Болезни Военный билет Призыв

При сложении двух когерентных волн минимальная интенсивность. Волны в упругой среде. Энергия упругой волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны. Когерентные источники. Интерференция света

Характер наблюдаемой интерференционной картины зависит от взаимного расположения источников и плоскости наблюдения P (рис. 1.1). Интерференционные полосы могут иметь, например, вид семейства концентрических колец или гипербол. Наиболее простой вид имеет интерференционная картина, полученная при наложении двух плоских монохроматических волн, когда источникиS1 иS2 находятся на достаточном удалении от экрана. В этом случае интерференционная картина имеет вид чередующихся темных и светлых прямолинейных полос (интерференционные максимумы и минимумы), расположенных на одинаковом расстоянии друг от друга. Именно этот случай реализуется во многих оптических интерференционных схемах. Каждый интерференционный максимум (светлая полоса) соответствует разности хода, где m – целое число, которое называется порядком интерференции. В частности, привозникает интерференционный максимум нулевого порядка. В случае интерференции двух плоских волн ширина интерференционных полос l простым соотношением связана с углом схождения интерферерирующих лучей на экране (рис. 1.2).

При симметричном расположении экрана по отношению к лучам 1 и 2 ширина интерференционных полос выражается соотношением: . Приближение, справедливое при малых углах, применимо ко многим оптическим интерференционным схемам.

(Бизеркала Френеля

Два плоских соприкасающихся зеркала ОМ и ОN (рис.2) располагаются так, что их отражающие поверхности образуют угол, отличающийся от 180 0 на доли одного градуса. Параллельно линии пересечения зеркал (точка 0 на рис. 2) на некотором расстоянии r от нее помещается узкая щель S, через которую свет попадает на зеркала. Непрозрачный экран Э1 преграждает свету путь от источника S к экрану Э. Зеркала отбрасывают на экран Э две когерентные цилиндрические волны, распространяющиеся так, как если бы они исходили из мнимых источников S1 и S2.

Расстояние S1S 2 тем меньше, а значит, интерференционная картина тем крупнее, чем меньше угол между зеркалами? . Максимальный телесный угол, в пределах которого могут еще перекрываться интерферирующие пучки, определяется углом 2?=< KS1T =< RS 2 L . При этом экран располагается достаточно далеко. На основании законов отражения угол 2?= 2? . Таким образом,

2.Малые колебания математического маятника. 8

3.Свободные затухающие механические колебания. Коэффициент затухания, логарифмический декремент. 12

4.Электрические колебания в электромагнитном контуре. Свободные гармонические колебания. 14

5.Вынужденные колебания в электрических цепях. Явление резонанса. 23

6.Волны в упругой среде. Энергия упругой волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны. 25

7.Электромагнитные волны. Волновое уравнение. Свойства волн (поперечность, синфазность, волновой вектор, интенсивность). Вектор Пойнтинга. 31

8.Когерентность волн. Сложение волн от двух когерентных источников. Разность фаз. Формула для суммарной интенсивности. Оптическая разность хода волн. Временная когерентность. 38

9.Явление интерференции. Условия, при выполнении которых. Пример опыта по интерференции двух когерентных волн. (Опыт Юнга. Бипризма Френеля. Зеркало Ллойда – по выбору). 39

10.Интерференционные кольца Ньютона. Вывод формул для радиусов темных и светлых колец. 41

11.Интерференция волн, отраженных от плоскопараллельной пластинки. 42

12.Принцип Гюйгенса-Френеля. Дифракция Френеля на круглом отверстии и на круглом диске. Метод зон Френеля. Векторная диаграмма (спираль Френеля). 42

  1. Понятие о колебательных процессах. Гармонические колебания. Амплитуда, частота и фаза гармонических колебаний. Уравнение гармонических колебаний. Колебания груза на пружине.

Колебательным движением (или просто колебанием) называются процессы, повторяющиеся во времени. колебательное движение является периодическим.

Колебания называются периодическими , если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.

    Простейшим типом периодических колебаний являются так называемые гармонические колебания.

    Любая колебательная система, в которой возвращающая сила прямо пропорциональна смещению, взятому с противоположным знаком (например, F = – kx ), совершаетгармонические колебания .

    Саму такую систему часто называют гармоническим осциллятором .

Периодический процесс можно описать уравнением:

По определению, колебания называются гармони-ческими, если зависимость некоторой величины x = f ( t ) имеет вид

    Расстояние груза от положения равновесия до точки, в которой находится груз, называют смещением x .

Максимальное смещение – наибольшее расстояние от положения равновесия – называетсяамплитудой и обозначается, буквойA .

определяет смещение x в данный момент времениt и называетсяфазой колебания.

    называется начальной фазой колебания при.

Фаза измеряется в радианах.

    Частота колебаний ν определяется, как число полных колебаний в 1 секунду. Частоту, измеряют в герцах (Гц):

    1 Гц = 1 колеб. в секунду.

Т период колебаний – минимальный промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебание

ω – циклическая (круговая ) частота – число полных колебаний за 2π секунд.

Фаза φ не влияет на форму кривой х (t ), а влияет лишь на ее положение в некоторый произвольный момент времени t.

    Гармонические колебания являются всегда синусоидальными.

    Частота и период гармонических колебаний не зависят от амплитуды .

Смещение описывается уравнением

Уравнения колебаний запишем в следующем виде:


  1. Малые колебания математического маятника.


  1. Свободные затухающие механические колебания. Коэффициент затухания, логарифмический декремент.

Отличия в следующем.

При колебаниях, тело, возвращающееся в положении равновесия, имеет запас кинетической энергии. В случае апериодического движения энергия тела при возвращении в положение равновесия оказывается израсходованной на преодоление сил сопротивления трения.

  1. Электрические колебания в электромагнитном контуре.Свободные гармонические колебания.

I = I 0 sin(t +)

Период колебаний определяется поформуле Томсона :

Свободные затухающие электрические колебания

Всякий реальный контур обладает активным сопротивлением R . Энергия, запасенная в контуре, постепенно расходуется в этом сопротивлении на нагревание, вследствие чего колебания затухают.

Физический смысл добротности – отношение энергий

  1. Вынужденные колебания в электрическихцепях. Явление резонанса.

Решение уравнения при большихt :

амплитуда колебаний заряда:

  1. Волны в упругой среде. Энергия упругой волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны.

Процесс распространения колебаний в пространстве называется волной

При распространении волны, частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице, передается лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн независимо от их природы является перенос энергии без переноса вещества.

Волны бывают поперечными (колебания происходят в плоскости, перпендикулярной направлению распространения), и продольными (сгущение и разряжение частиц среды происходят в направлении распространения).

Если взаимосвязь между частицами среды осуществляется силами упругости , возникающими вследствие деформации среды при передаче колебаний от одних частиц к другим, то волны называются упругими (звуковые, ультразвуковые, сейсмические и др. волны).

Упругие поперечные волны возникают в среде, обладающей сопротивлением сдвигу,

вследствие этого:

    в жидкой и газообразной средах возможно возникновение только продольных волн;

    в твердой среде возможно возникновение как продольных, так и поперечных волн.


Уравнением волны – называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x , y , z ) и времени t .

Фазовая скорость. скорость распространения фазы есть

скорость распространения волны

  1. Электромагнитные волны. Волновое уравнение. Свойства волн (поперечность, синфазность, волновой вектор, интенсивность). Вектор Пойнтинга.

Движущийся с ускорением электрический заряд испускает электромагнитные волны.

    ЭМВ представляют собой поперечные волны и аналогичны другим типам волн.

    Однако в ЭМВ происходят колебания полей, а не вещества, как в случае волн на воде или в натянутом шнуре.

Свойства волн!!!

  1. Когерентность волн. Сложение волн от двух когерентных источников. Разность фаз. Формула для суммарной интенсивности. Оптическая разность хода волн. Временная когерентность.

Если частоты волн одинаковые, то зависимость от времени будет определяться только разностью начальных фаз колебаний и, каждая из которых в волнах от независимых источников случайным (хаотичным) образом меняется во времени. Если удастся каким-либо образом согласовать колебания так, чтобы эта разность не зависела от времени, или медленно менялась во времени, то интенсивность результирующей волны уже не будет равна сумме интенсивностей падающих волн и можно записать:

Такие «согласованные» по фазе волны называют когерентными.

Таким образом, две волны будут когерентными, если слагаемое , описывающее перераспределение интенсивности в пространстве, не обращается в нуль.

Когерентными являются, например, одинаково поляризованные волны, если их частоты одинаковы, а разность начальных фаз не зависит от времени.

Интерференция света явление перераспределения потока световой энергии в пространстве при наложении (суперпозиции) двух или более световых волн.

  1. Интерференционные кольца Ньютона. Вывод формул для радиусов темных и светлых колец.

Кольцевые полосы равной толщины , наблюдаемые в воздушном зазоре

между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла , называют кольцами Ньютона .


  1. Интерференция волн, отраженных от плоскопараллельной пластинки.

  2. Принцип Гюйгенса-Френеля. Дифракция Френеля на круглом отверстии и на круглом диске. Метод зон Френеля. Векторная диаграмма (спираль Френеля).

Каждый элемент поверхности, которой достигла в данный момент волна (т.е. каждая точка волнового фронта) является центром вторичных волн, огибающая которых становится волновым фронтом в более поздний момент времени –принцип Гюйгенса

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Результат сложения световых волн будет иным, если разность фаз для всех цугов, приходящих в данную точку, будет иметь постоянное значение. Для этого необходимо использовать когерентные источники света.

Когерентными называются источники света одинаковой частоты, обеспечивающие постоянство разности фаз для волн, приходящих в данную точку пространства.

Световые волны, испущенные когерентными источниками, также называют когерентными волнами.

Рассмотрим сложение двух когерентных волн, испущенных источниками S 1 и S 2 (рис. 11.1).

Рис. 11.1.Сложение когерентных волн.

Пусть точка, для которой рассматривается сложение этих волн, удалена от источников на расстояния s 1 и s 2 соответственно, а среды, в которых распространяются волны, имеют различные показатели преломления n 1 и n 2 . Длины волн в этих средах будут равны: λ 1 = λ/n 1 , λ 2 = λ /n 2 ,

где λ – длина волны в вакууме.

Произведение длины пути, пройденного волной, на показатель преломления среды (s n) называется оптической длиной пути. Абсолютная величина разности оптических длин путей двух волн, приходящих в данную точку называется оптической разностью хода.

Выражение для разности фаз имеет вид: = 2πδ/λ.

Мы видим, что при сложении когерентных волн величина разности фаз в данной точке пространства остается постоянной и определяется оптической разностью хода и длиной волны. В тех точках, где выполняется условие

2kπ (k- целое число) cosΔφ = 1, следовательно, формула для интенсивности результирующей волны иметь вид:

Таким образом, при сложении когерентных волн происходит пространственное перераспределение энергии - в одних точках энергия волны увеличивается, а в других уменьшается. Это явление называется интерференцией.

Интерференция света - сложение когерентных световых волн, в результате которого происходит пространственное перераспределение энергии, приводящее к образованию устойчивой картины их усиления или ослабления.

Условие максимума интерференции: , к = 0,1,2,...



В этом случае интенсивность принимает максимально возможное значение.

Максимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна целому числу длин волн (четному числу полуволн).

Условие минимума интерференции: k = 0,1,2,...

Минимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна нечетному числу полуволн.

Четкая интерференционная картина наблюдается, когда интенсивности волн близки. В области максимума интенсивность увеличивается в 4 раза интенсивности каждой волны, а в области минимума интенсивность почти равна нулю.

Получение двух когерентных источников из одного точечного источника естественного света.

Рассмотрим два случая получения двух когерентных источников из одного точечного источника естественного света.

Метод Юнга. На пути точечного источника устанавливают непрозрачную преграду с двумя точечными отверстиями. Эти отверстия являются когерентными источниками, поскольку, эти 2 источниками принадлежат одному фронту волны. В области перекрытия их наблюдается интерференция. Обычно отверстия в непрозрачной преграде делают в виде параллельных штрихов. Тогда интерференционная картина на экране представляет собой систему светлых полос разделенных темными промежутками. Светлая полоса, соответствующая максимуму нулевого порядка, располагается в центре экрана. Справа и слева от него, на равных расстояниях, располагается максимумы второго, третьего и т.д. порядков. При использовании белого света максимум нулевого порядка имеет белый цвет, а остальные имеют радужную окраску, так как максимуму одного порядка для разных длин волн образуются в разных местах.

Зеркало Ллойда. Точечный источник находится на небольшом расстоянии от поверхности плоского зеркала. Интерферирует прямой и отраженный от зеркало лучи, поскольку, они принадлежат одному фронту волны (когерентные).

Интерферометры, интерференционный микроскоп.

Интерферометр - прибор, основанный на явлении интерференции. Он предназначен для измерения показателей преломления прозрачных сред, для контроля формы, микрорельефа и деформации поверхностей оптических деталей; для обнаружения примесей в газах.

Принцип работы заключается в следующем:

Две одинаковые кюветы К 1 и К 2 заполненные веществами с различными показателями преломления, один из которых известен, освещают лучами света выходящих через отверстия (Метод Юнга). Если бы показатели преломления были одинаковы, то максимум нулевого порядка располагался бы в центре экрана. Различие в показателях преломлений приводят появлению разности хода при прохождении кювет лучами света. По величине смещения максимуму нулевого порядка от центра определяют второй (неизвестный) показатель преломления по формуле:

где к - число полос, на которое сместился ахроматический максимум;

Длина кюветы.

Интерференционный микроскоп представляет собой сочетание интерферометра и оптического микроскопа. В связи с разницей показателей преломления объекта М и среды лучи приобретают разность хода. В результате объектом и средой образуется световой контраст (при монохроматическом свете) или объект станет окрашенным (при белом свете). Интерференционный микроскоп применяется для измерения концентрации сухого вещества, малых размеров (прозрачных неокрашенных микрообъектов), которые неконтрастны в проходящем свете. Разность хода определяется толщиной объекта с точностью до сотых долей длины волны, что дает возможность количественно исследовать структуру живой клетки.

Интерференция в тонких пленках. Просветление оптики.

Интерференция на тонких пленках возникает в результате отражения от передней и задней сторон. Падающий луч, под некоторым углом α, частично преломляется, частично отражается. Преломленный луч отражается от внутренней (задней) поверхности пленки и, преломившись от передней поверхности пленки, выходит в воздух. Пройдя через оптическую систему глаза оба, отраженных, луча пересекаются на сетчатке глаза, где и происходит их интерференция.

Разность хода мыльной пленки определяется по формуле:

2L - λ/2,

Разность хода пленки бензина определяется по формуле:

2L

где разность хода, – длина волны, L – толщина пленки, – показатель преломления вещества пленки.

Для уменьшения потери света при отражении объектив покрывают прозрачной пленкой, Просветление оптики толщина, которой равна 1/4 длины волны света в ней: L = λ п /4 = λ/4

Дифракция света.

Дифракция - волновое явление, которое наиболее отчетливо проявляется в том случае, когда размеры препятствия соизмеримы (одного порядка) с длиной волны света.

Дифракция света. Принцип Гюйгенса-Френеля

Дифракцией светаназывается комплекс явлений, которые обусловлены его волновой природой и наблюдаются при распространении света в среде с резкими неоднородностями.

Качественное объяснение дифракции дает принцип Гюйгенса, который устанавливает способ построения фронта волны в момент времени t + Δt если известно его положение в момент времени t.

1. Согласно принципу Гюйгенса,каждая точка волнового фронта является центром когерентных вторичных волн. Огибающая этих волн дает положение фронта волны в следующий момент времени.

Поясним применение принципа Гюйгенса на следующем примере. Пусть на преграду с отверстием падает плоская волна, фронт которой параллелен преграде (рис. 11.2).

Рис. 11.2.Пояснение принципа Гюйгенса

Каждая точка волнового фронта, выделяемого отверстием, служит центром вторичных сферических волн. На рисунке видно, что огибающая этих волн проникает в область геометрической тени, границы которой помечены штриховой линией.

Принцип Гюйгенса ничего не говорит об интенсивности вторичных волн. Этот недостаток был устранен Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн и их амплитудах. Дополненный таким образом принцип Гюйгенса получил название принципа Гюйгенса-Френеля.

2. Согласно принципу Гюйгенса-Френелявеличина световых колебаний в некоторой точке О есть результат интерференции в этой точке когерентных вторичных волн, испускаемых всемиэлементами волновой поверхности. Амплитуда каждой вторичной волны пропорциональна площади элемента dS, обратно пропорциональна расстоянию r до точки О и убывает при возрастании угла αмежду нормалью nк элементу dS и направлением на точку О (рис. 21.3).

Рис. 11.3.Испускание вторичных волн элементами волновой поверхности

Не так давно мы довольно подробно обсуждали свойства световых волн и их интерференцию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом предполагалось, что частоты источников одинаковы. В этой же главе мы остановимся на некоторых явлениях, возникающих при интерференции двух источников с различными частотами.

Нетрудно догадаться, что при этом произойдет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку сигналы приходят с одинаковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке то туда, то сюда, скажем сначала он делает ее нулевой, затем - равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

Итак, теперь известен ответ: если взять два источника, частоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсивностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!

Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку . Пусть от одного источника приходит волна , а от другого - волна , причем обе частоты и не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от времени, как это показано на фиг. 48.1, то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина - практически нуль, а когда гребни снова совпадают, вновь получается большая волна.

Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.

Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полезные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что

и что вещественная часть экспоненты равна , а мнимая часть равна . Если мы возьмем вещественную часть , то получим , а для произведения

мы получаем плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,

Если теперь изменить знак величины , то, поскольку косинус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности

После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

Теперь можно обернуть это выражение и получить формулу для , если просто положить , а , т. е. , а :

Но вернемся к нашей проблеме. Сумма и равна

Пусть теперь частоты приблизительно одинаковы, так что равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность гораздо меньше, чем и , поскольку мы предположили, что и приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной первоначальным, но что «размах» ее медленно меняется: он пульсирует с частотой, равной . Но та ли это частота, с которой мы слышим биения? Уравнение (48.0) говорит, что амплитуда ведет себя как , и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза большую. Иначе говоря, модуляция амплитуды в смысле ее интенсивности происходит с частотой , хотя мы и умножаем на косинус половинной частоты.

т. е. снова оказывается, что высокочастотная волна модулируется малой частотой.

Рассмотрим теперь ситуацию, когда имеется не один, а несколько источников волн (осцилляторов). Излучаемые ими волны в некоторой области пространства будут оказывать совокупное действие. Прежде чем начать анализ того, что может произойти в результате, остановимся сначала на очень важном физическом принципе, которым неоднократно будем пользоваться в нашем курсе, - принципе суперпозиции. Суть его проста.

Предположим, что имеется не один, а несколько источников возмущения (ими могут быть механические осцилляторы, электрические заряды, и др.). Что будет отмечать прибор, регистрирующий одновременно возмущения среды от всех источников? Если составляющие сложного процесса воздействия взаимно не влияют друг на друга, то результирующий эффект будет представлять собой сумму эффектов, вызываемых каждым воздействием в отдельности независимо от наличия остальных - это и есть принцип суперпозиции, т.е. наложения. Этот принцип един для многих явлений, но его математическая запись может быть разной в зависимости от характера рассматриваемых явлений - векторного или скалярного.

Принцип суперпозиции волн выполняется не во всех случаях, а только в так называемых линейных средах. Среду, например, можно считать линейной, если ее частицы находятся под действием упругой (квазиупругой) возвращающей силы. Среды, в которых принцип суперпозиции не выполняется, называются нелинейными. Так, при распространении волн большой интенсивности линейная среда может становиться нелинейной. Возникают чрезвычайно интересные и технически важные явления. Это наблюдается при распространении в среде ультразвука большой мощности (в акустике) или лазерных лучей в кристаллах (в оптике). Научные и технические направления, занимающиеся изучением этих явлений, получили название нелинейной акустики и нелинейной оптики, соответственно.

Будем рассматривать только линейные эффекты. Применительно к волнам принцип суперпозиции утверждает, что каждая из них?,(х, t) распространяется независимо от того, есть ли в данной среде источники других волн или нет. Математически, в случае распространения N волн вдоль оси х, он выражается так

где с(х, 1) - суммарная (результирующая) волна.

Рассмотрим наложение двух монохроматических волн одинаковой частоты со и поляризации, распространяющихся по одному направлению (ось х) из двух источников



Будем наблюдать результат их сложения в определенной точке М, т.е. зафиксируем координату х = х м в уравнениях, описывающих обе волны:

При этом мы устранили двойную периодичность процесса и превратили волны в колебания, совершающиеся в одной точке М с одним временным периодом Т= 2л/со и различающиеся начальными фазами Ф, = к г х м и ф 2 = крс м, т.е.

и

Теперь для нахождения результирующего процесса t{t) в точке М мы должны сложить 2,! и q 2: W) = ^i(0 + с 2 (0- Мы можем воспользоваться результатами, полученными ранее в подразделе 2.3.1. Используя формулу (2.21), получим амплитуду суммарного колебания А, выраженную через А, ф! и А 2 , фг, как

Значение А м (амплитуда суммарного колебания в точке М) зависит от разности фаз колебаний Аф = ф 2 - ф). Что происходит в случае разных значений Дф, подробно рассмотрено в подразделе 2.3.1. В частности, если эта разность Аф остается все время постоянной, то в зависимости от ее значения может получиться так, что в случае равенства амплитуд А = А 2 = А результирующая амплитуда А м будет равной нулю или 2А.

Чтобы явление увеличения или уменьшения амплитуды при наложении волн (интерференции) можно было наблюдать, необходимо, как уже говорилось, чтобы разность фаз Дф = ф 2 - ф! оставалась постоянной. Это требование означает, чтобы колебания были когерентными. Источники колебаний называются когерентными ", если разность фаз возбуждаемых ими колебаний не изменяется с течением времени. Волны, порожденные такими источниками, также являются когерентными. Кроме того, необходимо, чтобы складываемые волны были одинаково поляризованными, т.е. чтобы смещения частиц в них происходили, например, в одной плоскости.

Видно, что осуществление интерференции волн требует соблюдения нескольких условий. В волновой оптике это означает создание когерентных источников и реализации способа сложения возбуждаемых ими волн.

1 Различают когерентность (от лат. cohaerens - «находящийся в связи») временную, связанную с монохроматичностью волн, о которой и идет речь в данном разделе, и пространственную когерентность, нарушение которой характерно для протяженных источников излучения (нагретых тел, в частности). Особенности пространственной когерентности (и некогерентности) мы не рассматриваем.