Болезни Военный билет Призыв

Разработка теории ядерной реакции. Ядерная реакция синтеза. Деление атомных ядер

Темы кодификатора ЕГЭ : ядерные реакции, деление и синтез ядер.

В предыдущем листке мы неоднократно говорили о расщеплении атомного ядра на составные части. Но как этого добиться в действительности? В результате каких физических процессов можно разбить ядро?

Наблюдения радиоактивного распада в изменяющихся внешних условиях - а именно, при различных давлениях и температурах, в электрических и магнитных полях - показали, что скорость радиоактивного распада от этих условий не зависит. Никаких превращений химических элементов друг в друга все эти факторы вызвать не способны. Очевидно, изменения энергии тут слишком малы, чтобы повлиять на атомное ядро - так ветер, обдувающий кирпичный дом, не в состоянии его разрушить.

Но разрушить дом можно артиллерийским снарядом. И Резерфорд в 1919 году решил воспользоваться наиболее мощными «снарядами», которые имелись тогда в распоряжении. Это были -частицы, вылетающие с энергией около 5 МэВ при радиоактивном распаде урана. (Как вы помните, это те самые снаряды, которыми он восемь лет назад бомбардировал лист золотой фольги в своих знаменитых опытах, породивших планетарную модель атома.)

Правда, превращений золота в другие химические элементы в тех экспериментах не наблюдалось. Ядро золота само по себе весьма прочное, да и к тому же содержит довольно много протонов; они создают сильное кулоновское поле, отталкивающее -частицу и не подпускающее её слишком близко к ядру. А ведь для разбивания ядра -снаряд должен сблизиться с ядром настолько, чтобы включились ядерные силы! Что ж, раз большое количество протонов мешает - может, взять ядро полегче, где протонов мало?

Резерфорд подверг бомбардировке ядра азота и в результате осуществил первую в истории физики ядерную реакцию :

(1)

В правой части (1) мы видим продукты реакции - изотоп кислорода и протон.

Стало ясно, что для изучения ядерных реакций нужно располагать частицами-снарядами высоких энергий. Такую возможность дают ускорители элементарных частиц. Ускорители имеют два серьёзных преимущества перед естественными «радиоактивными пушками».

1. В ускорителях можно разгонять любые заряженные частицы. В особенности это касается протонов, которые при естественном распаде ядер не появляются. Протоны хороши тем, что несут минимальный заряд, а значит - испытывают наименьшее кулоновское отталкивание со стороны ядер-мишеней.

2. Ускорители позволяют достичь энергий, на несколько порядков превышающие энергию α-частиц при радиоактивном распаде. Например, в Большом адронном коллайдере протоны разгоняются до энергий в несколько ТэВ; это в миллион раз больше, чем 5 МэВ у -частиц в реакции (1) , осуществлённой Резерфордом.

Так, с помощью протонов, прошедших через ускоритель, в 1932 году удалось разбить ядро лития (получив при этом две -частицы):

(2)

Ядерные реакции дали возможность искусственного превращения химических элементов.

Кроме того, в продуктах реакций стали обнаруживаться новые, не известные ранее частицы. Например, при облучении бериллия -частицами в том же 1932 году был открыт нейтрон:

(3)

Нейтроны замечательно подходят для раскалывания ядер: не имея электрического заряда, они беспрепятственно проникают внутрь ядра. (При этом ускорять нейтроны не надо - медленные нейтроны легче проникают в ядра. Нейтроны, оказывается, нужно даже замедлять, и делается это пропусканием нейтронов через обычную воду.) Так, при облучении азота нейтронами протекает следующая реакция:

(4)

Энергетический выход ядерной реакции

Обсуждая энергию связи, мы видели, что в результате ядерных процессов масса системы частиц не остаётся постоянной. Это, в свою очередь, приводит к тому, что кинетическая энергия продуктов ядерной реакции отличается от кинетической энергии исходных частиц.

Прежде всего напомним, что полная энергия частицы массы складывается из её энергии покоя и кинетической энергии :

Пусть в результате столкновения частиц и происходит ядерная реакция, продуктами которой служат частицы и :

(5)

Полная энергия системы частиц сохраняется:

(6)

Кинетическая энергия исходных частиц равна . Кинетическая энергия продуктов реакции равна . Энергетический выход ядерной реакции - это разность кинетических энергий продуктов реакции и исходных частиц:

Из (6) легко получаем:

(7)

Если class="tex" alt="Q > 0"> , то говорят, что реакция идёт с выделением энергии больше кинетической энергии исходных частиц. Из (7) мы видим, что в этом случае суммарная масса продуктов реакции меньше

Если же , то реакция идёт с поглощением энергии : кинетическая энергия продуктов реакции меньше кинетической энергии исходных частиц. Суммарная масса продуктов реакции в этом случае больше суммарной массы исходных частиц.

Таким образом, термины «выделение» и «поглощение» энергии не должны вызывать недоумение: они относятся только к кинетической энергии частиц. Полная энергия системы частиц, разумеется, в любой реакции остаётся неизменной.

1. С помощью таблицы масс нейтральных атомов находим и , выраженные в а. е. м. (для нахождения массы ядра не забываем вычесть из массы нейтрального атома массу электронов).

2. Вычисляем массу исходных частиц, массу продуктов реакции и находим разность масс .

3. Умножаем на и получаем величину , выраженную в МэВ.

Мы сейчас подробно рассмотрим вычисление энергетического выхода на двух примерах бомбардировки ядер лития : сначала - протонами, затем - -частицами.

В первом случае имеем уже упоминавшуюся выше реакцию (2) :

Масса атома лития равна а. е. м. Масса электрона равна а. е. м. Вычитая из массы атома массу трёх его электронов, получаем массу ядра лития :

А. е. м.

Масса протона равна а. е. м., так что масса исходных частиц:

А. е. м.

Переходим к продуктам реакции. Масса атома гелия равна а. е. м. Вычитаем массу электронов и находим массу ядра гелия :

А. е. м.

Умножая на , получаем массу продуктов реакции:

А. е. м.

Масса, как видим, уменьшилась ; это означает, что наша реакция идёт с выделением энергии. Разность масс:

А. е. м.

Выделившаяся энергия:

МэВ.

Теперь рассмотрим второй пример. При бомбардировке ядер лития -частицами происходит реакция:

(8)

Массы исходных ядер нам уже известны; остаётся сосчитать их суммарную массу:

А. е. м.

Из таблицы берём массу атома бора (она равна а. е. м.); вычитаем массу пяти электронов и получаем массу ядра атома бора:

А. е. м.

Масса нейтрона равна а. е. м. Находим массу продуктов реакции:

А. е. м.

На сей раз масса увеличилась class="tex" alt="(m_2 > m_1)"> , то есть реакция идёт с поглощением энергии.

Разность масс равна:

А. е. м.

Энергетический выход реакции:

МэВ.

Таким образом, в реакции (8) поглощается энергия МэВ. Это означает, что суммарная кинетическая энергия продуктов реакции (ядра бора и нейтрона) на МэВ меньше, чем суммарная кинетическая энергия исходных частиц (ядра лития и -частицы). Поэтому чтобы данная реакция в принципе осуществилась, энергия исходных частиц должна быть не меньше МэВ.

Деление ядер

Бомбардируя ядра урана медленным нейтронами, немецкие физики Ган и Штрассман обнаружили появление элементов средней части периодической системы: бария, криптона, стронция, рубидия, цезия и т. д. Так было открыто деление ядер урана.

На рис. 1 мы видим процесс деления ядра (изображение с сайта oup.co.uk.). Захватывая нейтрон, ядро урана делится на два осколка , и при этом освобождаются два-три нейтрона.

Рис. 1. Деление ядра урана

Осколки являются ядрами радиоактивных изотопов элементов середины таблицы Менделеева. Обычно один из осколков больше другого. Например, при бомбардировке урана могут встречаться такие комбинации осколков (как говорят, реакция идёт по следующим каналам ).

Барий и криптон:

Цезий и рубидий:

Ксенон и стронций:

В каждой из этих реакций выделяется очень большая энергия - порядка МэВ. Сравните эту величину с найденным выше энергетическим выходом реакции (2) , равным МэВ! Откуда берётся такое количество энергии?

Начнём с того, что из-за большого числа протонов ( штуки), упакованных в ядре урана, кулоновские силы отталкивания, распирающие ядро, очень велики. Ядерные силы, конечно, ещё в состоянии удерживать ядро от распада, но могучий кулоновский фактор готов сказать своё слово в любой момент. И такой момент настаёт, когда в ядре застревает нейтрон (рис. 2 - изображение с сайта investingreenenergy.com).

Рис. 2. Деформация, колебания и разрыв ядра

Застрявший нейтрон вызывает деформацию ядра. Начнутся колебания формы ядра, которые могут стать столь интенсивными, что ядро вытянется в «гантельку». Короткодействующие ядерные силы, скрепляющие небольшое число соседних нуклонов перешейка, не справятся с силами электрического отталкивания половинок гантельки, и в результате ядро разорвётся.

Осколки разлетятся с огромной скоростью - около скорости света. Они и уносят большую часть высвобождающейся энергии (около МэВ из ).

Деление тяжёлых ядер можно истолковать с точки зрения уже известного нам графика зависимости удельной энергии связи ядра от его массового числа (рис. 3 ).

Рис. 3. Деление тяжёлых ядер энергетически выгодно

Цветом выделена область , в которой удельная энергия связи достигает наибольшего значения МэВ/нуклон. Это область наиболее устойчивых ядер. Справа от этой области удельная энергия связи плавно уменьшается до МэВ/нуклон у ядра урана.

Процесс превращения менее устойчивых ядер в более устойчивые является энергетически выгодным и сопровождается выделением энергии. При делении ядра урана, как видим, удельная энергия связи повышается примерно на МэВ/нуклон; эта энергия как раз и выделяется в процессе деления. Умножив это на число нуклонов в ядре урана, получим приблизительно те самые МэВ энергетического выхода, о которых говорилось выше.

Цепная ядерная реакция

Появление двух-трёх нейтронов в процессе деления ядра урана - важнейший факт. Эти нейтроны «первого поколения» могут попасть в новые ядра и вызвать их деление; в результате деления новых ядер возникнут нейтроны «второго поколения», которые попадут в следующие ядра и вызовут их деление; возникнут нейтроны «третьего поколения», которые приведут к делению очередных ядер и т. д. Так идёт цепная ядерная реакция , в ходе которой высвобождается колоссальное количество энергии.

Для протекания цепной ядерной реакции необходимо, чтобы число высвободившихся нейтронов в очередном поколении было не меньше числа нейтронов в предыдущем поколении. Величина

называеся коэффициентом размножения нейтронов . Таким образом, цепная реакция идёт при условии class="tex" alt="k > 1"> . Если , то цепная реакция не возникает.

В случае class="tex" alt="k > 1"> происходит лавинообразное нарастание числа освобождающихся нейтронов, и цепная реакция становится неуправляемой . Так происходит взрыв атомной бомбы.

В ядерных реакторах происходит управляемая цепная реакция деления с коэффициентом размножения . Стационарное течение управляемой цепной реакции обеспечивается введением в активную зону реактора (то есть в ту область, где протекает реакция) специальных управляющих стержней, поглощающих нейтроны. При полностью введённых стержнях поглощение ими нейтронов настолько велико, что и реакция не идёт. В процессе запуска реактора стержни постепенно выводят из активной зоны, пока выделяемая мощность не достигнет требуемого уровня. Этот уровень тщательно контролируется, и при его превышении включаются устройства, вводящие управляющие стержни назад в активную зону.

Термоядерная реакция

Наряду с реакцией деления тяжёлых ядер энергетически возможным оказывается и обратный в некотором смысле процесс - синтез лёгких ядер , то есть слияние ядер лёгких элементов (расположенных в начале периодической таблицы) с образованием более тяжёлого ядра.

Чтобы началось слияние ядер, их нужно сблизить вплотную - чтобы вступили в действие ядерные силы. Для такого сближения нужно преодолеть кулоновское отталкивание ядер, резко возрастающее с уменьшением расстояния между ними. Это возможно лишь при очень большой кинетической энергии ядер, а значит - при очень высокой температуре (в десятки и сотни миллионов градусов). Поэтому реакция ядерного синтеза называется термоядерной реакцией .

В качестве примера термоядерной реакции приведём реакцию слияния ядер дейтерия и трития (тяжёлого и сверхтяжёлого изотопов водорода), в результате которой образуется ядро гелия и нейтрон:

(9)

Эта реакция идёт с выделением энергии, равной МэВ (попробуйте сами провести расчёты и получить данную величину). Это очень много, если учесть, что в реакции участвуют всего нуклонов! В самом деле, в расчёте на один нуклон в реакции (9) выделяется энергия примерно МэВ, в то время как при делении ядра урана выделяется «всего» МэВ на нуклон.

Таким образом, термоядерные реакции служат источником ещё большего количества энергии, чем реакции деления ядер. С физической точки зрения это понятно: энергия реакции ядерного деления есть в основном кинетическая энергия осколков, разогнанных электрическими силами отталкивания, а при ядерном синтезе энергия высвобождается в результате разгона нуклонов навстречу друг другу под действием куда более мощных ядерных сил притяжения.

Проще говоря, при делении ядер высвобождается энергия электрического взаимодействия, а при синтезе ядер - энергия сильного (ядерного) взаимодействия.

В недрах звёзд достигаются температуры, подходящие для синтеза ядер. Свет Солнца и далёких звёзд несёт энергию, выделяющуяся в термоядерных реакциях - при слиянии ядер водорода в ядра гелия и последующем слиянии ядер гелия в ядра более тяжёлых элементов, расположенных в средней части периодической системы. Направление термоядерного синтеза показано на рис. 4 ; синтез лёгких ядер энергетически выгоден, так как направлен в сторону увеличения удельной энергии связи ядра.

Рис. 4. Синтез лёгких ядер энергетически выгоден

Неуправляемая термоядерная реакция осуществляется при взрыве водородной бомбы. Сначала взрывается встроенная атомная бомба - это нужно для создания высокой температуры на первой ступени термоядерного взрыва. При достижении необходимой температуры в термоядерном горючем бомбы начинаются реакции синтеза, и происходит взрыв собственно водородной бомбы.

Осуществление управляемой термоядерной реакции остаётся пока нерешённой проблемой, над которой физики работают уже более полувека. Если удастся добиться управляемого течения термоядерного синтеза, то человечество получит в своё распоряжение фактически неограниченный источник энергии. Это чрезвычайно важная задача, стоящая перед нынешним и будущими поколениями - в свете угрожающей перспективы истощения нефтегазовых ресурсов нашей планеты.

· Изомерный переход

См. также: Портал:Физика

Я́дерная реа́кция - процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году , бомбардируя α-частицами ядра атомов азота , она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны . Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

  • реакции с образованием составного ядра , это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).
  • прямые ядерные реакции, проходящие за ядерное время , необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил , сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеянием .

Механизмы ядерной реакции

Составное ядро

Теория механизма реакции с образованием составного ядра была разработана Нильсом Бором в 1936 году совместно с теорией капельной модели ядра и лежит в основе современных представлений о большой части ядерных реакций.

Согласно этой теории ядерная реакция идёт в два этапа. В начале исходные частицы образуют промежуточное (составное) ядро за ядерное время , то есть время, необходимое для того, чтобы частица пересекла ядро, примерно равное 10 −23 - 10 −21 . При этом составное ядро всегда образуется в возбуждённом состоянии, так как оно обладает избыточной энергией, привносимой частицей в ядро в виде энергии связи нуклона в составном ядре и части его кинетической энергии , которая равна сумме кинетической энергии ядра-мишени с массовым числом и частицы в системе центра инерции .

Энергия возбуждения

Энергия возбуждения составного ядра, образовавшегося при поглощении свободного нуклона, равна сумме энергии связи нуклона и части его кинетической энергии :

Чаще всего вследствие большой разницы в массах ядра и нуклона примерно равна кинетической энергии бомбардирующего ядро нуклона.

В среднем энергия связи равна 8 МэВ, меняясь в зависимости от особенностей образующегося составного ядра, однако для данных ядра-мишени и нуклона эта величина является константой. Кинетическая же энергия бомбардирующей частицы может быть какой угодно, например, при возбуждении ядерных реакций нейтронами, потенциал которых не имеет кулоновского барьера, значение может быть близким к нулю. Таким образом, энергия связи является минимальной энергией возбуждения составного ядра .

Каналы реакций

Переход в невозбуждённое состояние может осуществляться различными путями, называемыми каналами реакции . Типы и квантовое состояние налетающих частиц и ядер до начала реакции определяют входной канал реакции. После завершения реакции совокупность образовавшихся продуктов реакции и их квантовых состояний определяет выходной канал реакции. Реакция полностью характеризуется входным и выходным каналами.

Каналы реакции не зависят от способа образования составного ядра, что может быть объяснено большим временем жизни составного ядра, оно как бы «забывает», каким способом образовалось, следовательно, образование и распад составного ядра можно рассматривать как независимые события. К примеру, может образоваться как составное ядро в возбуждённом состоянии в одной из следующих реакций:

Впоследствии, при условии одинаковой энергии возбуждения, это составное ядро может распасться путём, обратным любой из этих реакций, с определённой вероятностью, не зависящей от истории возникновения этого ядра. Вероятность же образования составного ядра зависит от энергии и от сорта ядра-мишени .

Прямые ядерные реакции

Течение ядерных реакций возможно и через механизм прямого взаимодействия, в основном, такой механизм проявляется при очень больших энергиях бомбардирующих частиц, когда нуклоны ядра можно рассматривать как свободные. От механизма составного ядра прямые реакции отличаются, прежде всего, распределением векторов импульсов частиц-продуктов относительно импульса бомбардирующих частиц. В отличие от сферической симметрии механизма составного ядра для прямого взаимодействия характерно преимущественное направление полёта продуктов реакции вперёд относительно направления движения налетающих частиц. Распределения по энергиям частиц-продуктов в этих случаях также различны. Для прямого взаимодействия характерен избыток частиц с высокой энергией. При столкновениях с ядрами сложных частиц (то есть других ядер) возможны процессы передачи нуклонов от ядра к ядру или обмен нуклонами. Такие реакции происходят без образования составного ядра и им присущи все особенности прямого взаимодействия .

Сечение ядерной реакции

Вероятность реакции определяется так называемым ядерным сечением реакции. В лабораторной системе отсчёта (где ядро-мишень покоится) вероятность взаимодействия в единицу времени равна произведению сечения (выраженного в единицах площади) на поток падающих частиц (выраженный в количестве частиц, пересекающих за единицу времени единичную площадку). Если для одного входного канала могут осуществляться несколько выходных каналов, то отношения вероятностей выходных каналов реакции равно отношению их сечений. В ядерной физике сечения реакций обычно выражаются в специальных единицах - барнах , равных 10 −24 см².

Выход реакции

Число случаев реакции, отнесённое к числу бомбардировавших мишень частиц , называется выходом ядерной реакции . Эта величина определяется на опыте при количественных измерениях. Поскольку выход непосредственно связан с сечением реакции, измерение выхода по сути является измерением сечения реакции .

Законы сохранения в ядерных реакциях

При ядерных реакциях выполняются все законы сохранения классической физики . Эти законы накладывают ограничения на возможность осуществления ядерной реакции. Даже энергетически выгодный процесс всегда оказывается невозможным, если сопровождается нарушением какого-либо закона сохранения. Кроме того, существуют законы сохранения, специфичные для микромира; некоторые из них выполняются всегда, насколько это известно (закон сохранения барионного числа , лептонного числа); другие законы сохранения (изоспина , чётности , странности) лишь подавляют определённые реакции, поскольку не выполняются для некоторых из фундаментальных взаимодействий. Следствиями законов сохранения являются так называемые правила отбора , указывающие на возможность или запрет тех или иных реакций.

Закон сохранения энергии

Если , , , - полные энергии двух частиц до реакции и после реакции, то на основании закона сохранения энергии:

При образовании более двух частиц соответственно число слагаемых в правой части этого выражения должно быть больше. Полная энергия частицы равна её энергии покоя Mc 2 и кинетической энергии E , поэтому:

Разность суммарных кинетических энергий частиц на «выходе» и «входе» реакции Q = (E 3 + E 4) − (E 1 + E 2) называется энергией реакции (или энергетическим выходом реакции ). Она удовлетворяет условию:

Множитель 1/c 2 обычно опускают, при подсчёте энергетического баланса выражая массы частиц в энергетических единицах (или иногда энергии в массовых единицах).

Если Q > 0, то реакция сопровождается выделением свободной энергии и называется экзоэнергетической , если Q < 0, то реакция сопровождается поглощением свободной энергии и называется эндоэнергетической .

Легко заметить, что Q > 0 тогда, когда сумма масс частиц-продуктов меньше суммы масс исходных частиц, то есть выделение свободной энергии возможно только за счёт снижения масс реагирующих частиц. И наоборот, если сумма масс вторичных частиц превышает сумму масс исходных, то такая реакция возможна только при условии затраты какого-то количества кинетической энергии на увеличение энергии покоя, то есть масс новых частиц. Минимальное значение кинетической энергии налетающей частицы, при которой возможна эндоэнергетическая реакция, называется пороговой энергией реакции . Эндоэнергетические реакции называют также пороговыми реакциями , поскольку они не происходят при энергиях частиц ниже порога.

Закон сохранения импульса

Полный импульс частиц до реакции равен полному импульсу частиц-продуктов реакции. Если , , , - векторы импульсов двух частиц до реакции и после реакции, то

Каждый из векторов может быть независимо измерен на опыте, например, магнитным спектрометром . Экспериментальные данные свидетельствуют о том, что закон сохранения импульса справедлив как при ядерных реакциях, так и в процессах рассеяния микрочастиц.

Закон сохранения момента импульса

Ядерная реакция синтеза

Ядерная реакция синтеза - процесс слияния двух атомных ядер с образованием нового, более тяжелого ядра.

Кроме нового ядра, в ходе реакции синтеза, как правило, образуются также различные элементарные частицы и (или) кванты электромагнитного излучения.

Без подвода внешней энергии слияние ядер невозможно, так как положительно заряженные ядра испытывают силы электростатического отталкивания - это так называемый «Кулоновский барьер ». Для синтеза ядер необходимо сблизить их на расстояние порядка 10 −15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания. Это возможно в случае, если кинетическая энергия сближающихся ядер превышает кулоновский барьер.

Такие условия могут сложиться в двух случаях:

  • Если вещество нагревается до чрезвычайно высоких температур в звезде или термоядерном реакторе . Согласно кинетической теории , кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. В таком случае говорят о термоядерном синтезе или термоядерной реакции.

Термоядерная реакция

Термоядерная реакция - слияние двух атомных ядер с образованием нового, более тяжелого ядра, за счет кинетической энергии их теплового движения.

Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноименно положительно заряжены.

Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде:

+ энергия (17,6 МэВ) .

Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица . Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза .

Фотоядерная реакция

При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром . Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном, нейтронов . Такой распад ведёт к ядерным реакциям и , которые и называются фотоядерными , а явление испускания нуклонов в этих реакциях - ядерным фотоэффектом .

Другие

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц .

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических , то есть слева записывается сумма исходных частиц, справа - сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия , импульс , момент импульса , …). В некоторых реакциях, где участвует слабое взаимодействие , протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Второй способ записи, более удобный для ядерной физики , имеет вид A (a, bcd…) B , где А - ядро мишени, а - бомбардирующая частица (в том числе ядро), b, с, d, … - испускаемые частицы (в том числе ядра), В - остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне - более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде.

Явление самопроизвольного распада неустойчивых ядер нуклида, в результате которого образуются ядра одного нового нуклида или более, сопровождающееся ионизирующим излучением, называется радиоактивностью. Радиоактивность была открыта в 1896 г. Бекке- релем. Радиоактивны все нуклиды тяжелых элементов конца Периодической системы, начиная с полония (86 Ро), и все нуклиды, искусственно полученные в результате ядерных реакций. Устойчивость радионуклидов характеризует период их полураспада: время, в течение которого распадается половина исходных ядер. Он колеблется от сотен миллионов лет до ничтожных долей секунды.

Можно выделить следующие основные виды ионизирующего излучения.

1. Излучение положительно заряженных ядер атомов гелия 4 2 Не, названных а-частицами. Они обладают низкой проникающей способностью (поглощаются слоем воздуха толщиной в несколько сантиметров, листом бумаги и т.п.), но проявляют очень высокую ионизирующую способность. Как внешние источники а-излучатели не опасны, но очень опасно их проникновение внутрь организмов.

Такой тип радиоактивного излучения характерен для ядер тяжелых элементов. При этом заряд исходного ядра Z уменьшается на 2 единицы, а массовое число А - на 4 единицы, т.е. образуется нуклид элемента, смещенного в Периодической системе на две клетки влево от исходного радиоактивного элемента, с массовым числом, меньшим на 4 единицы (правило а-радиоактивного смещения Содди - Фаянса)

Например:

2. Излучение электронов е (), несущих отрицательный заряд и названных (3-частицами. Они обладают большей проникающей способностью, чем а-частицы, но меньшей ионизирующей способностью. При излучении (3-частицы заряд ядра увеличивается на единицу, а массовое число не изменяется, т.е. образуется нуклид элемента, смещенного в Периодической системе на одну клетку вправо от исходного радиоактивного элемента с тем же массовым числом (правило (3-радиоактивного смещения Содди - Фаянса):

Например:

(3-излучение характерно для радионуклидов, имеющих избыточное относительно устойчивых ядер количество нейтронов.

Разновидностью подобного излучения можно считать поток античастиц электрона - позитронов е + (), имеющих ту же массу, что и электрон, но положительный заряд ((3 + -частицы). При излучении Р + -частицы заряд ядра уменьшается на единицу, а массовое число не меняется:

Например:

К подобным результатам приводит К-захват - захват ядром электрона с ближайшего к нему квантового К-уровня:

р + -излучение и К-захват характерны для радионуклидов, имеющих относительно избыточное количество протонов. (При р + - и p-распаде происходит также испускание особых нейтральных частиц с ничтожно малой массой - нейтрино о и антинейтрино о; их обычно не включают в уравнения ядерных реакций.)

  • 3. Жесткое коротковолновое электромагнитное излучение с длиной волны, меньшей, чем у рентгеновского, которое сопровождает многие ядерные превращения, получившее название у-излучения. Оно не отклоняется в электрических и магнитных полях и обладает высокой проникающей способностью. Заряд и массовое число ядра при у-излучении остаются неизменными. Превращения химического элемента в другой не происходит. у-Излучение обусловлено переходом ядер радионуклидов из возбужденного в менее возбужденное или стационарное состояние.
  • 4. Нейтронное излучение (Jп ), часто возникающее в результате ядерных реакций, особенно в результате реакций деления атомных ядер. Из-за отсутствия заряда и наличия значительной массы оно обладает большой проникающей способностью и возможностью инициирования ядерных реакций (наведенная радиоактивность).

Ядерные реакции - это превращения ядер нуклидов. Радиоактивность является частным случаем ядерных реакций спонтанного разложения.

Другие виды ядерных реакций происходят при взаимодействии ядер нуклидов с элементарными частицами, более легкими ядрами, у-квантами. Как правило, такому взаимодействию препятствует значительный потенциальный барьер. Он преодолевается бомбардировкой более легкими частицами с высокой кинетической энергией мишени из вещества, содержащего ядра более тяжелого нуклида. Заряженные бомбардирующие частицы разгоняются в ускорителях, например, в синхрофазотронах. В андронных коллайдерах (от to collide - сталкиваться) два потока ядер тяжелых нуклидов (андронов) разгоняются в противоположных направлениях и сталкиваются в определенной зоне. Электрически незаряженные нейтроны получают высокую энергию в ядерных реакторах (быстрые нейтроны).

Первая искусственная ядерная реакция была осуществлена Резерфордом в 1919 г. при бомбардировке нуклида азота-14 ядрами гелия-4 (а-частицами):

В ядерной физике чаще используется сокращенная форма записи: ^Na(a,/>) "О. Это пример ядерной реакции обмена. Примеры других типов реакций обмена:

По типу реакций обмена получены многие искусственные элементы Периодической системы, не встречающиеся в природе. В этом случае мишень из относительно устойчивого и доступного тяжелого нуклида бомбардируется ядрами другого нуклида. Например, калифорний был получен бомбардировкой самария ядрами гелия: 2 9бСш (a,«) 2 9gCf,а борий 2 Jj 2 Bh - слиянием ядер висмута 2 ^Вi и хрома 26 Сг.

Реакция, при которой бомбардирующая частица (например, медленный нейтрон) остается в ядре с испусканием энергии возбуждения ядра в виде у-излучения, называется реакцией захвата. Например: 28 Ni+ 0 w 28 Ni + Y-

Возможен противоположный процесс, называемый ядерным фотоэффектом, - поглощение у-кванта, в результате которого испускается какая-либо ядерная частица (часто нейтрон):

  • 93-7,. I 92 7_ I 1
  • 40Zr + y -> 40 Zr + 0 п.

Радионуклиды урана 2 Ци, 2 Ци и плутония ^Ри поглощают нейтроны и делятся на два сопоставимых по массе «осколка» и два или три нейтрона, например:

Такие реакции называются реакциями деления. Освобождающиеся нейтроны при определенных условиях могут инициировать большое количество новых актов деления, что приведет к цепной ядерной реакции. Суммарная масса осколков и нейтронов (Ет у) меньше, чем делящегося ядра (т). Согласно уравнению Эйнштейна, это соответствует выделению энергии:

При одном акте деления ядра выделяется около 200 МэВ; при делении одного моль урана-235 (235 г) выделяется огромная энергия - около 2 10 10 кДж! (Для сравнения: при сгорании такой же массы метана СН 4 выделяется менее 1 10 4 кДж.) Нерегулируемая цепная реакция приводит к ядерному взрыву. Регулируемая реакция является источником энергии, получаемой на АЭС.

Соединение двух легких ядер в одно более тяжелое называется реакцией термоядерного синтеза. При протекании таких реакций выделяется огромная энергия, поскольку масса исходных ядер меньше, чем ядер продуктов такой реакции. Например, в реакции трития (водорода-3) и дейтерия (водорода-2):

при получении одного ядра гелия-4 выделяется 17,6 МэВ, что эквивалентно 1,7 10 9 кДж на один моль (4,0 г) гелия. На единицу массы это примерно в четыре раза больше, чем при делении ядер урана-235. Однако для слияния ядер необходимо преодоление силы их кулоновского отталкивания. Это можно осуществить, увеличив температуру до сотен миллионов градусов. Такая реакция протекает в недрах Солнца. Впервые на Земле спонтанная реакция термоядерного синтеза была осуществлена в так называемой водородной бомбе, в который необходимая температура достигалась с помощью взрыва ядерной бомбы, служившей «запалом». В мире интенсивно ведутся работы по осуществлению управляемой реакции термоядерного синтеза.

Определение 1

Ядерной реакцией в широком смысле называют процесс, который происходит в результате взаимодействия нескольких сложных атомных ядер или элементарных частиц. Так же ядерными реакциями называют такие реакции, в которых среди исходных частиц присутствует хотя бы одно ядро, оно стыкается с другим ядром или элементарной частицей, в результате чего происходит ядерная реакция и создаются новые частицы.

Как правило, ядерные реакции происходят под действиями ядерных сил. Однако ядерная реакция распада ядра под действием $\gamma $ -- квантов высоких энергий или быстрых электронов происходит под действием электромагнитных, а не ядерных сил, по той причине, что ядерные силы на фотоны и электроны не действуют. К ядерным реакциям относят процессы, которые происходят при столкновении нейтрино с другими частицами, но они протекают при слабом взаимодействии.

Ядерные реакции могут проходить в природных условиях (в недрах звезд, в космических лучах). Изучение ядерных реакций проходит в лабораториях на экспериментальных установках, в которых энергия заряженным частицам передается с помощью ускорителей. В этом случае более тяжелые частицы находятся в состоянии покоя и их называют частицами-мишенями . На них налетают более легкие частицы, которые входят в состав ускоренного пучка. В ускорителях на встречных пучках в деление на мишени и пучки нет смысла.

Энергия положительно заряженной частицы пучка должна быть порядка или больше кулоновского потенциального барьера ядра. В $1932$ году Дж. Кокрофт и Э. Уолтон впервые осуществили искусственное расщепление ядер лития путем бомбардировки протонами, энергия которых была меньшей высоты кулоновского барьера. Проникновение протона в ядро лития произошло путем туннельного перехода через кулоновский потенциальный барьер. Для отрицательно заряженных и нейтральных частиц кулоновского потенциального барьера не существует и ядерные реакции могут происходить даже при тепловых энергиях частиц которые налетают.

Самой распространённой и наглядной записью ядерных реакций взято из химии. Слева записывают сумму частиц до реакции, а справа сумму конечных продуктов реакции:

описывает ядерную реакцию, которая происходит в результате бомбардировки изотопа лития ${}^7_3{Li}$ протонами, в результате чего возникает нейтрон и изотоп бериллия ${}^7_4{Be}$.

Ядерные реакции часто записываются в символической форме: $A\left(a,bcd\dots \right)B$, где $A$ -- ядро мишени, $a$ -- бомбардирующая частица, $bcd\dots и\ B$ -- соответственно частицы и ядро, которые образуются в результате реакции. Реакцию выше можно переписать у виде ${}^7_3{Li}(p,n){}^7_4{Be}$. Иногда используется запись иду $(p,n)$, что значит выбивание нейтрона с некоторого ядра под действием протона.

Количественное описание реакций

Количественное описание ядерных реакций с точки зрения квантовой-механики возможно только статистическим способом, т.е. можно говорить о некоторой вероятности различных процессов, которые характеризуют ядерную реакцию. Таким образом, реакция $a+A\to b+B$, в начальном и конечном состоянии которой есть по две частицы, в этом понимании полностью характеризуется дифференциальным эффективным сечением рассеивания $d\sigma /d\Omega $ внутри телесного кута $d\Omega {\rm =}{\sin \theta \ }\theta d\varphi $, где $\theta $ и $\varphi $ -- полярный и азимутальный углы вылета одной с частиц, при этом угол $\theta $ исчисляется от начала движения бомбардирующей частицы. Зависимость дифференциального сечения от углов $\theta $и $\varphi $ называется угловым распределениям частиц, которые образуют реакцию. Полным или интегральным сечением, которым характеризуется интенсивность реакции, называется дифференциальное эффективное сечение, проинтегрированное по всем значением углов $\theta $ и $\varphi $:

Эффективное сечение можно интерпретировать как площадку, попадая в пределы которой налетающая частица вызовет данную ядерную реакцию. Эффективное сечение ядерной реакции измеряется в барнах $1\ б={10}^{-28}\ м^2$.

Ядерные реакции характеризуются выходом реакции. Выходом ядерной реакции $W$ называется доля частиц пучка, которые получили ядерное взаимодействие с частицами мишени. Если $S$ -- площадь сечения пучка., $I$ -- плотность потока пучка, то на такую же площадь мишени каждую секунду попадает $N=IS$ частиц. С них в одну секунду в среднем реагирует $\triangle N=IS\sigma n$ частиц, где $\sigma $ -- эффективное сечение реакции частиц пучка, $n$ -- концентрация ядер у мишени. Тогда:

Различные классификации ядерных реакций

Ядерные реакции можно классифицировать за следующими признаками:

  • за природою частиц, которые участвуют в реакции;
  • за массовым числом ядер, которые участвуют в реакции;
  • за энергетическим (тепловым) эффектом;
  • за характером ядерных преобразований.

За значением энергии $E$ частиц, что вызывают реакции, различают такие реакции:

  • при малых энергиях ($E\le 1\ кэВ$);
  • при низких энергиях ($1\ кэВ\le E\le 1\ МэВ$);
  • при средних энергиях ($1\ МэВ\le E\le 100\ МэВ$);
  • при значимых энергиях ($100\ МэВ\le E\le 1\ ГэВ)$;
  • при высоких энергиях ($1\ ГэВ\le E\le 500\ ГэВ$);
  • при сверхвысоких энергиях ($E>500\ ГэВ$).

В зависимости от энергии частицы $a$ для одних и тех же ядер $A$ происходят разные преобразования в ядерных реакциях. Для примеру рассмотрим реакцию бомбардировки изотопа фтора нейтронами разных энергий:

Рисунок 1.

В зависимости от природы частиц, которые берут участие в ядерных реакциях, их делят на следующие виды:

  • под действием нейтронов;
  • под действием фотонов;
  • под действием заряженных частиц.

За массовым числом ядер, ядерные реакции делят на следующие виды:

  • на легких ядрах ($A
  • на средних ядрах ($50
  • на массивных ядрах ($A >100$).

За характером преобразований, что происходят в ядре, реакции разделяют на:

  • радиационный захват;
  • кулоновское возбуждение;
  • деление ядер;
  • реакция взрыва;
  • ядерный фотоэффект.

При рассмотрении ядерных реакций используют следующие законы:

  • закон сохранения энергии;
  • закон сохранения импульса;
  • закон сохранения электрического заряда;
  • закон сохранения барионного заряда;
  • закон сохранения лептонного заряда.

Замечание 1

Законы сохранения дают возможность предугадать, какие с мысленно возможных реакций могут быть реализованными, а какие нет в связи с невыполнением одного или нескольких законов сохранения. В этом соотношении законы сохранения играют особенно важную роль для ядерных реакций.

Ядерная реакция характеризируется энергией ядерной реакции $Q$. Если реакция протекает с выделением энергии $Q >0$, то реакция называется экзотермической; если реакция проходит с поглощением тепла $Q

И способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

Что такое ядерные реакции

Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

Немного истории ядерных реакций

Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

Типичная формула ядерной реакции.

Какие ядерные реакции есть в физике

В целом известные на сегодняшний день ядерные реакции можно разделить на:

  • деление атомных ядер
  • термоядерные реакции

Ниже детально напишем о каждой из них.

Деление атомных ядер

Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деления ядер атома , продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.

Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

Вот так она выглядит на схеме.

При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо — температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Ядерные реакции, видео

И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.