Болезни Военный билет Призыв

Потенциал электростатического поля. Потенциал системы электрических зарядов. Связь между потенциалом и напряженностью поля

Потенциал поля системы зарядов

Пусть система состоит из неподвижных точечных зарядов q 1 , q 2 , … Согласно принципу суперпозиции в любой точке поля напряженность Е=Е 1 + Е 2 +., где Е 1 - напряженность поля заряда q 1 и т.д. Тогда можно записать, используя формулу (1.8):

где т.е. принцип суперпозиции оказывается справедливым и для потенциала. Таким образом, потенциал системы неподвижных точечных зарядов

где r i - расстояние от точечного заряда q, до интересующей нас точки поля. Здесь также произвольная постоянная опущена. Это полностью соответствует тому факту, что всякая реальная система зарядов ограничена в пространстве, поэтому ее потенциал на бесконечности можно принять равным нулю.

Если заряды, образующие систему, распределены непрерывно, то, как обычно, мы считаем, что каждый элементарный объем dV содержит "точечный" заряд сdV, где с - объемная плотность заряда в месте нахождения объема dV. С учетом этого формуле (1.10) можно придать иной вид

где интегрирование проводится или по всему пространству, или по той его части, которая содержит заряды. Если заряды расположены только на поверхности S, то

где у - поверхностная плотность заряда; dS - элемент поверхности S. Аналогичное выражение будет и в том случае, когда заряды распределены линейно.

Итак, зная распределение зарядов (дискретное, непрерывное), мы можем в принципе найти потенциал поля любой системы.

Связь между потенциалом и напряженностью поля

Электрическое поле, как известно, полностью описывается векторной функцией Е (r). Зная ее, мы можем найти силу, действующую на интересующий нас заряд в любой точке поля, вычислить работу сил поля при каком угодно перемещении заряда и другое. А что дает введение потенциала? Прежде всего, оказывается, зная потенциал ц (r) данного электрического поля, можно достаточно просто восстановить и само поле Е (r). Рассмотрим этот вопрос более подробно.

Связь между ц и Е можно установить с помощью уравнения (1.8). Пусть перемещение dl параллельно оси X, тогда dl =Ei dx, где i - орт оси X; dx - приращение координаты х. В этом случае

где - проекция вектора E на орт i (а не на перемещение dl). Сопоставив последнее выражение с формулой (1.8), получим

где символ частной производной подчеркивает, что функцию ц (х, у, z) надо дифференцировать только по х, считая у и z при этом постоянными.

Рассуждая аналогично, можно получить соответствующие выражения для проекций Е у и Е z . А определив Е x , Е y , Е z легко найти и сам вектор Е

Величина, стоящая в скобках, есть не что иное, как градиент потенциала ц (grad ц). Т.е. напряженность Е поля равна со знаком минус градиенту потенциала. Это и есть та формула, с помощью которой можно восстановить поле Е, зная функцию ц (r).

Эквипотенциальные поверхности

Введем понятие эквипотенциальной поверхности - поверхности, во всех точках которой потенциал ц имеет одно и то же значение. Убедимся в том, что вектор Е направлен в каждой точке по нормали к эквипотенциальной поверхности в сторону уменьшения потенциалац. В самом деле, из формулы (1.13) следует, что проекция вектора Е на любое направление, касательное к эквипотенциальной поверхности в данной точке, равна нулю. А это значит, что вектор Е нормален к данной поверхности. Далее, возьмем перемещение dxпо нормали к поверхности в сторону уменьшения ц, тогда 5ц<0 и согласно (1.13) E x >0, т.е. вектор Е направлен в сторону уменьшения ц, или в сторону, противоположную вектору grad ц.

Эквипотенциальные поверхности наиболее целесообразно проводить так, чтобы разность потенциалов для двух соседних поверхностей была бы одинаковой. Тогда по густоте эквипотенциальных поверхностей можно наглядно судить о значении напряженности поля в разных точках. Там, где эти поверхности расположены гуще ("круче потенциальный рельеф"), там напряженность поля больше.

Поле точечного заряда.

Пусть имеется один точечный заряд q . Это частный случай сферической симметрии. У нас есть формула: , где
– заряд внутри сферы радиусаr , но если заряд точки, то для точечного заряда
, при любомr . Понятно почему, на любом радиусе внутри сферы точка остаётся точкой. И для точечного заряда
. Это поле точечного заряда. Потенциал поля точечного заряда:
.

Поле системы точечных зарядов. Принцип суперпозиции.


Пусть мы имеем систему зарядов
, тогда напряжённость поля, создаваемая системой точечных зарядов, в любой точке равна сумме напряжённостей, создаваемых каждым из зарядов. Я мог бы сразу написать
, если бы вы свободно читали формулы. Учитесь читать формулы повествовательно. Зарядумножьте на вектор
, и разделите на модуль этого вектора, а что такое модуль вектора это длина. Эта вся штука даёт вектор, направленный вдоль вектора
.

То, что поля складываются это совершенно не очевидно. Это следствие линейности уравнений Максвелла. Уравнения линейны по . Это означает, что, если вы нашли два решения, то они складываются. Бывают ли поля, для которых не выполняется принцип суперпозиции? Бывают. Гравитационное поле не в ньютоновской теории, а в правильной, не удовлетворяет принципу суперпозиции. Земля создаёт в некоторой точке определённую напряжённость. Луна тоже. Поставили Землю и Луну, напряжённость в точке не равна сумме напряжённостей. Уравнение поля не линейно, физически это означат, что гравитационное поле является само себе источником. Так. Всё, конец.

В прошлый раз мы остановились на обсуждении поля, создаваемом системой зарядов. И мы видели, что поля, создаваемые каждым зарядом в отдельности в данной точке, складываются. При этом я подчеркнул, что это не самая очевидная вещь, - это свойство электромагнитного взаимодействия. Физически оно связано с тем, что поле само для себя не является источником, формально это следствие того, что уравнения линейны. Есть примеры физических полей, которые сами для себя являются источником. То есть, если в каком-то объёме это поле есть, так оно создаёт само поле в окружающем пространстве, формально это проявляется в том, что уравнения не линейны. Я там написал формулу для напряжённости
, напишем ещё формулу для потенциала.

Потенциал системы точечных зарядов.

Имеется система зарядов
и т.д. И тогда для некоторой точкимы напишем такую формулу:
. Значит, вот такой рецепт для потенциала. Напряжённость равна сумме напряжённостей, потенциал равен сумме потенциалов.

Замечание. Практически всегда удобнее вычислять потенциал, а не напряжённость, по понятным причинам: напряжённость – это вектор, и векторы надо складывать по правилу сложения векторов, ну, правилу параллелограмма, это занятие, конечно, более скучное, чем складывать числа, потенциал – это скалярная величина. Поэтому, практически всегда, когда мы имеем достаточно плотное распределение заряда, ищем потенциал, напряжённость поля потом находим по формуле:
. 1)

Поле, создаваемое произвольным ограниченным распределением заряда 1).

Ну, что тут означает эпитет «ограниченный»? То, что заряд локализован в конечной области пространства, то есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет. Понятно, что с точки зрения физики это не ограничение, ну, и, действительно, мы имеем дело практически всегда только с ограниченными распределениями, нет такой ситуации, чтобы заряд был размазан по всей вселенной, он концентрируется в определённых областях.

В

от такая проблема: областьзанята зарядом, по этой области размазан электрический заряд, мы должны полностью охарактеризовать этот заряд и найти создаваемое им поле. Что значит полностью охарактеризовать распределение заряда? Возьмём элемент объёма
, положение этого элемента задаётся радиус-вектором, в этом элементе сидит заряд
. Для того, чтобы найти поле, нам нужно знать заряд каждого элемента объёма, это означает, что нам нужно знать плотность заряда в каждой точке. Вот эта функция
предъявлена, она для нашей цели исчерпывающе характеризует распределение заряда, больше ничего знать не надо.

Пусть нас интересует поле в точке . А дальше принцип суперпозиции. Мы можем считать зарядdq , который сидит в этом элементе объёма, точечным 2). Мы можем написать сразу выражение для потенциала, который создаёт этот элемент в этой точке:
, это потенциал, создаваемый элементом в точке. А теперь понятно, что полный потенциал в этой точке мы найдём суммированием по всем элементам. Ну, и напишем эту сумму как интеграл:
. 3)

Этот рецепт срабатывает железно для любого предъявленного распределения заряда, никаких проблем, кроме вычисления интеграла, нет, но компьютер такую сумму посчитает. Напряжённость поля находится:
. Когда интеграл вычислен, то напряжённость находится просто дифференцированием.

  • Александр Николаевич Фурс Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь

Аннотация

В калибровке Кулона рассчитаны потенциалы поля произвольного распределения зарядов и токов. Показано, что векторный потенциал определяется не только значениями плотности тока в запаздывающие моменты времени, но и предысторией изменения плотности заряда на временном интервале, ограниченном запаздывающим и текущим моментами. Получены различные представления потенциалов Лиенара – Вихерта в калибровке Кулона. Они применены к случаю равномерно и прямолинейно движущегося точечного заряда.

Биография автора

Александр Николаевич Фурс, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь

доктор физико-математических наук, доцент; профессор кафедры теоретической физики и астрофизики физического факультета

Литература

1. Ландау Л. Д., Лифшиц Е. М. Теория поля. М., 1973.
2. Джексон Дж. Классическая электродинамика. М., 1965.
3. Бредов М. М., Румянцев В. В., Топтыгин И. Н. Классическая электродинамика. М., 1985.
4. Гайтлер В. Квантовая теория излучения. М., 1956.
5. Гинзбург В. Л. Теоретическая физика и астрофизика. Дополнительные главы. М., 1980.
6. Wundt B. J., Jentschura U. D. Sources, potentials and fields in Lorenz and Coulomb gauge: Cancellation of instantaneous interactions for moving point charges // Ann. Phys. 2012. Vol. 327, № 4. P. 1217–1230.
7. Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. М., 1969.

Ключевые слова

Калибровочная инвариантность, калибровки Лоренца и Кулона, запаздывающие потенциалы, потенциалы Лиенара – Вихерта

  1. Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
  2. Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
  3. Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См.

Напряженность поля уединенного положительного точечного заряда q в точке A на расстоянии r от заряда (рис.2.1) равна

Здесь ― единичный вектор, направленный вдоль прямой, соединяющей эту точку и заряд.

Рис.2.1. Поле точечного заряда

Пусть потенциал равен нулю на бесконечности. Тогда потенциал произвольной точки поля точечного заряда

.

В случае объемного распределения заряда (в конечной области) с учетом имеем:

.

Аналогично иммеем:

для поверхностного распределения заряда ,

для линейного распределения заряда .

Уравнение Пуассона и Лапласа

Ранее было получено
. Тогда:

Откуда получаем уравнением Пуассона:

или .

- опера́тор Лапла́са (лапласиа́н, оператор дельта).

В декартовой системе координат может быть представлено в форме

Решение уравнения Пуассона в общем виде можно найти следующим образом. Положим, что в объеме V есть заряды плотностью r. Эти заряды представим в виде совокупности точечных зарядов rdV , где dV ― элемент объема. Составляющая потенциала d j электрического поля от элементарного заряда rdV равен .

Значение j определяется как сумма (интеграл) потенциалов от всех зарядов поля:

.

Предполагается, что потенциал на бесконечности равен нулю и заряды, создающие поля распределены в ограниченной области (иначе интеграл может оказаться расходящимся).

В реальных условиях свободные заряды располагаются на поверхности проводников бесконечно тонким слоем. В диэлектриках, которыми разделены заряженные проводники, объемные заряды от­сутствуют . В этом случае в диэлектрике имеем уравнение Лапласа:

или .

Для однозначного решения дифференциальных уравнений поля необходимы граничные условия.

Граничные условия для векторов электрического поля

Пусть наповерхности раздела двух диэлектриков с различными диэлектрическими проницаемостями ε 1 и ε 2 распределен поверхностный заряд плотностью σ.

Окружим точку на поверхности раздела сред элементарнымцилиндром (высота цилиндра много меньше радиуса ) таким образом, чтобы его основания находились в разных средах и были перпендикулярны к нормали, проведенной в рассматриваемой точке (рис.2.2). Этот цилиндр охватывает малую площадку на поверхности раздела сред с зарядом σ .

Векторы электрического смещения в первой и второй средах обозначим соответственно и .

Применим к поверхности цилиндра теорему Гаусса

,

где S ― поверхность элементарного цилиндра.



Рис.2.2. Векторы элекрического смещения на границе сред

Устремим объём цилиндра к нулю при условие, что высота цилиндра много меньше его радиуса. В этом случае можно пренебречь потоком вектора сквозь боковую поверхность. Учитывая малые размеры площадок оснований, можно считать что вектор в пределах своей площадки имеет одно и то же значение. С учетом этого после интегрирования для проекций вектора на номаль получим

Учитывая, что , после сокращения получаем граничное условие нормальной составляющей вектора электрического смещения

D n 2 –D n 1 = σ . (**)

Нормальная проекция вектора электрического смещения на границе раздела двух сред претерпевает скачок, равный поверхностной плотности свободных зарядов, распределенных на этой границе .

При отсутствии на поверхности раздела сред поверхностного заряда имеем .

На границе раздела двух диэлектриков в случае отсутствия на границе раздела двух сред свободного заряда равны нормальные составляющие вектора электрического смещения.

Выделим на границе раздела сред малый контуртаким образом, чтобы его стороны ab и cd находились в разных средах и были перпендикулярны к нормали, проведенной в рассматриваемой точке (рис.2.3). Размеры сторон устремим к нулю контура удовлетворяют условию .

Рис.2.3. Векторы напряженности электрического поля на границе сред

Применим к контуру второе уравнение Максвелла в интегральной форме:

,

где ― площадь поверхности, ограниченной контуром abcd ; ― вектор элементарной площадки, направленный перпедикулярно к площадке .

При интегрировании пренебрегаем вкладом в интеграл на боковых сторонах da и bc ввиду их малости. Тогда:

Так как конечная величина, а стремится кнулю, то

(***)

.

На границе раздела двух диэлектриков равны тангенциальные составляющие вектора напряженности электрического поля.



При отсутствии на поверхности раздела сред поверхностного заряда из

Выражений (*) и (***)получаем соотношение, определяющее преломление векторов и на границе раздела сред

Формула- закон Кулона

где к коэффициент пропорциональности

q1,q2 неподвижные точечные заряды

r расстояние между зарядами

3. Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда : .

Напряжённость электрического поля точечного заряда

[править]В единицах СИ

Для точечного заряда в электростатике верен закона Кулона

Напряженность электрического поля произвольного распределения зарядов

По принципу суперпозиции для напряженности поля совокупности дискретных источников имеем:

где каждое

4. При́нцип суперпози́ции - один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

· результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

· Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

· Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .

· Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

В электростатике принцип суперпозиции есть следствие того факта, что уравнения Максвелла в вакууме линейны. Именно из этого следует, что потенциальную энергию электростатического взаимодействия системы зарядов можно легко сосчитать, вычислив потенциальную энергию каждой пары зарядов.



5. Работа электрического поля.

6. Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Напряжённость электростатического поля и потенциал связаны соотношением

7. Принцип суперпозиции электростатических полей.Силы или поля от различных зарядов складываются с учетом их позиции или направленности (вектора). Это выражает принцип “суперпозиции” поля или потенциалов:потенциал поля нескольких зарядов равен алгебраической сумме потенциалов отдельных зарядов, φ=φ 1+φ2+…+φn= ∑i nφi. Знак потенциала совпадает со знаком заряда,φ=kq/r .

8. Потенциальная энергия заряда в электрическом поле. Продолжим сравнение гравитационного взаимодействия тел и электростатического взаимодействия зарядов. Тело массойm в поле тяжести Земли обладает потенциальной энергией.
Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком:

A = - (W p2 - W p1 ) = mgh .

(Здесь и далее мы будем обозначать энергию буквой W .)
Точно так же, как тело массой m в поле силы тяжести обладает потенциальной энергией, пропорциональной массе тела, электрический заряд в электростатическом поле обладает потенциальной энергией W p , пропорциональной заряду q . Работа сил электростатического поля А равна изменению потенциальной энергии заряда в электрическом поле, взятому с противоположным знаком:

9. Теорема о циркуляции вектора напряженности в интегральной форме:

В дифференциальной форме:

10. Связь потенциала и напряженности. E = - grad = -Ñ .

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком . Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала

11. Поток вектора напряженности .

Теорема Гаусса в интегральной форме: где

· - поток вектора напряжённости электрического поля через замкнутую поверхность .

· - полный заряд, содержащийся в объёме, который ограничивает поверхность .

· - электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме: Здесь - объёмная плотность заряда (в случае присутствия среды - суммарная плотность свободных и связанных зарядов), а - оператор набла.

12. Применение закона Гаусса. 1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью .

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

a. Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен

По теореме Гаусса

Следовательно

c. Проведем через точку В, находящуюся внутри заряженной сферической поверхности, сферу S радиусом г

Напряженность поля равномерно заряженной бесконечной прямолинейной нити (или цилиндра).

Предположим, что полая цилиндрическая поверхность радиуса R заряжена с постоянной линейной плотностью .

Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность

По теореме Гаусса

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

В это выражение не входят координаты, следовательно электростатическое поле будет однородным, а напряженность его в любой точке поля одинакова.

13. ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ .

Электрический диполь - система двух равных по модулю разноименных точечных зарядов (), расстояние между которыми значительно меньше расстояния до рассматриваемых точек поля.
Плечо диполя - вектор , направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между зарядами.
Электрический момент диполя (дипольный момент):
.

Потенциал поля диполя:


Напряженность поля диполя в произвольной точке (согласно принципу суперпозиции):

где и - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.

Напряженность поля диполя на продолжении оси диполя в точке А :
.
Напряженность поля диполя на перпендикуляре, восставленном к оси из его середины в точке B :
.