Болезни Военный билет Призыв

Произведение и частное рациональных дробей. Рациональные дроби. Краткие сведения из теории многочленов

Алгебра 7 Б класс

Тема урока: "Рациональная дробь. Основное свойство рациональной дроби"

Дата проведения:

Цели урока:

1. Образовательная:

Ввести понятие рациональной дроби и его основного свойства;

Отработать навыки сокращения дробей и приведения их к общему знаменателю;

Закрепить эти понятия в ходе решений заданий.

2. Развивающая:

Развивать сообразительность, смекалку учащихся, развивать культуру их речи; развивать познавательную активность учащихся и логическое мышление;

3. Воспитательные:

Воспитывать целеустремленность, ответственность, организованность, формировать интерес к изучению математики.

План урока.

1. Организационный момент.

2. Проверка домашнего задания.

3. Актуализация знаний(посредством повторения предыдущего материала).

4. Объяснение темы.

5. Закрепление посредством решения заданий.

6. Домашнее задание.

7. Подведение итогов.

Ход урока

1. Организационный момент.

2. Проверка домашнего задания № 484.

При каких значениях х следующие дроби не имеют смысла:

1) ОДЗ: х≠2

2) ОДЗ: х≠-1

3) ОДЗ: х≠3

4) ОДЗ: х≠2

5) ОДЗ: х≠1

6) ОДЗ: х≠3

7) ОДЗ: х≠а

8) ОДЗ: х≠-b

9) ОДЗ: х≠1,-1

10)ОДЗ:х≠-1.2

3. Повторение предыдущего материала на закрепление

1. Чем отличается числовое выражение от буквенного?

2. Какие выражения мы называем целыми?

3. Какие выражения мы называем дробными?

4. Рациональные выражения это какие выражения?

5. Какие выражения имеют смысл при любых значениях?

6. Какие выражения при некоторых значениях переменных не имеют смысла?

7. Что называется допустимым значением переменных?

8. Какие дроби бывают?

Работа с дидактическим материалом. У доски ученик работает. Какие из этих выражений являются дробными, а какие целыми?

a 2 ; (x-y) 2 - 4xy; ; ; ;(c+3) 2 + ; 7x 2 -2xy; ; ; ; a(a-b);

Целые Дробные

a 2 , (x-y) 2 - 4xy, , ,

, (c+3) 2 + , , a(a-b),

Заполнить таблицу

Найти значение дроби, при х равным ниже указанно в таблице

4.Объяснение

Выражение вида называют рациональной дробью , где a, b - рациональные выражения, причем b обязательно содержит переменные.

Например: ,

Свойства рациональных дробей и операции с ними очень похожи на свойства числовых дробей и действия с ними. Напомним известное вам основное свойство обыкновенной дроби: если числитель и знаменатель дроби умножить на одно и то же натуральное число, то получится равная дробь, т. е. равенство верно при любых натуральных значениях a, b и с.

Это равенство справедливо не только при натуральных, но и при любых других значениях переменных а, b и с, при которых знаменатель не равен нулю, т. е. при b ≠ 0 и

с ≠ 0. Докажем это утверждение.

Пусть дробь = m. Тогда по определению частного имеем а = bm. Умножим обе части этого равенства на число с и получим ас = (bm) · с. На основании переместительного и сочетательного свойств умножения запишем ас = (bс) · m. Так как b ≠ 0 и с ≠ 0 (т. е. bс ≠ 0), то выразим из этого равенства величину Кроме этого равенства, есть равенство m = . Приравняем правые части этих выражений и получим требуемое равенство .

Равенство верно при всех значениях переменных, при которых его левая и правая части имеют смысл, т. е. при всех допустимых значениях переменных. Такие равенства также называют тождествами. Два выражения, принимающие равные значения при всех допустимых для них значениях переменных, называют тождественно равными. Замену одного такого выражения другим называют тождественным преобразованием выражения.

Было доказано, что равенство верно при всех допустимых значениях переменных. Поэтому по определению это равенство является тождеством. Такое тождество называют основным свойством дроби.

Тождество позволяет заменить дробь на тождественное ему выражение , т.е. на основании этой формулы мы можем сократить дробь на множитель с.

Пример: = =

Основное свойство дроби используют для ее приведения к заданному знаменателю.

Пример 1. Приведем дробь к знаменателю 27b 5 (т. е. запишем данную дробь в виде дроби со знаменателем 27b 5).

В заданном (новом) знаменателе 27b 5 выделим в качестве множителя старый знаменатель 3b 3 , т. е. запишем равенство 27b 5 = 3b 3 · 9b 2 . Поэтому, чтобы получить дробь с новым знаменателем 27b 5 , по основному свойству дроби умножим числитель и знаменатель данной дроби на множитель 9b 2 . Тогда получим: При этом множитель 9b 2 называют дополнительным множителем к числителю и знаменателю данной дроби .

Рассмотрим еще одно свойство дроби.

Если изменить знак числителя (или знаменателя) дроби, то изменится знак и самой дроби:

5. Решение упражнений на закрепление: №

6. Домашнее задание:

7. Подведение итогов.

- Что называется рациональной дробью?

- Что называется тождеством?

- Назовите основное свойство дроби.

- Что называется тождественным преобразованием выражения?

Она имеет вид

где P(x) и Q(x) некоторые многочлены.

Различают правильные и неправильные рациональные дроби, по аналогии с обычными числовыми дробями. Рациональная дробь называется правильной, если порядок знаменателя больше порядка числителя, и неправильной, если наоборот.

Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби

Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения (x a ) k (a - вещественный корень Q(x)) либо (x 2 + p x + q ) k (где x 2 + p x + q не имеет действительных корней), причём степени k не больше кратности соответствующих корней в многочлене Q(x). На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Рациональная дробь" в других словарях:

    Рациональная функция это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид где, многочлены от любого числа переменных. Частным случаем являются рациональные функции одного переменного: , где… … Википедия

    У этого термина существуют и другие значения, см. Дробь. 8 / 13 числитель числитель знаменатель знаменатель Две записи одной дроби Дробь в математике число, состоящее из одной или нескольких частей… … Википедия

    В Викисловаре есть статья «дробь» Наименование символа «⁄» (другое, распространённое по большей части в английском языке, название символа солидус (англ.), или слэш), например, в номерах домов. Так номер дома «5/17» читается «пять… … Википедия

    1) Р. ф. функция w=R(z), где R(z) рациональное выражение от z, т. е. выражение, полученное из независимого переменного z и нек рого конечного набора чисел (действительных или комплексных) посредством конечного числа арифметич. действий. Р. ф.… … Математическая энциклопедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

    У этого термина существуют и другие значения, см. Дробь. Наипростейшей дробью ой степени называется рациональная функция вида где принимает натуральные значения, а точки, являющиеся полюсами функции, не обязательно геометрически различны.… … Википедия

    Число, выражаемое рациональной дробью. Формальная теория Р. ч. строится с помощью пар целых чисел. Р а ц и о н а л ь н о й д р о б ь ю наз. упорядоченная пара (а, b)целых чисел а и b, у к рой b№0. Две рациональные дроби и наз. э к в и в а л е н … Математическая энциклопедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

Определение. Сумма целых неотрицательных степеней неизвестного Х, взятых с некоторыми числовыми коэфйфициентами, называется многочленом.

Здесь: - действительные числа.

n - cтепень многочлена.

Операции над многочленами.

1). При сложении (вычитании) двух многочленов складываются (вычитаются) коэффициенты при одинаковых степенях неизвестнолго х.

2). Два многочлена равны, если они имеют одинаковую степень и равные коэффициенты при одинаковых степенях Х.

3). Степень многочлена, получаемого при перемножении двух многочленов, равна сумме степеней перемножаемых многочленов.

4). Линейные операции над многочленами обладают свойствами ассоциативности, коммутативности и дистрибутивности.

5) Деление многочлена на многочлен можно осуществить по правилу «деление уголком».

Определение. Число х=а называется корнем многочлена, если подстановка его в многочлен обращает его в нуль, т. е.

Теорема Безу. Остаток от деления многочлена
на двучлен (х-а) равен значению многочлена при х=а, т. е.

Доказательство.

Пусть , где

Полагая в равенстве х=а, получим

1). При делении многочлена на двучлен (х-а) остатком всегда будет число.

2). Если а – корень многочлена, то многочлен делится на двучлен (х-а) без остатка.

3) При делении многочлена степени n на двучлен (х-а) в частном получаем многочлен степени (n-1).

Основная теорема алгебры. Любой многочлен смтепени n (n >1) имеет хотябы один корень (приводим без доказательства).

Следствие. Всякий многочлен степени n имеет ровно n корней и над полем комплексных чисел разлагается в произведение n линейных множителей, т. е. Среди корней многочлена могут быть повторяющиеся числа (кратные корни). У многочленов с действительными коэффициентами комплексные корни могут появляться только сопряжёнными парами. Докажем последнее утверждение.

Пусть
- комплексный корень многочлена, тогда На основании общего свойства комплексных чисел можно утверждать следовательно
- тоже корень.

Каждой паре комплексных сопряжённых корней многочлена соответствует квадратный трёхчлен с действительными коэфйфициентами.

здесь p , q - действительные числа (показать на примере).

Вывод. Всякий многочлен представим в виде произведения линейных множителей и квадратных трёхчленов с действительными коэффициентами.

Рациональные дроби.

Рациональной дробью называется отношение двух многочленов.

Если
, то рациональная дробь называается правильной. В противном случае дробь – неправильная. Всякую неправильную дробь можно представить в виде суммы многочлена (частного) и правильной рациональной дроби путём деления многочлена, стоящего в числителе, на многочлен, стоящий в знаменателе.

- неправильная рациональная дробь.

Данную неправильную рациональную дробь теперь можно представить в следующем виде.

С учётом показанного, в дальнейшем будем рассматривать только правильные рациональные дроби.

Существуют так называемые простейшие рациональные дроби – это дроби, не поддающиеся никакому упрощению. Эти простейшие дроби имеют вид:

Правильную рациональную дробь более сложного вида всегда можно представить в виде суммы простейших рациональных дробей. Набор дробей определяется набором корней многочлена, стоящего в знаменателе правильной несократимой рациональной дроби. Правило разложения дроби на простейшие следующее.

Пусть рациональная дробь представлена в следующем виде.

Здесь в числителе простейших дробей стоят неизвестные коэффициенты, которые всегда могут быть определены методом неопределённых коэффициентов. Суть метода состоит в приравнивании коэффициентов при одинаковых степенях Х у многочлена, стоящего в числителе исходной дроби и многочлена, стоящего в числителе дроби, полученной после приведения простейших дробей к общему знаменателю.

Приравняем коэффициенты при одинаковых степенях Х.

Решая систему уравнений относительно неизвестных коэффициентов, получим.

Итак, данная дробь представима набором следующих простейших дробей.

Приведением к общему знаменателю убеждаемся в правильности решения задачи.

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью . Если более точно, то это рациональная функция одной переменной (т.е. переменной $x$).

Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Пример №1

Указать, какие из приведённых ниже дробей являются рациональными. Если дробь является рациональной, то выяснить, правильная она или нет.

  1. $\frac{3x^2+5\sin x-4}{2x+5}$;
  2. $\frac{5x^2+3x-8}{11x^9+25x^2-4}$;
  3. $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$;
  4. $\frac{3}{(5x^6+4x+19)^4}$.

1) Данная дробь не является рациональной, поскольку содержит $\sin x$. Рациональная дробь этого не допускает.

2) Мы имеем отношение двух многочленов: $5x^2+3x-8$ и $11x^9+25x^2-4$. Следовательно, согласно определению, выражение $\frac{5x^2+3x-8}{11x^9+25x^2-4}$ есть рациональная дробь. Так как степень многочлена в числителе равна $2$, а степень многочлена в знаменателе равна $9$, то данная дробь является правильной (ибо $2 < 9$).

3) И в числителе, и в знаменателе данной дроби расположены многочлены (разложенные на множители). Нам совершенно неважно, в какой форме представлены многочлены числителя и знаменателя: разложены они на множители или нет. Так как мы имеем отношение двух многочленов, то согласно определению выражение $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ есть рациональная дробь.

Дабы ответить на вопрос о том, является ли данная дробь правильной, следует определить степени многочленов в числителе и знаменателе. Начнём с числителя, т.е. с выражения $(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)$. Для определения степени этого многочлена можно, конечно, раскрыть скобки. Однако разумно поступить гораздо проще, ибо нас интересует лишь наибольшая степень переменной $x$. Выберем из каждой скобки переменную $x$ в наибольшей степени. Из скобки $(2x^3+8x+4)$ возьмём $x^3$, из скобки $(8x^4+5x^3+x+9)^9$ возьмём $(x^4)^9=x^{4\cdot9}=x^{36}$, а из скобки $(5x^7+x^6+9x^5+3)$ выберем $x^7$. Тогда после раскрытия скобок наибольшая степень переменной $x$ будет такой:

$$ x^3\cdot x^{36}\cdot x^7=x^{3+36+7}=x^{46}. $$

Степень многочлена, расположенного в числителе, равна $46$. Теперь обратимся к знаменателю, т.е. к выражению $(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)$. Степень этого многочлена определяется так же, как и для числителя, т.е.

$$ x\cdot (x^2)^{15}\cdot x^{10}=x^{1+30+10}=x^{41}. $$

В знаменателе расположен многочлен 41-й степени. Так как степень многочлена в числителе (т.е. 46) не меньше степени многочлена в знаменателе (т.е. 41), то рациональная дробь $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ является неправильной.

4) В числителе дроби $\frac{3}{(5x^6+4x+19)^4}$ стоит число $3$, т.е. многочлен нулевой степени. Формально числитель можно записать так: $3x^0=3\cdot1=3$. В знаменателе имеем многочлен, степень которого равна $6\cdot 4=24$. Отношение двух многочленов есть рациональная дробь. Так как $0 < 24$, то данная дробь является правильной.

Ответ : 1) дробь не является рациональной; 2) рациональная дробь (правильная); 3) рациональная дробь (неправильная); 4) рациональная дробь (правильная).

Теперь перейдём к понятию элементарных дробей (их ещё именуют простейшими рациональными дробями). Существуют четыре типа элементарных рациональных дробей:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4,\ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Задача состоит в следующем: заданную правильную рациональную дробь представить в виде суммы элементарных рациональных дробей. Решению этой задачи и посвящён материал, изложенный на данной странице. Для начала нужно убедиться, что выполнено следующее условие: многочлен в знаменателе правильной рациональной дроби разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$).Грубо говоря, это требование означает необходимость максимального разложения многочлена в знаменателе, т.е. чтобы дальнейшее разложение было невозможно. Только если это условие выполнено, то можно применять такую схему:

  1. Каждой скобке вида $(x-a)$, расположенной в знаменателе, соответствует дробь $\frac{A}{x-a}$.
  2. Каждой скобке вида $(x-a)^n$ ($n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{A_1}{x-a}+\frac{A_2}{(x-a)^2}+\frac{A_3}{(x-a)^3}+\ldots+\frac{A_n}{(x-a)^n}$.
  3. Каждой скобке вида $(x^2+px+q)$ ($p^2-4q < 0$), расположенной в знаменателе, соответствует дробь $\frac{Cx+D}{x^2+px+q}$.
  4. Каждой скобке вида $(x^2+px+q)^n$ ($p^2-4q < 0$; $n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{C_1x+D_1}{x^2+px+q}+\frac{C_2x+D_2}{(x^2+px+q)^2}+\frac{C_3x+D_3}{(x^2+px+q)^3}+\ldots+\frac{C_nx+D_n}{(x^2+px+q)^n}$.

Если же дробь неправильная, то перед применением вышеизложенной схемы следует разбить её на сумму целой части (многочлен) и правильной рациональной дроби. Как именно это делается, разберём далее (см. пример №2 пункт 3). Пару слов насчёт буквенных обозначений в числителях (т.е. $A$, $A_1$, $C_2$ и тому подобные). Буквы можно использовать любые - на свой вкус. Важно лишь, чтобы эти буквы были различными во всех элементарных дробях. Чтобы найти значения этих параметров применяют метод неопределённых коэффициентов или метод подстановки частных значений (см. примеры №3, №4 и №5).

Пример №2

Разложить заданные рациональные дроби на элементарные (без нахождения параметров):

  1. $\frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}$;
  2. $\frac{x^2+10}{(x-2)^3(x^3-8)(3x+5)(3x^2-x-10)}$;
  3. $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$.

1) Имеем рациональную дробь. В числителе этой дроби расположен многочлен 4-й степени, а в знаменателе многочлен, степень которого равна $17$ (как определить эту степень детально пояснено в пункте №3 примера №1). Так как степень многочлена в числителе меньше степени многочлена в знаменателе, то данная дробь является правильной. Обратимся к наменателю этой дроби. Начнём со скобок $(x-5)$ и $(x+2)^4$, которые полностью подпадают под вид $(x-a)^n$. Кроме того, имеются ещё и скобки $(x^2+3x+10)$ и $(x^2+11)^5$. Выражение $(x^2+3x+10)$ имеет вид $(x^2+px+q)^n$, где $p=3$; $q=10$, $n=1$. Так как $p^2-4q=9-40=-31 < 0$, то данную скобку больше нельзя разложить на множители. Обратимся ко второй скобке, т.е. $(x^2+11)^5$. Это тоже скобка вида $(x^2+px+q)^n$, но на сей раз $p=0$, $q=11$, $n=5$. Так как $p^2-4q=0-121=-121 < 0$, то данную скобку больше нельзя разложить на множители. Итак, мы имеем следующий вывод: многочлен в знаменателе разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$). Теперь можно переходить и к элементарным дробям. Мы будем применять правила , изложенные выше. Согласно правилу скобке $(x-5)$ будет соответствовать дробь $\frac{A}{x-5}$. Это можно записать так:

$$ \frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}=\frac{A}{x-5}+\ldots $$

Полученный результат можно записать так:

$$ 3x^5-5x^4+10x^3-16x^2-7x+22=(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22. $$

Тогда дробь $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$ представима в иной форме:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=\frac{(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22}{x^3-2x^2+4x-8}=\\ =\frac{(x^3-2x^2+4x-8)(3x^2+x)}{x^3-2x^2+4x-8}+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=\\ =3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}. $$

Дробь $\frac{4x^2+x+22}{x^3-2x^2+4x-8}$ является правильной рациональной дробью, ибо степень многочлена в числителе (т.е. 2) меньше степени многочлена в знаменателе (т.е. 3). Теперь обратимся к знаменателю данной дроби. В знаменателе расположен многочлен, который нужно разложить на множители. Иногда для разложения на множители полезна схема Горнера , но в нашем случае проще обойтись стандартным "школьным" методом группировки слагаемых:

$$ x^3-2x^2+4x-8=x^2\cdot(x-2)+4\cdot(x-2)=(x-2)\cdot(x^2+4);\\ 3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{4x^2+x+22}{(x-2)\cdot(x^2+4)} $$

Применяя те же методы, что и в предыдущих пунктах, получим:

$$ \frac{4x^2+x+22}{(x-2)\cdot(x^2+4)}=\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Итак, окончательно имеем:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Продолжение этой темы будет рассмотрено во второй части.