Болезни Военный билет Призыв

Польза резонанса примеры. Резонанс: это простыми словами. Смотреть что такое "Резонанс" в других словарях

Марта 02 2016

Резонанс - это резкий рост амплитуды вынужденных колебаний, который наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами колебательной системы. Увеличение амплитуды происходит при совпадении внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи резонансных явлений можно выделить и/или усилить даже совсем слабые гармонические колебания. Резонанс - явление, заключающееся в том, что колебательная система оказывается особенно отзывчивой на воздействие определённой частоты вынуждающей силы.

В нашей жизни довольно много ситуаций, в которых проявляется резонанс. Например, если к струнному музыкальному инструменту поднести звенящий камертон, то акустическая волна, исходящая от камертона, вызовет вибрацию струны настроенной на частоту камертона, и она сама зазвучит.

Еще один пример, всем известный эксперимент с тонкостенным бокалом. Если измерить частоту звука, с которой звенит бокал, и, подать звук с такой же частотой от генератора частот, но с большей амплитудой, через усилитель и динамик обратно на бокал, его стенки входят в резонанс с частотой звука идущего от динамика и начинают вибрировать. Увеличение амплитуды этого звука до определенного уровня приводит к разрушению бокала.

Биорезонанс: с Древней Руси и до наших времен

Наши православные предки, ещё за десятки тысяч лет до прихода христианства на Русь хорошо знали о силе колокольного звона и старались в каждой деревне установить колокольню! Благодаря чему в средневековье Русь, богатая церковными колоколами, избегала опустошительных эпидемий чумы в отличии от Европы (Галлии), в которой святые инквизиторы на кострах сожгли не только всех учёных и ведающих, но и все древние «еретические» книги, написанные на глаголице, хранившие уникальные знания наших предков, в том числе и о силе резонанса!

Таким образом, все православные знания, накопленные веками, были запрещены, уничтожены и подменены новой христианской верой. При этом по сей день данные о биорезонансе находятся под запретом. Даже спустя века любая информация о методах лечения, не приносящих прибыль фармацевтической промышленности, умалчивается. В то время как ежегодный многомиллиардный оборот фармацевтики растет с каждым годом.

Яркий пример применения резонансных частот на Руси, и это факт, от которого нельзя отвертеться. Когда в Москве в 1771 году (1771 г.) вспыхнула эпидемия чумы, Екатерина II отправила из Петербурга графа Орлова с четырмя лейб-гвардиями и огромным штатом врачей. Вся жизнь в Москве была парализована. Дабы отогнать «моровые поветрия» миряне окуривали жилища, на улицах разводили огромные костры, и вся Москва была окутана черным дымом, так как тогда считалось, что чума распространяется по воздуху, но это мало помогало. А ещё изо всех сил били в набат (самый большой колокол) и во все колокола меньшего размера в течении 3-х дней подряд, так как свято верили, что колокольный звон отведёт от города страшную беду. Через несколько дней эпидемия стала отступать. «В чем секрет?» - спросите Вы. На самом деле ответ лежит на поверхности.

А теперь рассмотрим небезызвестный пример использования биорезонанса в наше время. С целью соблюдения чистоты эксперимента, медики в палату с онкологическими больными поставили металлические пластины, наподобие тех, что использовались в древних монастырях, чтобы колокола у пациентов не могли ассоциироваться с церковью, и, рождаемое поневоле самовнушение, не могло существенно повлиять на результаты исследований. При подборе индивидуальных частот для каждого больного использовалось множество титановых пластин различного размера. Итог превзошел все ожидания!

После воздействия акустических волн определённой частоты на биологически активные точки пациентов у 30% больных прекратился болевой синдром, и они смогли уснуть, а ещё у 30% больных прекратились боли, не снимавшиеся самыми сильными наркотическими анестетиками!

В настоящее время, для достижения эффекта резонанса нет необходимости использовать огромные колокола, а есть уникальная возможность, применять достижения науки и техники, созданные электронные приборы на основе частотного резонанса, иными словами приборы биорезонансной терапии Smart Life.

Эффект резонанса в биологических структурах можно вызвать при помощи:

Акустических волн

Механического воздействия

Электромагнитных волн видимого и радиочастотного диапазонов

Импульсов магнитного поля

Импульсов слабого электрического тока

Импульсного теплового воздействия

То есть, эффект резонанса в биологических структурах можно вызывать внешним воздействием и любыми физическими явлениями, возникающими в процессе биохимических реакций внутри живой клетки. Причём каждая биологическая структура имеет свой уникальный частотный спектр, сопровождающий биохимические процессы и откликается на внешнее воздействие, как основной резонансной частоты, так и высших или низших гармоник от основной частоты, с амплитудой во столько раз большей, на сколько эти гармоники отстоят от частоты основного резонанса.

Как в повседневной жизни можно использовать силу резонанса, и какой же метод воздействия выбрать?

Акустические волны

Угадайте, что происходит с зубным камнем во время его удаления, при помощи ультразвука в кабинете у стоматолога или при разрушении камней в почках? Ответ очевиден. И без сомнения, акустическое воздействие - это прекрасная возможность для исцеления организма, если бы не одно «но». Колокола много весят, дорого стоят, создают сильный шум, и могут использоваться исключительно стационарно.

Магнитное поле

Чтобы вызвать хотя бы сколь-нибудь ощутимый эффект от воздействия пульсирующего магнитного поля на всё тело, необходимо изготовить электромагнит огромных размеров и массой пару тонн, он будет занимать пол комнаты и потреблять очень много электроэнергии. Инертность системы не позволит использовать его на высоких частотах. Маленькие электромагниты можно использовать лишь локально из-за малого радиуса действия. Также нужно точно знать зоны на теле и частоту воздействия. Вывод неутешителен: использовать магнитное поле для терапии заболеваний экономически не целесообразно в домашних условиях.

Электрический ток Электромагнитные волны
Для метода частотного резонанса можно использовать радиоволны с несущей частотой от 10 кГц до 300 МГц, так как в этом диапазоне самый низкий коэффициент поглощения ЭМВ нашим телом и оно для них прозрачно, а также электромагнитные волны в видимом и инфракрасном спектре. Видимый красный свет с длиной волны от 630 нм до 700 нм проникает в ткани на глубину до 10 мм, а инфракрасный свет от 800 нм до 1000 нм проникает на глубину до 40 мм и глубже, вызывая ещё и некоторое тепловое воздействие при торможении в тканях. Для воздействия на биологически активные зоны на поверхности кожи, можно использовать радиоволны с несущей частотой до ~ 50 ГГц

Резонанс играет очень большую роль в самых разнообразных явлениях, причем в одних - полезную, в других - вредную. Приведем несколько примеров, относящихся к механическим колебаниям.

Идя по доске, перекинутой через ров, можно попасть шагами в резонанс с собственным периодом системы (доски с человеком на ней), и доска начинает тогда сильно колебаться (изгибаться вверх и вниз). То же самое может случиться и с мостом, по которому проходит войсковая часть или проезжает поезд (периодическая сила обусловливается ударами ног или ударами колес на стыках рельсов). Так, например, в 1906г. в Петербурге обрушился так называемый Египетский мост через реку Фонтанку. Это произошло при переходе через мост кавалерийского эскадрона, причем четкий шаг лошадей, отлично обученных церемониальному маршу, попал в резонанс с периодом моста. Для предотвращения таких случаев войсковым частям при переходе через мосты приказывают обычно идти не «в ногу», а вольным шагом. Поезда же большей частью переезжают мосты на медленном ходу, чтобы период ударов колес о стыки рельсов был значительно больше периода свободных колебаний моста. Иногда применяют обратный способ «расстройки» периодов: поезда проносятся через мосты на максимальной скорости.

Случается, что период ударов колес на стыках рельсов совпадает с периодом колебаний вагона на рессорах, и вагон тогда очень сильно раскачивается. Корабль также имеет свой период качаний на воде. Если морские волны попадают в резонанс с периодом корабля, то качка становится особенно сильной. Капитан меняет тогда скорость корабля или его курс. В результате период волн, набегающих на корабль, изменяется (вследствие изменения относительной скорости корабля и воли) и уходит от резонанса.

Неуравновешенность машин и двигателей (недостаточная центровка, прогиб вала) является причиной того, что при работе этих машин возникает периодическая сила, действующая на опору машины - фундамент, корпус корабля и т. п. Период силы может совпасть при этом с периодом свободных колебаний опоры или, например, с периодом колебаний изгиба самого вращающегося вала или с периодом крутильных колебаний этого вала. Получается резонанс, и вынужденные колебания могут быть настолько сильны, что разрушают фундамент, ломают валы и т. д. Во всех таких случаях принимаются специальные меры, чтобы избежать резонанса или ослабить его действие (расстройка периодов, увеличение затухания - демпфирование и др.).

Очевидно, для того чтобы с помощью наименьшей периодической силы получить определенный размах вынужденных колебаний, нужно действовать в резонанс. Тяжелый язык большого колокола может раскачать даже ребенок, если он будет натягивать веревку с периодом свободных колебаний языка. Но самый сильный человек не раскачает язык, дергая веревку не в резонанс.

На явлении резонанса основало действие прибора, предназначенного для определения частоты переменного тока, сила которого изменяется по гармоническому закону (см. том II, § 153). Такие приборы, носящие название язычковых частотомеров, обычно применяются для контроля постоянства частоты в электрической сети. Внешний вид прибора изображен на рис. 28, а. Он состоит из набора упругих пластинок с грузиками на концах (язычков), причем массы грузиков и жесткости пластинок подобраны так, что частоты соседних язычков отличаются на одно и то же число герц. У частотомера, изображенного на рис. 28, а, частоты язычков идут через каждые . Эти частоты написаны на шкале против язычков.

Рис. 28. Язычковый частотомер: а) внешний вид; б) схема устройства

Устройство частотомера схематически показано на рис. 28, б. Исследуемый ток пропускается через обмотку электромагнита. Колебания якоря передаются планке, с которой связаны основания всех язычков и которая укреплена на гибких пластинках. Таким образом, на каждый язычок действует гармоническая сила, частота которой равна частоте тока. Язычок, попавший в резонанс с этой силой, колеблется с большей амплитудой и показывает на шкале свою частоту, т. е. частоту тока.

В дальнейшем мы еще не раз встретимся с явлением резонанса, когда будем изучать звуковые и электрические колебания. Именно эти колебания дадут нам особенно яркие примеры полезного применения резонанса.

При резонансе энергия поступает в систему согласованно с колебаниями в ней, постоянно увеличивая их амплитуду. В стационарном режиме большая амплитуда колебаний поддерживается малыми поступлениями энергии в систему, восполняющими потери энергии колебаний (нагрев проводников, преодоление сил сопротивления, потери на излучение электромагнитных и механических волн) за один период. В системе при резонансе созданы наиболее благоприятные условия для реализации свойственных системе свободных незатухающих колебаний, и поэтому амплитуда колебаний резко возрастает.

Рассмотрим некоторые примеры проявления резонанса в природе.

Пример 1 . Солдаты проходят по мосту строевым шагом, частота ударов ног о поверхность моста может совпасть с собственной частотой колебаний моста как колебательной системы, наступает явление резонанса, при котором амплитуда колебаний моста постепенно нарастает и при больших числовых значениях может привести к его разрушению.

Пример 2 . Вентилятор плохо прикреплен к потолку и при своем вращении он создает толчки на потолок, частота которых может совпасть с собственной частотой колебаний комнаты (потолка) как колебательной системы, амплитуда колебаний потолка нарастает и может привести к его обрушению.

Пример 3 . Приборы на кораблях максимально утяжеляют (делают тяжелыми подставки) и подвешивают на мягких пружинах (коэффициент жесткости для них будет малым). В этом случае частота качки корабля будет больше собственной частоты колебаний (
) приборов на пружинах и поэтому резонанса не наступает.

Пример 4 . В радиоприемниках на основе явления резонанса можно выделить нужный сигнал из большого числа сигналов разных радиостанций, поступающих на его приемную антенну (рис. 5.23,а). Пусть на вход радиоприемника поступают сигналы малой амплитуды с различной несущей частотой

Для выделения сигнала с несущей частотой , необходимо добиться равенства частотысобственных свободных незатухающих колебаний приемного контура и частоты(=). Тогда за счет явления резонанса амплитуда сигнала с частотойна выходе конденсатора резко возрастает, а амплитуды остальных сигналов останутся прежними (рис. 5.23,б показана сплошной линией резонансная кривая, максимум которой приходится на частоту)

и тем самым происходит выделение сигнала с несущей частотой . Изменяя электроемкость конденсатора, можно настроить приемный контур антенны на несущую частоту(на рис. 5.22,б пик резонансной кривой смещается на частоту).

    1. Нелинейные системы. Автоколебания

1. Нелинейные системы . Под нелинейными системами понимают такие колебательные системы, свойства которых зависят от происходящих в них процессов. В таких системах существуют нелинейные связи, например, между: 1) силой упругости и смещениемгруза относительно положения равновесия. Это приводит к нарушению закона Гука и к зависимости коэффициента к жесткости системы от смещения , что изменяет собственную частотуколебаний системы; 2) электрическими зарядами конденсатора и создаваемой ими напряженностью поля (сегнетоэлектрик между пластинами конденсатора под действием электрического поля изменяет свою диэлектрическую проницаемость и тем самым приводит к изменению электроемкости конденсатора в зависимости от подаваемого в контур напряжения, т.е. к изменению собственной частоты колебаний контура) и т.д.

Все физические системы являются нелинейными системами. При малых амплитудах колебаний (при малых отклонениях от положения равновесия) физические системы можно считать линейными, колебания в них описываются одинаковыми дифференциальными уравнениями, что и позволяет построить общую теорию колебаний.

Нелинейные эффекты в физических системах обычно проявляются при увеличении амплитуды колебаний – это приводит к тому, что собственные колебания системы (осциллятора) уже не будут гармоническими, а их частота будет зависеть от амплитуды колебаний. Уравнения движения для них являются нелинейными, а такие системы называют ангармоническими осцилляторами(см. § 5.5).

Действительно, например, для малых отклонений потенциального поля от параболического вида () дифференциальное уравнение колебаний будет иметь вид

,

Из записанного дифференциального уравнения видно, что коэффициент жесткости зависит от амплитуды колебаний, что приводит к зависимости угловой частоты свободных незатухающих колебаний системы от амплитуды колебаний
.

Для больших отклонений от линейного поведения зависимость
усложняется, и поэтому усложняются уравнения описывающие колебания в системе.

Для нелинейных систем, в отличие от линейных, нарушается принцип суперпозиции , согласно которому результирующий эффект от сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга.

Изменение в нелинейных системах формы гармонического внешнего воздействия и нарушение принципа суперпозиции позволяют осуществлять с помощью таких систем генерирование и преобразование частоты электромагнитных колебаний – выпрямление, умножение частоты, модуляцию колебаний и т.д.

Резонанс в такой нелинейной системе будет отличаться тем, что в ходе раскачки осциллятора внешней силой величина расстройки (
) будет изменяться, так как частота будет зависеть от амплитуды колебаний.

2.Автоколебательные системы . Рассмотрим подробнее один из примеров нелинейных систем - автоколебательные системы.

Преимуществом использования резонансных явлений является их экономичность и большая амплитуда колебаний. Недостатком является нестабильность работы системы, связанная с необходимостью с большой степенью точности поддерживать условие резонанса (
), так как любые отклонения частоты внешнего воздействия от резонансной частоты при узкой резонансной кривой резко изменяют амплитуду колебаний в системе (рис. 5.17,а, б).

Для того чтобы избежать таких нежелательных явлений, можно заставить саму систему поддерживать это резонансное условие, такая система является автоколебательной системой. Автоколебательная система относится к группе нелинейных колебательных систем, в которых происходит компенсация диссипативных потерь за счет притока энергии от внешнего постоянного источника. При этом система сама регулирует подвод энергии в систему, подавая ее в нужный момент времени в нужном количестве.

Автоколебательная система состоит из колебательной системы, источника энергии и клапана - устройства, которое регулирует подвод энергии в систему. Работой клапана управляет сама система с помощью обратной связи (рис.5.24,а)

В качестве примера автоколебательной системы можно привести систему, состоящую из груза, прикрепленного к двум пружинам и совершающего колебания на металлическом стержне (рис. 5.24,б). Источник постоянного тока с помощью электромагнита за каждый период колебаний совершает работу по увеличению кинетической энергии груза, восполняя потери энергии колебаний на преодоление сил сопротивления.

Это происходит следующим образом. При своем движении металлическая пластина, прикрепленная к грузу, касается контакта-прерывателя (он играет роль клапана), электрическая цепь замыкается и электромагнит притягивает к себе пластину, сообщая при этом дополнительную скорость грузу. Таким образом, в системе возникают незатухающие колебания на частоте
с большой амплитудой, которую можно регулировать, меняя положение контакта прерывателя.

Примерами автоколебательных систем могут служить духовые и смычковые инструменты, колебания голосовых связок при разговоре, механические часы. Примером автоколебательной системы в природе является ядерный реактор, который проработал в течение 500 тысяч лет на урановом руднике в Африке 2,5 миллиарда лет тому назад. Для его работы необходимы были достаточное количество урана-235, который делится под действием медленных нейтронов, и замедлитель нейтронов – вода. В определенный момент времени вода скопилась в достаточном количестве и реактор заработал. Его работу поддерживала цепочка процессов, указанных на рис. 5.25:

Такая автоколебательная система работала до тех пор, пока не выгорело ядерное топливо. Здесь источником энергии является деление ядер U-235, клапаном служит изменение температуры воды, а колебательной системой является вода, уровень которой совершает колебания.

Отличительной особенностью вынужденных колебаний является зависимость их амплитуды А от частоты ν изменения внешней силы. Для изучения этой зависимости можно воспользоваться уже знакомой нам установкой, изображенной на рисунке 36. Если вращать ручку кривошипа очень медленно, то груз вместе с пружиной будет перемещаться вверх и вниз так же, как и точка подвеса О. Амплитуда вынужденных колебаний при этом будет невелика. При более быстром вращении груз начнет колебаться сильнее, и при частоте вращения, равной собственной частоте пружинного маятника (ν= ν соб), амплитуда его колебаний достигнет максимума. При дальнейшем увеличении частоты вращения ручки амплитуда вынужденных колебаний груза опять станет меньше. А очень быстрое вращение ручки оставит груз почти неподвижным: из-за своей инертности пружинный маятник, не успевая следовать изменениям внешней силы, будет просто «дрожать на месте».

Резкое возрастание амплитуды вынужденных колебаний при ν = ν coб называется резонансом .

График зависимости амплитуды вынужденных колебаний от частоты изменения внешней силы изображен на рисунке 38. Этот график называют резонансной кривой . Максимум этой кривой приходится на частоту ν, равную собственной частоте колебаний ν соб.

Явление резонанса можно продемонстрировать и с нитяными маятниками. Подвесим на рейке массивный шар 1 и несколько легких маятников, имеющих нити разной длины (рис. 39). Каждый из этих маятников имеет свою собственную частоту колебаний, которую можно определить, зная длину нити и ускорение свободного падения.

Теперь, не трогая легких маятников, выведем шар 1 из положения равновесия и отпустим. Качания массивного шара вызовут периодические изгибания рейки, вследствие которых на каждый из легких маятников начнет действовать периодически изменяющаяся сила упругости. Частота ее изменений будет равна частоте колебаний шара. Под действием этой силы маятники начнут совершать вынужденные колебания. При этом мы увидим, что маятники 2 и 3 останутся почти неподвижными. Маятники 4 и 5 будут колебаться с немного большей амплитудой. А у маятника 6, имеющего такую же длину нити и, следовательно, собственную частоту колебаний, как у шара 1, амплитуда окажется максимальной. Это и есть резонанс.


Резонанс можно наблюдать и с помощью установки, изображенной на рисунке 40. Основание маятника метронома 1 соединяют нитью 3 с нитью маятника 2. Маятник в этом опыте качается с наибольшей амплитудой тогда, когда частота колебаний метронома («дергающего» за нить маятника) совпадает с частотой свободных колебаний этого маятника.

Резонанс возникает из-за того, что внешняя сила, действуя в такт со свободными колебаниями тела, все время совершает положительную работу. За счет этой работы энергия колеблющегося тела увеличивается и амплитуда колебаний возрастает.

Явление резонанса может играть как полезную, так и вредную роль.

Известно, например, что тяжелый язык большого колокола может раскачать даже ребенок, но лишь тогда, когда будет действовать на веревку в такт со свободными колебаниями языка.

На применении резонанса основано действие язычкового частотомера . Этот прибор представляет собой набор укрепленных на общем основании упругих пластин различной длины. Собственная частота каждой пластины известна. При контакте частотомера с колебательной системой, частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.

С резонансом можно встретиться и тогда, когда это совершенно нежелательно. Так, например, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи колебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.

В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.

В 1906 г. из-за резонанса разрушился и так называемый Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.

Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу» и идти не строевым, а вольным шагом.

Если же через мост переезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).

Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.

С резонансом можно встретиться не только на суше, но и в море и даже в воздухе. Так, например, при некоторых частотах вращения гребного вала в резонанс входили целые корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.

1. Что такое резонанс? При каком условии он возникает? 2. Опишите опыты, в которых можно наблюдать явление резонанса. 3. Какую роль - полезную или вредную - играет резонанс в жизни людей? Приведите примеры.

Как на звук и световые волны влияет принцип резонанса? Что такое вибрации и резонансные частоты объектов? Какие повседневные примеры резонанса можно встретить в жизни? Как разбить бокал с помощью голоса? Если присмотреться, то можно увидеть примеры резонанса повсюду. Вот только некоторые из них несут пользу, а другие – вред.

Что такое резонанс?

Вы когда-нибудь задумывались над тем, как люди создают прекрасную музыку с помощью обыкновенных бокалов? По мере повышения воздействия на стекло звуковыми волнами оно может даже разбиться. Световые волны также взаимодействуют особыми способами с объектами вокруг себя. Поведение звуковых и световых волн объясняет, почему люди слышат звуки музыкальных инструментов и различают цвета. Изменения волновой амплитуды вызваны важным принципом, который называется резонансом. Примерами влияния на передачу звука и света являются вибрации.

Звуковые волны происходят от механических колебаний в твердых телах, жидкостях и газах. Световые волны исходят из вибрации заряженных частиц. Объекты, заряженные частицы и механические системы обычно имеют определенную частоту, на которой они склонны вибрировать. Это называется их резонансной частотой или их собственной частотой. Некоторые объекты имеют две или более резонансных частот. Пример резонанса: когда вы едете по ухабистой дороге, и ваш автомобиль начинает прыгать вверх и вниз – это пример колебания вашей машины на своей резонансной частоте, вернее резонансная частота амортизаторов. Вы можете заметить, что когда вы едете в автобусе, частота отскока немного медленнее. Это потому, что амортизаторы шины имеют более низкую резонансную частоту.

Когда звуковая или световая волна ударяет по объекту, она уже вибрирует на определенной частоте. Если эта частота будет соответствовать резонансной частоте объекта, то это приведет к тому, что вы получите резонанс. Он возникает, когда амплитуда колебаний объекта увеличивается за счет соответствующих колебаний другого объекта. Эту связь трудно представить без примера.

Резонанс и световые волны

Взять, к примеру, типичную световую волну (это поток белого света, который исходит от солнца) и направить ее на темный объект, пусть это будет черная змея. Молекулы в коже пресмыкающегося имеют набор резонансных частот. То есть электроны в атомах стремятся вибрировать на определенных частотах. Свет, спускающийся с солнца, – белый свет, который имеет многосоставную частоту.


Сюда входят красный и зеленый, синий и желтый, оранжевый и фиолетовый. Каждая из этих частот поражает кожу змеи. И каждая частота приводит к вибрации другого электрона. Желтая частота резонирует с электронами, резонансная частота которых желтая. Синяя частота резонирует с электронами, резонансная частота которых синяя. Таким образом, кожа змеи в целом резонирует с солнечным светом. Змея кажется черной, потому что ее кожа поглощает все частоты солнечного света.

Когда световые волны резонируют с объектом, они заставляют электроны вибрировать с большими амплитудами. Световая энергия поглощается объектом, и человеческому глазу не заметно, что свет возвращается обратно. Объект выглядит черным. Что делать, если объект не поглощает солнечный свет? Что если ни один из его электронов не резонирует со световыми частотами? Если резонанс не возникает, то вы получите передачу, пропускание световых волн через объект. Стекло кажется прозрачным, потому что оно не поглощает солнечный свет.

Свет все еще вызывает вибрации электронов. Но поскольку он не соответствует резонансным частотам электронов, колебания очень малы и проходят от атома к атому через весь объект. Объект без резонанса будет иметь нулевое поглощение и 100 % передачу, например стекло или вода.


Музыка и резонанс звуковых волн

Резонанс для звука работает так же, как и для света. Когда один объект вибрирует на частоте второго объекта, тогда первый заставляет второй вибрировать с высокой амплитудой. Так возникает акустический резонанс. Примером служит игра на любом музыкальном инструменте. Акустический резонанс отвечает за музыку, создаваемую трубой, флейтой, тромбоном и многими другими инструментами. Как работает это удивительное явление? Можно привести пример резонанса, который имеет положительный эффект.

Пройдя в собор, где играет органная музыка, можно заметить, что вся стена заполнена огромными трубами всех размеров. Некоторые из них очень короткие, а другие доходят до потолка. Для чего нужны все трубы? Когда начинает играть прекрасная музыка, можно понять, что звук исходит от труб, он очень громкий и, кажется, заполняет весь собор. Как такие трубы могут звучать так громко? Во всем виноват акустический резонанс, и он не является единственным инструментом, который использует это удивительное явление.


Создание звуковых волн

Чтобы понять, что происходит, вам сначала нужно немного узнать о том, как звук проходит по воздуху. Звуковые волны создаются, когда что-то вызывает вибрацию молекул воздуха. Затем эта вибрация перемещается, как волна, наружу во всех направлениях. Когда волна проходит по воздуху, есть области, где молекулы сжимаются ближе друг к другу, и области, где молекулы вытягиваются дальше друг от друга. Расстояние между последовательными сжатиями или расширениями известно как длина волны. Частота измеряется в единицах Герца (Гц), а один Герц соответствует одной скорости сжатия волны в секунду.

Люди могут обнаруживать звуковые волны с частотами от 20 до 20 000 Гц! Однако они не все звучат одинаково. Некоторые звуки высокие и скрипучие, в то время как другие низкие и глубокие. То, что вы на самом деле слышите, – это разница в частоте. Итак, как частота относится к длине волны? Скорость звука немного меняется в зависимости от температуры воздуха, но обычно она составляет около 343 м/с. Поскольку все звуковые волны движутся с одинаковой скоростью, частота будет уменьшаться по мере увеличения длины волны и возрастать при уменьшении длины волны.


Вредный резонанс: примеры

Часто люди принимают мостостроение и безопасность как должное. Однако иногда происходят катастрофы, заставляющие поменять свою точку зрения. 1 июля 1940 года в Вашингтоне был открыт мост Такома-Нэрроуз. Это был подвесной мост, третий по величине в мире для своего времени. Во время строительства мост получил прозвище «Галопирование Герти» из-за того, как он качался и сгибался на ветру. Это волнообразное колебание в конце концов привело к его крушению. Мост рухнул 7 ноября 1940 года во время бури, всего через четыре месяца его эксплуатации. Прежде чем узнавать о резонансной частоте и о том, что это связано с катастрофой моста Такома-Нэрроуз, сначала нужно понять что-то, называемое гармоническим движением.


Когда у вас есть объект, периодически колеблющийся назад и вперед, мы говорим, что он испытывает гармоническое движение. Один прекрасный пример проявления резонанса, испытывающего гармоническое движение, – свободная подвесная пружина с прикрепленной к ней массой. Масса заставляет пружину растягиваться вниз, пока в конце концов пружина не сжимается назад, чтобы вернуться к своей первоначальной форме. Этот процесс продолжает повторяться, и мы говорим, что пружина находится в гармоническом движении. Если вы посмотрите видео с моста Такома-Нэрроуз, то увидите, что он колебался, прежде чем рухнул. Он проходил гармоническое движение, как пружина с прикрепленной к ней массой.

Резонанс и качели

Если вы один раз толкнете своего друга на качелях, они несколько раз будут совершать колебательные движения и через некоторое время остановятся. Эта частота, когда колебание самопроизвольно колеблется, называется собственной частотой. Если вы даете толчок каждый раз, когда ваш друг возвращается к вам, он будет качаться все выше и выше. Вы нажимаете с частотой, аналогичной собственной частоте, и амплитуда колебаний возрастает. Такое поведение называется резонансом.


Несомненно, это один из примеров полезного резонанса. Среди прочих нагревание пищи в микроволновой печи, антенна на радиоприемнике, принимающем радиосигнал, игра на флейте.


На самом деле, есть также множество плохих примеров. Разрушение стекла высоким тональным звуком, разрушение моста легким ветерком, обрушение зданий при землетрясениях – все это примеры резонанса в жизни, которые не просто вредные, но и опасные, в зависимости от силы воздействия.


Разрушительная сила звука

Многие наверняка слышали о том, что винный бокал можно разбить голосом оперной певицы. Если вы слегка ударите бокал ложкой, он будет «звонить», как колокол, на своей резонансной частоте. Если на стекло оказывается звуковое давление на определенной частоте, оно начинает вибрировать. По мере того как стимул продолжается, вибрация в бокале накапливается до тех пор, пока он не разрушится, когда будут превышены механические пределы.


Примеры полезного и вредного резонанса повсюду. Микроволны окружают все вокруг, от микроволновой печки, которая разогревает пищу без применения внешнего тепла, до вибраций в земной коре, приводящих к разрушительным землетрясениям.