте полученный результат. Когда вы найдете НОД коэффициентов A {\displaystyle A} и B {\displaystyle B} , сравните его с коэффициентом C {\displaystyle C} исходного уравнения. Если C {\displaystyle C} делится на НОД A {\displaystyle A} и B {\displaystyle B} , уравнение имеет целочисленное решение; в противном случае у уравнения нет решений.

    • Например, уравнение можно решить, потому что 3 делится на 1 (НОД=1).
    • Например, предположим, что НОД=5. 3 не делится на 5 нацело, поэтому такое уравнение не имеет целочисленных решений.
    • Как показано ниже, если уравнение имеет одно целочисленное решение, оно также имеет бесконечное множество других целочисленных решений.

    Часть 3

    Как найти решение с помощью алгоритма Евклида
    1. Пронумеруйте шаги вычисления НОД. Чтобы найти решение линейного уравнения, нужно использовать алгоритм Евклида в качестве основы процесса подстановки и упрощения.

      • Начните с нумерации шагов вычисления НОД. Процесс вычисления выглядит так:
        • Шаг 1: 87 = (1 ∗ 64) + 23 {\displaystyle {\text{Шаг 1}}:87=(1*64)+23}
        • Шаг 2: 64 = (2 ∗ 23) + 18 {\displaystyle {\text{Шаг 2}}:64=(2*23)+18}
        • Шаг 3: 23 = (1 ∗ 18) + 5 {\displaystyle {\text{Шаг 3}}:23=(1*18)+5}
        • Шаг 4: 18 = (3 ∗ 5) + 3 {\displaystyle {\text{Шаг 4}}:18=(3*5)+3}
        • Шаг 5: 5 = (1 ∗ 3) + 2 {\displaystyle {\text{Шаг 5}}:5=(1*3)+2}
        • Шаг 6: 3 = (1 ∗ 2) + 1 {\displaystyle {\text{Шаг 6}}:3=(1*2)+1}
        • Шаг 7: 2 = (2 ∗ 1) + 0 {\displaystyle {\text{Шаг 7}}:2=(2*1)+0}
    2. Обратите внимание на последний шаг, где есть остаток. Перепишите уравнение этого шага так, чтобы изолировать остаток.

      • В нашем примере последний шаг с остатком - это шаг 6. Остаток равен 1. Перепишите уравнение шага 6 следующим образом:
        • 1 = 3 − (1 ∗ 2) {\displaystyle 1=3-(1*2)}
    3. Изолируйте остаток предыдущего шага. Этот процесс представляет собой пошаговое «перемещение вверх». Каждый раз вы будете изолировать остаток в уравнении предыдущего шага.

      • Изолируйте остаток уравнения шага 5:
        • 2 = 5 − (1 ∗ 3) {\displaystyle 2=5-(1*3)} или 2 = 5 − 3 {\displaystyle 2=5-3}
    4. Сделайте замену и упростите. Обратите внимание, что уравнение шага 6 содержит число 2, а в уравнении шага 5 число 2 изолировано. Поэтому вместо «2» в уравнении шага 6 подставьте выражение шага 5:

      • 1 = 3 − 2 {\displaystyle 1=3-2} (уравнение шага 6)
      • 1 = 3 − (5 − 3) {\displaystyle 1=3-(5-3)} (вместо 2 подставили выражение)
      • 1 = 3 − 5 + 3 {\displaystyle 1=3-5+3} (раскрыли скобки)
      • 1 = 2 (3) − 5 {\displaystyle 1=2(3)-5} (упростили)
    5. Повторите процесс подстановки и упрощения. Повторите описанный процесс, перемещаясь по алгоритму Евклида в обратном порядке. Каждый раз вы будете переписывать уравнение предыдущего шага и подставлять его в последнее полученное уравнение.

      • Последним рассмотренным шагом был шаг 5. Поэтому перейдите к шагу 4 и изолируйте остаток в уравнении этого шага:
        • 3 = 18 − (3 ∗ 5) {\displaystyle 3=18-(3*5)}
      • Подставьте это выражение вместо «3» в последнее уравнение:
        • 1 = 2 (18 − 3 ∗ 5) − 5 {\displaystyle 1=2(18-3*5)-5}
        • 1 = 2 (18) − 6 (5) − 5 {\displaystyle 1=2(18)-6(5)-5}
    6. Продолжите процесс подстановки и упрощения. Этот процесс будет повторяться до тех пор, пока вы не достигнете первоначального шага алгоритма Евклида. Цель процесса - записать уравнение с коэффициентами 87 и 64 исходного уравнения, которое нужно решить. В нашем примере:

      • 1 = 2 (18) − 7 (5) {\displaystyle 1=2(18)-7(5)}
      • 1 = 2 (18) − 7 (23 − 18) {\displaystyle 1=2(18)-7(23-18)} (подставили выражение из шага 3)
        • 1 = 2 (18) − 7 (23) + 7 (18) {\displaystyle 1=2(18)-7(23)+7(18)}
        • 1 = 9 (18) − 7 (23) {\displaystyle 1=9(18)-7(23)}
      • 1 = 9 (64 − 2 ∗ 23) − 7 (23) {\displaystyle 1=9(64-2*23)-7(23)} (подставили выражение из шага 2)
        • 1 = 9 (64) − 18 (23) − 7 (23) {\displaystyle 1=9(64)-18(23)-7(23)}
        • 1 = 9 (64) − 25 (23) {\displaystyle 1=9(64)-25(23)}
      • 1 = 9 (64) − 25 (87 − 64) {\displaystyle 1=9(64)-25(87-64)} (подставили выражение из шага 1)
        • 1 = 9 (64) − 25 (87) + 25 (64) {\displaystyle 1=9(64)-25(87)+25(64)}
        • 1 = 34 (64) − 25 (87) {\displaystyle 1=34(64)-25(87)}
    7. Перепишите полученное уравнение в соответствии с исходными коэффициентами. Когда вы вернетесь к первому шагу алгоритма Евклида, вы увидите, что полученное уравнение содержит два коэффициента исходного уравнения. Перепишите уравнение так, чтобы порядок его членов соответствовал коэффициентам исходного уравнения.

      • В нашем примере исходное уравнение 87 x − 64 y = 3 {\displaystyle 87x-64y=3} . Поэтому перепишите полученное уравнение так, чтобы коэффициенты привести в соответствие. Обратите особое внимание на коэффициент «64». В исходном уравнении этот коэффициент отрицательный, а в алгоритме Евклида - положительный. Поэтому множитель 34 нужно сделать отрицательным. Окончательное уравнение запишется так:
        • 87 (− 25) − 64 (− 34) = 1 {\displaystyle 87(-25)-64(-34)=1}

Министерство образования и науки

Научное Общество Учащихся

Секция «Алгебра»

Работа по теме:

«Диофантовы уравнения»

Выполнила:

ученица 10 «А» классаМОУ СОШ № 43

Булавина Татьяна

Научный руководитель:Пестова

Надежда Ивановна

Нижний новгород2010


Введение

О диофантовых уравнениях

Способы решения диофантовых уравнений

Список литературы

Введение

Я выбрала тему: «Диофантовы уравнения» потому, что меня заинтересовало, как зарождалась арифметика.

Диофант Александрийский (3 век)-греческий математик. Его книгу «Арифметика» изучали математики всех поколений.

Необычайный расцвет древнегреческой науки в IV-III вв. до н. э. сменился к началу новой эры постепенным спадом в связи с завоеванием Греции Римом, а потом и начавшимся разложением Римской империи. Но на фоне этого угасания еще вспыхивает яркий факел. В 3-ем веке новой эры появляется сочинение александрийского математика Диофанта «Арифметика». О жизни самого Диофанта нам известно только из стихотворения, содержащегося в «Палатинской антологии». В этой антологии содержалось 48 задач в стихах, собранных греческим поэтом и математиком VI в. Метродором. Среди них были задачи о бассейне, о короне Герона, о жизненном пути Диофанта. Последняя оформлена в виде эпитафии - надгробной надписи.

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять, лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе.

Тут и увидел предел жизни печальной своей.

Трактат «Арифметика» занимает особое место в античной матиматике не только по времени своего появления, но и по содержанию. Большую часть его составляют разнообразные задачи по теории чисел и их решения. Но, главное, автор использует не геометрический подход, как это было принято у древних греков,-решения Диофанта предвосхищают алгебраические и теоретико- числовые методы. К сожалению, из 13 книг, составлявших «Арифметику», до нас дошли лишь первые 6, а остальные погибли в перипетиях тогдашнего бурного времени. Достаточно сказать, что через 100 лет после смерти Диофанта была сожжена знаменитая александрийская библиотека, содержавшая бесценные сокровища древнегреческой науки.


О диофантовых уравнениях.

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.

Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые,т.е. число уравнений в них меньше числа неизвестных.

Во-вторых, решения требуется найти только целые, часто натуральные.

Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел,а это уже относится к области арифметики.Дадим определение диофантовым уравнениям.

Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвесных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.

Давайте рассмотрим современную простенькую задачу.

За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200р. и по 500 р. Какими способами он может расплатиться? Для ответа на этот вопрос достаточно решить уравнение 2x + 5y=17 с двумя неизвестными x и y. Такие уравнения имеют бесконечное множество решений. В частности, полученному уравнению отвечает любая пара чисел вида (x, 17-2x/5). Но для этой практической задачи годятся только целые неотрицательные значения x и y. Поэтому приходим к такой постановке задачи: найти все целые неотрицательные решения уравнения 2x+5y=17. Ответ содержит уже не бесконечно много,авсего лишь две пары чисел (1, 3) и (6, 1).Диофант сам находил решения своих задач. Вот несколько задач из его «Арифметики».

1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.

2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.

3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении, так и при вычитании их суммы.

4. Для числа 13=2²+3² найти два других,сумма квадратов которых равна 13.

Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая, что коэффициент перед xможно взять и другой. Решая уравнения

(x+2)²+(kx-3)²=13,

Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения

(x+2)²+(kx-3)²=13

x=2(3k-2)/k²+1.

А=2(k²+3k-1)/k²+1,

В=3k²-4k-3/k²+1.

Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2²+3²=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В,чего Диофант не допускал. Очевидно, k=2- наименьшее натуральное число, при котором А и В положительны.

Исследование Диифантовых уравнений обычно связано с большими трудностями. Более того, можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма, позволяющего по любому целому числу x узнавать, разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.

Современной постановкой диофантовых задач мы обязанны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений,поиском способов их решений.Называется оно диофантовым анализом и диофантовой геометрией, поскольку использует геометрические способы доказательств.

Простейшее Диофантово уравнение ax+by=1,где a и b – цельные взаимопростые числа, имеет бесконечно много решений (если x0 и y0-решение, то числа x=x0+bn, y=y0-an, где n- любое целое, тоже будут решениями).

Другим примером Диофантовых уравнений является

x 2 + у 2 = z 2 . (5)


Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря, уравнению (5) удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма x²+y²=4(k²+k+t²+t)+2 не делится на 4, в то время как z²=4m² делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и wвзаимно простые. На самом деле, если бы они имели общий делитель d>1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того, v и w разной чётности: иначе бы y и z были бы чётными. Из равенства x²=(z+y)(z-y) следует, что u²=vw. Поскольку v и w взаимно просты, а их произведение является квадратом, то каждый из множителей является квадратом. Значит найдутся такие натуральные числа p и q, что v=p², w= q² . Очевидно, числа p и q взаимно просты и имеют разную чётность. Теперь имеем


z=p²+q² , y=p²-q²,

x²=(p²+q²)²-(p²-q²)²=4 p² q².

В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и qразной чётности, p>q , такие, что

х =2pq, у =p²-q², z = p 2 + q 2 .(6)

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

х =2pq, у = p²-q², z = p 2 + q 2 ,

где m и n - целые взаимо простые числа. Все остальные его натуральные решения имеют вид:

x=2kpq,y=k(p²-q²),z=k(p 2 + q 2 ),

где k-произвольное натуральное число. Теперь рассмотрим следующую задачу: дано произвольное натуральное число m>2; существует ли пифагоров треугольник, одна из сторон которого равна m? Если потребовать, чтобы заданную длину m имел катет, то для любого m ответ положительный. Докажем это. Пусть сначала m-нечётное число. Положим p=m+1/2, q=m-1/2. Получаем пифагорову тройку

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

«Тобольская государственная социально-педагогическая академия

им. Д.И. Менделеева»

Кафедра математики, ТиМОМ

Некоторые диофантовы уравнения

Курсовая работа

студента III курса ФМФ

Матаева Евгения Викторовича

Научный руководитель:

к.ф.-м.н.Валицкас А.И.

Оценка: ____________

Тобольск – 2011

Введение……………………………………………………………………........ 2

§ 1. Линейные диофантовы уравнения………………………………….. 3

§ 2. Диофантово уравнение x 2 y 2 = a ………………………………….....9

§ 3. Диофантово уравнение x 2 + y 2 = a …………………………………... 12

§ 4. Уравнение х 2 + х + 1 = 3у 2 …………………………………………….. 16

§ 5. Пифагоровы тройки………………………………………………….. 19

§ 6. Великая теорема Ферма………………………………………………23

Заключение……………………………………………………………….….....29

Список литературы........... ………………………………………………..30

ВВЕДЕНИЕ

Диофантово уравнение – это уравнение вида P (x 1 , … , x n ) = 0 , где левая часть представляет собой многочлен от переменных x 1 , … , x n с целыми коэффициентами. Любой упорядоченный набор (u 1 ; … ; u n ) целых чисел со свойством P (u 1 , … , u n ) = 0 называется (частным) решением диофантова уравнения P (x 1 , … , x n ) = 0 . Решить диофантово уравнение – значит найти все его решения, т.е. общее решение этого уравнения.

Нашей целью будет научиться находить решения некоторых диофантовых уравнений, если эти решения имеется.

Для этого, необходимо ответить на следующие вопросы:

а. Всегда ли диофантово уравнение имеет решение, найти условия существования решения.

б. Имеется ли алгоритм, позволяющий отыскать решение диофантова уравнения.

Примеры: 1. Диофантово уравнение 5 x – 1 = 0 не имеет решений.

2. Диофантово уравнение 5 x – 10 = 0 имеет решение x = 2 , которое является единственным.

3. Уравнение ln x – 8 x 2 = 0 не является диофантовым.

4. Часто уравнения вида P (x 1 , … , x n ) = Q (x 1 , … , x n ) , где P (x 1 , … , x n ) , Q (x 1 , … , x n ) – многочлены с целыми коэффициентами, также называют диофантовыми. Их можно записать в виде P (x 1 , … , x n ) – Q (x 1 , … , x n ) = 0 , который является стандартным для диофантовых уравнений.

5. x 2 y 2 = a – диофантово уравнение второй степени с двумя неизвестными x и y при любом целом a. Оно имеет решения при a = 1 , но не имеет решений при a = 2 .

§ 1. Линейные диофантовы уравнения

Пусть a 1 , … , a n , с Z . Уравнение вида a 1 x 1 + … + a n x n = c называется линейным диофантовым уравнением с коэффициентами a 1 , … , a n , правой частью c и неизвестными x 1 , … , x n . Если правая часть с линейного диофантова уравнения нулевая, то такое диофантово уравнение называется однородным.

Наша ближайшая цель – научиться находить частные и общие решения линейных диофантовых уравнений с двумя неизвестными. Очевидно, что любое однородное диофантово уравнение a 1 x 1 + … + a n x n = 0 всегда имеет частное решение (0; … ; 0).

Очевидно, что линейное диофантово уравнение, все коэффициенты которого равны нулю, имеет решение только в случае, когда его правая часть равна нулю. В общем случае имеет место следующая

Теорема (о существовании решения линейного диофантова уравнения). Линейное диофантово уравнение a 1 x 1 + … + a n x n = c , не все коэффициенты которого равны нулю, имеет решение тогда и только тогда, когда НОД(a 1 , … , a n ) | c.

Доказательство. Необходимость условия очевидна: НОД(a 1 , … , a n ) | a i (1 i n ) , так что НОД(a 1 , … , a n ) | (a 1 x 1 + … + a n x n ) , а значит, делит и

c = a 1 x 1 + … + a n x n .

Пусть D = НОД(a 1 , … , a n ) , с = Dt и a 1 u 1 + … + a n u n = D – линейное разложение наибольшего общего делителя чисел a 1 , … , a n . Умножая обе части на t , получим a 1 (u 1 t ) + … + a n (u n t ) = Dt = c , т.е. целочисленная

n -ка (x 1 t ; … ; x n t) является решением исходного уравнения с n неизвестными.

Теорема доказана.

Эта теорема даёт конструктивный алгоритм для нахождения частных решений линейных диофантовых уравнений.

Примеры: 1. Линейное диофантово уравнение 12x+21y = 5 не имеет решений, поскольку НОД(12, 21) = 3 не делит 5 .

2. Найти частное решение диофантова уравнения 12x+21y = 6 .

Очевидно, что теперь НОД(12, 21) = 3 | 6 , так что решение существует. Запишем линейное разложение НОД(12, 21) = 3 = 122 + 21(–1) . Поэтому пара (2; –1) – частное решение уравнения 12x+21y = 3 , а пара (4; –2) – частное решение исходного уравнения 12x+21y = 6 .

3. Найти частное решение линейного уравнения 12x + 21y – 2z = 5 .

Так как (12, 21, –2) = ((12, 21), –2) = (3, –2) = 1 | 5 , то решение существует. Следуя доказательству теоремы, вначале найдём решение уравнения (12,21)х–2у=5 , а затем, подставив линейное разложение наибольшего общего делителя из предыдущей задачи, получим решение исходного уравнения.

Для решения уравнения 3х – 2у = 5 запишем линейное разложение НОД(3, –2) = 1 = 31 – 21 очевидно. Поэтому пара чисел (1; 1) является решением уравнения 3 x – 2 y = 1 , а пара (5; 5) – частным решением диофантова уравнения 3х – 2у = 5 .

Итак, (12, 21)5 – 25 = 5 . Подставляя сюда найденное ранее линейное разложение (12, 21) = 3 = 122 + 21(–1) , получим (122+21(–1))5 – 25 = 5 , или 1210 + 21(–5) – 25 = 5 , т.е. тройка целых чисел (10; –5; 5) является частным решением исходного диофантова уравнения 12x + 21y – 2z = 5 .

Теорема (о структуре общего решения линейного диофантова уравнения). Для линейного диофантова уравнения a 1 x 1 + … + a n x n = c справедливы следующие утверждения:

(1) если = (u 1 ; … ; u n ), = (v 1 ; … ; v n ) – его частные решения, то разность (u 1 – v 1 ; … ; u n – v n ) – частное решение соответствующего однородного уравнения a 1 x 1 + … + a n x n = 0 ,

(2) множество частных решений линейного диофантова однородного уравнения a 1 x 1 + … + a n x n = 0 замкнуто относительно сложения, вычитания и умножения на целые числа,

(3) если M – общее решение данного линейного диофантова уравнения, а L – общее решение соответствующего ему однородного диофантова уравнения, то для любого частного решения = (u 1 ; … ; u n ) исходного уравнения верно равенство M = + L .

Доказательство. Вычитая равенство a 1 v 1 + … + a n v n = c из равенства a 1 u 1 + … + a n u n = c , получим a 1 (u 1 – v 1 ) + … + a n (u n – v n ) = 0 , т. е. набор

(u 1 – v 1 ; … ; u n – v n ) – частное решение линейного однородного диофантова уравнения a 1 x 1 + … + a n x n = 0 . Таким образом, доказано, что

= (u 1 ; … ; u n ), = (v 1 ; … ; v n ) M L .

Это доказывает утверждение (1).

Аналогично доказывается утверждение (2):

, L z Z L z L .

Для доказательства (3) вначале заметим, что M + L . Это следует из предыдущего: M+L .

Обратно, если = (l 1 ; … ; l n ) L и = (u 1 ; … ; u n ) M , то M :

a 1 (u 1 + l 1 )+ …+a n (u n + l n ) = (a 1 u 1 + … + a n u n )+(a 1 l 1 + … + a n l n ) = c + 0 = c .

Таким образом, + L M , и в итоге M = + L .

Теорема доказана.

Доказанная теорема имеет наглядный геометрический смысл. Если рассмотреть линейное уравнение a 1 x 1 + … + a n x n = c , где х i R , то как известно из геометрии, оно определяет в пространстве R n гиперплоскость, полученную из плоскости L c однородным уравнением a 1 x 1 + … +a n x n =0 , проходящей через начало координат, сдвигом на некоторый вектор R n . Поверхность вида + L называют также линейным многообразием с направляющим пространством L и вектором сдвига . Таким образом, доказано, что общее решение М диофантова уравнения a 1 x 1 + … + a n x n = c состоит из всех точек некоторого линейного многообразия, имеющих целые координаты. При этом координаты вектора сдвига тоже целые, а множество L решений однородного диофантова уравнения a 1 x 1 + … + a n x n = 0 состоит из всех точек направляющего пространства с целыми координатами. По этой причине часто говорят, что множество решений произвольного диофантова уравнения образует линейное многообразие с вектором сдвига и направляющим пространством L .

Пример: для диофантова уравнения х – у = 1 общее решение M имеет вид (1+у; у), где у Z , его частное решение = (1; 0) , а общее решение L однородного уравнения х – у = 0 запишется в виде (у; у) , где у Z . Таким образом, можно нарисовать следующую картинку, на которой решения исходного диофантова уравнения и соответствующего однородного диофантова уравнения изображены жирными точками в линейном многообразии М и пространстве L соответственно.

2. Найти общее решение диофантова уравнения 12x + 21y – 2z = 5 .

Частное решение (10; –5; 5) этого уравнения было найдено ранее, найдём общее решение однородного уравнения 12x + 21y – 2z = 0 , эквивалентного диофантову уравнению 12 x + 21 y = 2 z .

Для разрешимости этого уравнения необходимо и достаточно выполнение условия НОД(12, 21) = 3 | 2z, т.е. 3 | z или z = 3t для некоторого целого t . Сокращая обе части на 3 , получим 4x + 7y = 2t . Частное решение (2; –1) диофантова уравнения 4x + 7y = 1 найдено в предыдущем примере. Поэтому (4t ; –2t) – частное решение уравнения 4x + 7y = 2t при любом

t Z . Общее решение соответствующего однородного уравнения

(7 u ; –4 u ) уже найдено. Таким образом, общее решение уравнения 4x + 7y = 2t имеет вид: (4t + 7 u ; –2t – 4 u ) , а общее решение однородного уравнения 12x + 21y – 2z = 0 запишется так:

(4t + 7 u ; –2t – 4 u ; 3t) .

Нетрудно убедиться, что этот результат соответствует сформулированной выше без доказательства теореме о решениях однородного диофантова уравнения а 1 х 1 + … + а n х n = 0 : если Р = , то Р и

(u ; t ) P – общее решение рассматриваемого однородного уравнения.

Итак, общее решение диофантова уравнения 12x + 21y – 2z = 5 выглядит так: (10 + 4t + 7 u ; –5 – 2t – 4 u ; 5 + 3t) .

3. На примере предыдущего уравнения проиллюстрируем другой метод решения диофантовых уравнений от многих неизвестных, который состоит в последовательном уменьшении максимального значения модулей его коэффициентов.

12x + 21y – 2z = 5 12x + (102 + 1)y – 2z = 5

12x + y – 2(z – 10y) = 5

Таким образом, общее решение рассматриваемого уравнения можно записать и так: (x; 5 – 12x + 2u ; 50 – 120x + 21u) , где x, u – произвольные целые параметры.

§ 2. Диофантово уравнение x 2 y 2 = a

Примеры: 1. При a = 0 получаем бесконечное число решений: x = y или x = – y для любого y Z .

2. При a = 1 имеем x 2 y 2 = 1 (x + y )(x y ) = 1 . Таким образом, число 1 разложено в произведение двух целых множителей x + y и x y (важно, что x , y – целые!). Поскольку у числа 1 всего два разложения в произведение целых множителей 1 = 11 и 1 = (–1)(–1) , то получаем две возможности: .

3. Для a = 2 имеем x 2 y 2 = 2 (x + y )(x y ) = 2. Действуя аналогично предыдущему, рассматриваем разложения

2=12=21=(–1)(–2)=(–2)(–1), составляем системы: , которые, в отличие от предыдущего примера, не имеют решений. Так что нет решений и у рассматриваемого диофантова уравнения x 2 y 2 = 2.

4. Предыдущие рассмотрения наводят на некоторые выводы. Решения уравнения x 2 y 2 = a находятся по разложению a = km в произведение целых чисел из системы . Эта система имеет целые решения тогда и только тогда, когда k + m и k m чётны, т.е. когда числа k и m одной чётности (одновременно чётны или нечётны). Таким образом, диофантово уравнение x 2 – y 2 = a имеет решение тогда и только тогда, когда a допускает разложение в произведение двух целых множителей одной чётности. Остаётся только найти все такие a .

Теорема (об уравнении x 2 y 2 = a ). (1) Уравнение x 2 y 2 = 0 имеет бесконечное множество решений .

(2) Любое решение уравнения получается имеет вид , где a = km – разложение числа a в произведение двух целых множителей одной чётности.

(3) Уравнение x 2 y 2 = a имеет решение тогда и только тогда, когда a 2 (mod 4).

Доказательство. (1) уже доказано.

(2) уже доказано.

(3) () Пусть вначале диофантово уравнение x 2 y 2 = a имеет решение. Докажем, что a 2 (mod 4) . Если a = km – разложение в произведение целых чисел одной чётности, то при чётных k и m имеем k = 2 l , m = 2 n и a = km = 4 ln 0 (mod 4) . В случае же нечётных k , m их произведение a также нечётно, разность a – 2 нечётна и не делится на 4 , т.е. снова

a 2 (mod 4).

() Если теперь a 2 (mod 4) , то можно построить решение уравнения x 2 y 2 = a . Действительно, если a нечётно, то a = 1 a – разложение в произведение целых нечётных чисел, так что – решение диофантова уравнения. Если же a чётно, то ввиду a 2 (mod 4) получаем, что 4 | a , a = 4 b = 2(2 b ) – разложение в произведение целых чётных чисел, так что – решение диофантова уравнения.

Теорема доказана.

Примеры: 1. Диофантово уравнение x 2 y 2 = 2012 не имеет решений, т.к. 2010 = 4502 + 2 2 (mod 4).

2. Диофантово уравнение x 2 y 2 = 2011 имеет решения, т.к.

2011 3 (mod 4). Имеем очевидные разложения

2011 = 12011 = 20111 = (–1)(–2011) = (–2011)(–1),

по каждому из которых находим решения (комбинации знаков любые). Других решений нет, т.к. число 2011 простое (?!).

§ 3. Диофантово уравнение x 2 + y 2 = a

Примеры: 1. 0 = 0 2 + 0 2 , 1 = 0 2 + 1 2 , k 2 = 0 2 + k 2 . Таким образом, очевидно, любой квадрат тривиальным образом представим в виде суммы двух квадратов.

2. 2 = 1 2 + 1 2 , 5 = 1 2 + 2 2 , 8 = 2 2 + 2 2 , 10 = 1 2 + 3 2 , 13 = 2 2 + 3 2 , 17 = 1 2 + 4 2 , 18 = 3 2 + 3 2 , 20 = 2 2 + 4 2 , …

3. Решений нет для a = 3, 6 = 23, 7, 11, 12 = 2 2 3, 14 = 27, 15 = 35, 19, 21 = 37, 22 = 211, 23, 24 = 32 3 , …

Анализ приведённых результатов способен навести на мысль, что отсутствие решений каким-то образом связано с простыми числами вида

4 n +3 , присутствующими в разложении на множители чисел, не представимых в виде сумм двух квадратов.

Теорема (о представлении натуральных чисел суммами двух квадратов). Натуральное число a представимо в виде суммы двух квадратов тогда и только тогда, когда в его каноническом разложении простые числа вида 4 n + 3 имеют чётные показатели степеней.

Доказательство. Вначале докажем, что если натуральное число a представимо в виде суммы двух квадратов, то в его каноническом разложении все простые числа вида 4 n + 3 должны иметь чётные показатели степеней. Предположим, вопреки доказываемому, что a = р 2 k +1 b = x 2 + y 2 , где

р – простое число вида 4 n +3 и b p . Представим числа х и у в виде

х = Dz , y = Dt , где D = НОД(x , y ) = р s w , p w ; z , t , s N 0 . Тогда получаем равенство р 2 k +1 b = D 2 (z 2 + t 2 ) = р 2 s w 2 (z 2 + t 2 ) , т.е. р 2( k s )+1 b = w 2 (z 2 + t 2 ) . В левой части равенства присутствует p (нечётная степень не равна нулю), значит, на простое число p делится один из множителей в правой части. Поскольку p w , то р | (z 2 + t 2 ) , где числа z , t взаимно просты. Это противоречит следующей лемме (?!).

Лемма (о делимости суммы двух квадратов на простое число вида

4 n + 3 ). Если простое число р = 4 n +3 делит сумму квадратов двух натуральных чисел, то оно делит каждое из этих чисел.

Доказательство. От противного. Пусть x 2 + y 2 0(mod p ) , но x 0(mod p ) или y 0 (mod p ) . Поскольку x и y симметричны, их можно менять местами, так что можно предполагать, что x p .

Лемма (об обратимости по модулю p ). Для любого целого числа x , не делящегося на простое число p , существует обратный элемент по модулю p такое целое число 1 u < p , что xu 1 (mod p ).

Доказательство. Число x взаимно простое с p , поэтому можно записать линейное разложение НОД(x , p ) = 1 = xu + pv (u , v Z ) . Ясно, что xu 1(modp ) , т.е. u – обратный элемент к x по модулю p . Если u не удовлетворяет ограничению 1 u < p , то поделив u с остатком на p , получим остаток r u (mod p ) , для которого xr xu 1 (mod p ) и 0 r < p .

Лемма об обратимости по модулю p доказана.

Умножая сравнение x 2 + y 2 0 (mod p ) на квадрат u 2 обратного элемента к x по модулю p , получим 0 = 0u 2 x 2 u 2 + y 2 u 2 = (xu) 2 + (yu) 2 1 + t 2 (mod p).

Таким образом, для t = yu выполнено сравнение t 2 –1 (mod p ) , которое и приведём к противоречию. Ясно, что t p : иначе t 0 (mod p ) и 0 t 2 –1 (mod p ) , что невозможно. По теореме Ферма имеем t p –1 1 (mod p ), что вместе с t 2 –1 (mod p ) и p = 4 n + 3 приводит к противоречию:

1 t p–1 = t 4n+3–1 = t 2(2n+1) = (t 2 ) 2n+1 (–1) 2n+1 = –1 (mod p).

Полученное противоречие показывает, что допущение о x 0 (mod p ) было не верным.

Лемма о делимости суммы двух квадратов на простое число 4 n +3 доказана.

Таким образом, доказано, что число, в каноническое разложение которого входит простое число p = 4 n + 3 в нечётной степени, не представимо в виде суммы двух квадратов.

Докажем теперь, что любое число, в каноническом разложении которого простые числа p = 4 n + 3 участвуют только в чётных степенях, представимо в виде суммы двух квадратов.

Идея доказательства основана на следующем тождестве:

(а 2 + b 2 )(c 2 + d 2 ) = (ac – bd) 2 + (ad + bc) 2 ,

которое можно получить из известного свойства модуля комплексных чисел – модуль произведения равен произведению модулей. Действительно,

| z || t | = | zt | | a + bi || c + di | = |(a + bi )(c + di )|

|a + bi| 2 |c + di| 2 = |(ac – bd) + (ad + bc)i| 2

(а 2 + b 2 )(c 2 + d 2 ) = (ac – bd) 2 + (ad + bc) 2 .

Из этого тождества следует, что если два числа u, v представимы в виде суммы двух квадратов: u = x 2 + y 2 , v = z 2 + t 2 , то и их произведение uv представимо в виде суммы двух квадратов: uv = (xz yt ) 2 + (xt + yz ) 2 .

Любое натуральное число a > 1 можно записать в виде a = р 1 … р k m 2 , где р i – попарно различные простые числа, m N . Для этого достаточно найти каноническое разложение , записать каждую степень вида r в виде квадрата (r ) 2 при чётном = 2, или в виде r = r (r ) 2 при нечётном = 2 + 1 , а затем сгруппировать отдельно квадраты и оставшиеся одиночные простые числа. Например,

29250 = 23 2 5 3 13 = 2513(35) 2 , m = 15.

Число m 2 обладает тривиальным представлением в виде суммы двух квадратов: m 2 = 0 2 + m 2 . Если доказать представимость в виде суммы двух квадратов всех простых чисел р i (1 i k ) , то используя тождество, будет получено и представление числа a. По условию, среди чисел р 1 , … , р k могут встретиться только 2 = 1 2 + 1 2 и простые числа вида 4 n + 1 . Таким образом, осталось получить представление в виде суммы двух квадратов простого числа р = 4т + 1 . Это утверждение выделим в отдельную теорему (см. ниже)

Например, для a = 29250 = 2513(15) 2 последовательно получаем:

2 = 1 2 + 1 2 , 5 = 1 2 + 2 2 , 13 = 2 2 + 3 2 ,

25 = (11 – 12) 2 + (12 + 11) 2 = 1 2 + 3 2 ,

2513 = (12 – 33) 2 + (13 + 32) 2 = 7 2 + 9 2 ,

29250 = 2513(15) 2 = (715) 2 + (915) 2 = 105 2 + 135 2 .

Теорема доказана.

§ 4. Уравнение х+ х + 1 = 3у

Займемся теперь уравнением х+x+1=Зу. Оно уже имеет свою историю. В 1950 г. Р. Облат высказал предположение, что, кроме решения

x =у=1 . оно не имеет иных решений в натуральных числах х, у , где х есть нечетное число. В том же году Т. Нагель указал решение x = 313, у =181. Метод, аналогичный изложенному выше для уравнения х+х-2у=0 , позволит нам определить все решения уравнения x +х+1=3у (1)

в натуральных числах x , у. Предположим, что (х, у) есть решение уравнения (1) в натуральных числах, причем х > 1 . Можно легко убедиться, что уравнение(18) не имеет решений в натуральных числах x , у , где х = 2, 3. 4, 5, 6, 7, 8, 9; поэтому должно быть х10.

Покажем, что 12у<7 x +3, 7у>4 x + 2. 4у> 2 x +1 . (2)

Если бы было 12y > 7x+3 , мы имели бы 144у > 49 x +42 x +9 . а так как, в виду (18), 144у= 48 x + 48 x + 48 , то было бы х < 6 x +3 9, откуда

Диофантовые уравнения

Способы решения диофантовых уравнений

Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными.Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений- алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот прицесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:если a>b ,то

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера. Из первого равенства следует,что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а,поэтому НОД (a,b) = НОД (r1 ,r2)=….= НОД (rn-1, rn) = НОД (rn,0)= rn.Обратимся снова к системе(1).Из первого равенства, выразив остаток r1 чирез а и b ,получим r1=а- bq0. Подставляя его во второе равенство,найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше,мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение:если d-наибольший общий делитель натуральных чисел а и b,то найдутся такие целые числа А и В,что d= Аа+Вb. Заметим,что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1,то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида.

Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равнятся числу с,которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0,что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать,что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнеия (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1. Значит пара cx0=3*17,cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t,где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства

Отсюда найдем -51 ?t? -17 . Этим неравенствам удовлетворяют числа -10, -9. 52

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-- 1) и сложив результаты, придем к уравнению -- х+15z=300 с целочисленными решениями х= -- 300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 -- 19t. Значит, целочисленные решения системы имеют вид х= --300+15t, y = 400--19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка

Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одим интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b . Но r1/b=1/b, и на основании второго равенства той же системы имем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+1/…1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной: 40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4 .

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучщее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk . Именно в процессе поиска наилучшего приблежения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623году к цепным дробям, с чего и началось их изучение. В заключение вернёмся к цепным дробям и отметим их преимущество и недостаток по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой исчисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1 Решить в целых числах уравнение 3x+5y=7.

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение xі+yі-3xy=2.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(xІ+10=yі.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі

ни для какого целого y (распологающегося между кубами последовательных целых чисел).

10 и еще один способ решения квадратных уравнений

1. СПОСОБ: Разложение левой части уравнения на множители. 2. СПОСОБ: Метод выделения полного квадрата. 3. СПОСОБ: Решение квадратных уравнений по формуле. 4. СПОСОБ: Графическое решение квадратного уравнения...

10 способов решения квадратных уравнений

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических...

Диофантовые уравнения

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том...

Линейные диофантовы уравнения

Диофант (Diophantos) представляет одну из занимательных загадок в истории математики. Мы не знаем, кем был Диофант, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и он...

Логические задачи и методы их решения

Математическая модель системы слежения РЛС

В производстве всегда существовала проблема, сущность которой заключалась в переводе системы из некоторого начального фазового состояния в некоторое заранее заданное конечное состояние. Причем точность перехода должна быть максимальной...

Математические уравнения и их использование в решении задач

Уравнением с одним неизвестным называется запись вида А (х)=В (х) - выражения от неизвестного х. В эти выражения помимо чисел, знаков арифметических операций и обозначений функций могут входить и другие буквы, которые обозначают переменные...

Методические особенности обучения решению текстовых задач учащихся начальной школы

Решить задачу - это значит через логически верную последовательность действий и операций с имеющимися в задаче явно или косвенно числами, величинами, отношениями выполнить требование задачи (ответить на ее вопрос)...

Методы геометрии чисел для решения диофантовых уравнений

Теорема Лагранжа о четырех квадратах. Теорема: Всякое натуральное может быть представлено в виде суммы четырех квадратов целых чисел (*) Ясно, что достаточно доказать существование представления (*) лишь для бесквадратных чисел...

Нестандартные методы решения задач по математике

К числу наиболее сложных задач на вступительных конкурсных экзаменах по математике относятся задачи, решение которых сводится к рассмотрению функциональных уравнений вида или где, --- некоторые функции и...

Нестандартные методы решения уравнений и неравенств

Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения...

Диофант Александрийский - древнегреческий математик, который жил еще в III веке н. э. О нем говорят как об «отце алгебры». Это автор «Арифметики» - книги, которая посвящена нахождению положительных рациональных решений неопределённых уравнений. Диофант - первый греческий математик, который рассматривал дроби наравне с другими числами. Он первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде. В честь Диофанта назван кратер на видимой стороне Луны.

Диофантово уравнение представляет собой алгебраическое уравнение с налагаемым дополнительным условием, состоящем в том, что все его решения должны представлять собой целые числа. В большинстве случаев данного рода уравнения решаются довольно сложно. Теорема Ферма - это прекрасный пример диофантового уравнения, которое так и не решено спустя 350 лет.

Допустим, нам необходимо решить в целых числах \[(x,y)\] уравнение:

Чтобы решить данного вида задание применим алгоритм Евклида, которое говорит, что для любых двух натуральных чисел \ таких, что \[Н.О.Д.(а,b) = 1\] существуют целые числа \ такие, что \[ах + bу = 1.\]

Этапы решения:

1. Найдем решение уравнения \ применив алгоритм Евклида.

2. Найдем частное решение уравнения (1) по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: \ Для решения применим алгоритм Евклида.

Из этого равенства выразим

\[ 1 = 3 - 2^1=3-(5-3)^1=3-5^1+3\cdot 1=3^2-5\cdot1=(8-5^1)^2 -5^1=8^2-5\cdot2-5^1=5^x(-3)-8\cdot(-2) \]

Итак, \

2. Частное решение уравнения \[(1): x_о = 19m; y_о =19n.\]

Отсюда получим: \[ x_о =19^x(-3)=57; у_о =19^x(-2)=-38 \]

Пара (-57; -38) - частное решение (1).

3.Общее решение уравнения (1):

\[\left\{\begin{matrix} x=-57+8n\\ y=-3+n, n \in Z \end{matrix}\right.\]

Где взять решение диофантова уравнения?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.