Болезни Военный билет Призыв

Поиск экстремумов функции. Как найти точки минимума и максимума функции: особенности, способы и примеры. Способы исследования функции

В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.

Регистрация участников открыта. Получите свой билет на Марс по этой ссылке .


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".

В задачах оптимизации возникает необходимость найти экстремумы функции двух и более переменных при условии, что существует связь между переменными этой связи, заданная уравнением . В этом случае говорят, что требуется найти условный экстремум .

Для того чтобы найти условный экстремум требуется находить частные производные и решать системы уравнений Существует алгоритм нахождения условного экстремума из трёх шагов, который сейчас и разберём на примере, и геометрический смысл условного экстремума, который должен дойти до каждого при разборе этого самого примера.

Итак, алгоритм, который разберём на примере самой распространённой задачи - нахождение условного экстремума функции двух переменных. .

Шаг 1. Вводится функция Лагранжа

где первое слагаемое - сама исходная функция, а второе слагаемое со знаком минус - левая часть уравнения условия связи, умноженная на (лямбда) - множитель Лагранжа.

Пример 1. Найти условные экстремумы функции двух переменных , выражающей площадь прямоугольника через его стороны x и y при условии , означающем, что существует верёвка, которой можно ограничить этот прямоугольник, и длина этой верёвки равна 100.

Шаг 1. Решение. Приведём уравнение условия связи к требуемому виду с нулём в правой части:

.

Составим функцию Лагранжа :

Шаг 2. Составляем систему уравнений из равенств частных производных нулю и уравения условия связи (необходимый признак существования условного экстремума):

Решения этой системы уравнений являются точками возможного условного экстремума - стационарными точками или, как ещё говорят, критическими точками.

Пример 1. Шаг 2.

Решение.

x и y :

Подставим эти выражения в третье уравнение и найдём значение множителя Лагранжа:

x и y и найдём значения переменных исходной функции:

Получили и . Эти значения являются также координатами стационарной точки. Таким образом, получили стационарную точку .

Шаг 3. Пусть является стационарной точкой, найденной на шаге 2. Чтобы определить, является ли условный экстремум минимумом или максимумом, нужно найти второй дифференциал функции Лагранжа

и в полученном выражении подставить вместо "лямбды" её значения (значения множителя Лагранжа), найденные на шаге 2.

Если значение второго дифференциала функции Лагранжа меньше нуля (), то стационарная точка является точкой максимума, если больше нуля (), то стационарная точка является точкой минимума. Если значение второго дифференциала функции Лагранжа равно нулю, то требуются дополнительные исследования, но такие случаи практически не попадаются в задачах, задаваемых студентам.

Координаты стационарных точек подставляются в исходную точку и, таким образом, мы окончательно находим условные экстремумы (или минимум и максимум или что-то одно из этих экстремумом).

Пример 1. Шаг 3.

Решение. Найдём второй дифференциал функции Лагранжа:

В нашем случае, так как первое и третье составляющие равны нулю, нам не придётся подставлять в них значения множителя Лагранжа. Зато нужно найти отношения между дифференциалами dx и dy :

Так как полученные значения - противоположные по знаку, то получаем, что в любом случае .

Теперь можем найти значение условного экстремума исходной функции, являющееся максимумом:

.

Это заданная исходной функцией максимальная площадь прямоугольника, который можно ограничить верёвкой, длина которой равна 100.

Пример 2. Найти условные экстремумы

Шаг 1. Составим функцию Лагранжа :

Шаг 2. Найдём частные производные функции Лагранжа и составим из их равенств нулю и уравнения условия связи систему уравнений:

Из первого и второго уравнений выразим соответственно x и y :

Подставим эти выражения в третье уравнение и найдём значения множителя Лагранжа:

Подставим теперь значение множителя Лагранжа в выражения для x и y и найдём значения переменных исходной функции при двух значениях множителя Лагранжа:

Эти значения икса и игрека являются координатами двух стационарных точек. Таким образом, получили стационарные точки .

Шаг 3. Найдём частные производные второго порядка функции Лагранжа:

Найдём второй дифференциал функции Лагранжа по формуле

:

Получили значение, меньшее нуля, следовательно, точка - точка условного максимума :

.

Установим знак второго дифференциала функции Лагранжа при значении множителя Лагранжа :

Получили значение, большее нуля, следовательно, точка - точка условного минимума :

.

Таким образом, условные экстремумы заданной функции найдены.

Пример 3. Найти условные экстремумы функции двух переменных при условии .

Шаг 1. Составим функцию Лагранжа :

Шаг 2. Найдём частные производные функции Лагранжа и составим из их равенств нулю и уравнения условия связи систему уравнений:

Из первого и второго уравнений выразим соответственно x и y :

Получаем, что , однако подстановка этих значений переменных в третье уравнение системы не даёт верного равенства. Поэтому считаем, что на самом деле второй сомножитель равенства равен нулю: . Отсюда получаем

Ищем координаты стационарных точек при значении множителя Лагранжа . Тогда из выражений для икса и игрека из системы уравнений следует, что . Из третьего уравнения системы получаем.

Функция и исследование ее особенностей занимает одно из ключевых глав в современной математике. Главная составляющая любой функции - это графики, изображающие не только ее свойства, но также и параметры производной данной функции. Давайте разберемся в этой непростой теме. Итак, как лучше искать точки максимума и минимума функции?

Функция: определение

Любая переменная, которая каким-то образом зависит от значений другой величины, может называться функцией. Например, функция f(x 2) является квадратичной и определяет значения для всего множества х. Допустим, что х = 9, тогда значение нашей функции будет равно 9 2 = 81.

Функции бывают самых разных видов: логические, векторные, логарифмические, тригонометрические, числовые и другие. Их изучением занимались такие выдающиеся умы, как Лакруа, Лагранж, Лейбниц и Бернулли. Их труды служат оплотом в современных способах изучения функций. Перед тем как найти точки минимума, очень важно понять сам смысл функции и ее производной.

Производная и ее роль

Все функции находятся в зависимости от их переменных величин, а это значит, что они могут в любой момент изменить свое значение. На графике это будет изображаться как кривая, которая то опускается, то поднимается по оси ординат (это все множество чисел "y" по вертикали графика). Так вот определение точки максимума и минимума функции как раз связано с этими "колебаниями". Объясним, в чем эта взаимосвязь.

Производная любой функции изображается на графике с целью изучить ее основные характеристики и вычислить, как быстро изменяется функция (т.е. меняет свое значение в зависимости от переменной "x"). В тот момент, когда функция увеличивается, график ее производной будет также возрастать, но в любую секунду функция может начать уменьшаться, и тогда график производной будет убывать. Те точки, в которых производная переходит со знака минуса на плюс, называются точками минимума. Для того чтобы знать, как найти точки минимума, следует лучше разобраться с

Как вычислять производную?

Определение и функции подразумевает под собой несколько понятий из Вообще, само определение производной можно выразить следующим образом: это та величина, которая показывает скорость изменения функции.

Математический способ ее определения для многих учеников кажется сложным, однако на самом деле все гораздо проще. Необходимо лишь следовать стандартному плану нахождения производной любой функции. Ниже описано, как можно найти точку минимума функции, не применяя правила дифференцирования и не заучивая таблицу производных.

  • Вычислить производную функции можно с помощью графика. Для этого необходимо изобразить саму функцию, затем взять на ней одну точку (точка А на рис.) Вертикально вниз провести линию к оси абсцисс (точка х 0), а в точке А провести касательную к графику функции. Ось абсцисс и касательная образуют некий угол а. Для вычисления значения того, насколько быстро возрастает функция, необходимо вычислить тангенс этого угла а.
  • Получается, что тангенс угла между касательной и направлением оси х является производной функции на маленьком участке с точкой А. Данный метод считается геометрическим способом определения производной.
  • Способы исследования функции

    В школьной программе математики возможно нахождение точки минимума функции двумя способами. Первый метод с помощью графика мы уже разобрали, а как же определить численное значение производной? Для этого потребуется выучить несколько формул, которые описывают свойства производной и помогают преобразовать переменные величины типа "х" в числа. Следующий метод является универсальным, поэтому его можно применять практически ко всем видам функций (как к геометрическим, так и логарифмическим).

  • Необходимо приравнять функцию к функции производной, а затем упростить выражение, используя правила дифференцирования.
  • В некоторых случаях, когда дана функция, в которой переменная "х" стоит в делителе, необходимо определить область допустимых значений, исключив из нее точку "0" (по простой причине того, что в математике ни в коем случае нельзя делить на ноль).
  • После этого следует преобразовать изначальный вид функции в простое уравнение, приравняв все выражение к нулю. Например, если функция выглядела так: f(x) = 2x 3 +38x, то по правилам дифференцирования ее производная равна f"(x) = 3x 2 +1. Тогда преобразуем это выражение в уравнение следующего вида: 3x 2 +1 = 0.
  • После решения уравнения и нахождения точек "х", следует изобразить их на оси абсцисс и определить, является ли производная в этих участках между отмеченными точками положительной или отрицательной. После обозначения станет ясно, в какой точке функция начинает убывать, то есть меняет знак с минуса на противоположный. Именно таким способом можно найти как точки минимума, так и максимума.
  • Правила дифференцирования

    Самая основная составляющая в изучении функции и ее производной - это знание правил дифференцирования. Только с их помощью можно преобразовывать громоздкие выражения и большие сложные функции. Давайте ознакомимся с ними, их достаточно много, но все они весьма просты благодаря закономерным свойствам как степенных, так и логарифмических функций.

  • Производная любой константы равна нулю (f(х) = 0). То есть производная f(х) = x 5 + х - 160 примет такой вид: f" (х) = 5x 4 +1.
  • Производная суммы двух слагаемых: (f+w)" = f"w + fw".
  • Производная логарифмической функции: (log a d)" = d/ln a*d. Эта формула применима ко всем видам логарифмов.
  • Производная степени: (x n)"= n*x n-1 . Например,(9x 2)" = 9*2x = 18x.
  • Производная синусоидальной функции: (sin a)" = cos a. Если sin угла а равен 0,5, то ее производная равна √3/2.
  • Точки экстремума

    Мы уже разобрали, как найти точки минимума, однако существует понятие и точек максимума функции. Если минимум обозначает те точки, в которых функция переходит со знака минуса на плюс, то точками максимума являются те точки на оси абсцисс, на которых производная функции меняется с плюса на противоположный - минус.

    Находить можно по вышеописанному способу, только следует учесть, что они обозначают те участки, на которых функция начинает убывать, то есть производная будет меньше нуля.

    В математике принято обобщать оба понятия, заменяя их словосочетанием "точки экстремумов". Когда в задании просят определить эти точки, это значит, что необходимо вычислить производную данной функции и найти точки минимума и максимума.

    Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

    Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

    (f " (x ) < 0).

    Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) ≥ f (x о )).

    Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

    Точки экстремума

    Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

    Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

    Второе достаточное условие. Пусть функция f (x ) имеет
    f " (x ) в окрестности точки x о и вторую производную f "" (x 0) в самой точке x о . Если f " (x о ) = 0, f "" (x 0)>0 (f "" (x 0) 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

    Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

    Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
    S " (R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
    R = 2, Н = 16/4 = 4.

    \(\DeclareMathOperator{\tg}{tg}\)\(\DeclareMathOperator{\ctg}{ctg}\)\(\DeclareMathOperator{\arctg}{arctg}\)\(\DeclareMathOperator{\arcctg}{arcctg}\)

    Содержание

    Монотонность функции на интервале Если на интервале \((a;b)\) для любой пары точек \({x_1}возрастает на этом интервале.

    Если на интервале \((a;b)\) для любой пары точек \({x_1}{f(x_2)}\), то функция \(f(x)\) убывает на этом интервале.

    Функция, график которой изображен на рисунке, возрастает на интервале \((a;b)\) и убывает на интервале \((b;c)\).

    Достаточные признаки монотонности функции на интервале Достаточный признак возрастания функции
    Если \(f"(x)>0\) во всех точках \(x\in(a;b)\), то функция \(f(x)\) возрастает на интервале \((a;b)\).

    Достаточный признак убывания функции
    Если \(f"(x)

    Точки локальных экстремумов Если в некотором интервале \((a;b)\), содержащем точку \(x_0\) для всех \(x\in(a;b)\) выполняется неравенство \(f(x)\geqslant f(x_0)\), причем в этом интервале найдется такая точка \(x_1\), что \(f(x_1)>f(x_0)\), то \(x_0\) - точка локального минимума функции \(f(x)\).

    Если в некотором интервале \((a;b)\), содержащем точку \(x_0\) для всех \(x\in(a;b)\) выполняется неравенство \(f(x)\leqslant f(x_0)\), причем в этом интервале найдется такая точка \(x_1\), что \(f(x_1) точка локального максимума функции \(f(x)\).

    Точки локальных минимумов и максимумов называются точками локальных экстремумов .

    На рисунке ниже изображен график функции \(f(x)\) и отмечены точки его локальных экстремумов: \(x_1,\; x_2,\; x_3,\; x_4\).

    \(x_1\) и \(x_3\) - точки локальных минимумов, \(x_2\) и \(x_4\) - точки локальных максимумов.
    В точках \(x_1,\; x_3\) и \(x_4\) производная существует и равна нулю - касательные к графику (изображены красными линиями) в этих точках параллельны оси абсцисс.
    В точке \(x_2\) производная не определена. В этой точке касательную к графику провести нельзя.

    Признаки максимума и минимума Если в точке \(x_0\) функция \(f\) непрерывна, а её производная \(f’\) меняет свой знак с плюса на минус в этой точке (то есть, существует такой интервал \((a;x_0)\), что \(f’>0\) на \((a;x_0)\) и такой интервал \((x_0;b)\), что \(f’
    Если в точке \(x_0\) функция \(f\) непрерывна, а её производная \(f’\) меняет свой знак с минуса на плюс в этой точке (то есть, существует такой интервал \((a;x_0)\), что \(f’ 0\) на \((x_0;b)\)), то \(x_0\) - точка минимума функции \(f\).

    Точки минимума и максимума функции - это точки области определения этой функции (то есть, значения \(x\)). Значения функции в этих точках (значения \(y\), соответствующие этим \(x\)) называются минимумами и максимумами функции соответственно.

    Например, для функции \(y=x^2+1\): \(\;x=0\) - точка минимума, а \(y(0)=1\) - минимум.

    Нахождение точек минимума и максимума Для нахождения точек минимума и максимума непрерывной функции \(f(x)\) нужно:

    2) найти нули производной (решить уравнение \(f"(x)=0\)) и точки, в которых производная не определена;

    3) найти знаки производной на каждом из получившихся промежутков;

    4) те точки, в которых функция \(f\) непрерывна, а её производная меняет знак с “+” на “-“ - точки максимума этой функции,

    те точки, в которых функция \(f\) непрерывна, а её производная меняет знак с “-“ на “+” - точки минимума этой функции.

    Наибольшее и наименьшее значение функции на отрезке Непрерывная на отрезке функция достигает своего наибольшего и наименьшего значения на этом отрезке.

    Для нахождения наибольшего и наименьшего значения непрерывной функции \(f(x)\) на отрезке нужно:

    1) найти производную \(f"(x)\) этой функции;

    2) найти критические точки , то есть нули производной (решить уравнение \(f"(x)=0\)) и точки, в которых производная не определена;

    3) найти значение функции в критических точках, а так же на концах отрезка;

    4) наибольшее из полученных значений будет являться наибольшим значением функции на данном отрезке,

    наименьшее из полученных значений будет являться наименьшим значением функции на данном отрезке.

    Наибольшее значение функции \(f(x)\) на отрезке \(\) обозначается \(\max\limits_{}f(x)\)

    Наименьшее значение функции \(f(x)\) на отрезке \(\) обозначается \(\min\limits_{}f(x)\)