Болезни Военный билет Призыв

Pn переход принцип работы. Основные и неосновные носители зарядов. P-N переход: подробно простым языком

Принцип действия полупроводниковых приборов объясняется свойствами так называемого электронно-дырочного перехода (p-n - перехода) - зоной раздела областей полупроводника с разным механизмами проводимости.

Электронно-дырочный переход - это область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). Поскольку в р-области электронно-дырочного перехода концентрация дырок гораздо выше, чем в n-области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р-область.

Для создания в исходном полупроводнике (обычно 4-валентном германии или кремнии) проводимости n- или p-типа в него добавляют атомы 5-валентной или 3-валентной примесей соответственно (фосфор, мышьяк или алюминий, индий и др.)

Атомы 5-валентной примеси (доноры) легко отдают один электрон в зону проводимости, создавая избыток электронов в полупроводнике, не занятых в образовании ковалентных связей; проводник приобретает проводимость n-типа. Введение же 3-валентной примеси (акцепторов) приводит к тому, что последняя, отбирая по одному электрону от атомов полупроводника для создания недостающей ковалентной связи, сообщает ему проводимость p-типа, так как образующиеся при этом дырки (вакантные энергетические уровни в валентной зоне) ведут себя в электрическом или магнитном полях как носители положительных зарядов. Дырки в полупроводнике р-типа и электроны в полупроводнике n-типа называются основными носителями в отличие от неосновных (электроны в полупроводнике р-типа и дырки в полупроводнике n-типа), которые генерируются из-за тепловых колебаний атомов кристаллической решетки.

Если полупроводники с разными типами проводимости привести в соприкосновение (контакт создается технологическим путем, но не механическим), то электроны в полупроводнике n-типа получают возможность занять свободные уровни в валентной зоне полупроводника р-типа. Произойдет рекомбинация электронов с дырками вблизи границы разнотипных полупроводников.

Этот процесс подобен диффузии свободных электронов из полупроводника n-типа в полупроводник р-типа и диффузии дырок в противоположном направлении. В результате ухода основных носителей заряда на границе разнотипных полупроводников создается обедненный подвижными носителями слой, в котором в n-области будут находиться положительные ионы донорных атомов; а в p- области - отрицательные ионы акцепторных атомов. Этот обедненный подвижными носителями слой протяженностью в доли микрона и является электронно-дырочным переходом.

Потенциальный барьер в p-n переходе.

Если к полупроводнику приложить электрическое напряжение, то в зависимости от полярности этого напряжения р-n-переход проявляет совершенно различные свойства.

Свойства p-n перехода при прямом включении.


Свойства p-n перехода при обратном включении.


Итак, с определенной долей приближения можно считать, что электрический ток через р-n-переход протекает, если полярность напряжения источника питания прямая, и, напротив, тока нет, когда полярность обратная.

Однако, кроме зависимости возникшего тока от внешней энергии, например, источника питания или фотонов света, которая используется в ряде полупроводниковых приборов, существует термогенерация. При этом концентрация собственных носителей заряда резко уменьшается, следовательно, и I ОБР тоже.Таким образом, если переход подвергнуть воздействию внешней энергии, то появляется пара свободных зарядов: электрон – дырка. Любой носитель заряда, рожденный в области объемного заряда p n перехода, будет подхвачен электрическим полем E ВН и выброшен: электрон – в n –область, дырка – в p – область. Возникает электрический ток, который пропорционален ширине области объемного заряда. Это вызвано тем, что чем больше E ВН , тем шире область, где существует электрическое поле, в котором происходит рождение и разделение носителей зарядов. Как было сказано выше, скорость генерации носителей зарядов в полупроводнике зависит от концентрации и энергетического положения глубоких примесей, существующих в материале.

По этой же причине выше предельная рабочая температура полупроводника. Для германия она составляет 80º С, кремний: 150º С, арсенид галлия: 250º С (DE = 1,4 эВ). При большей температуре количество носителей заряда возрастает, сопротивление кристалла уменьшается, и полупроводник термически разрушается.

Вольт-амперная характеристика p-n перехода.

Вольт-амперная характеристика (ВАХ) являет­ся графической зависимостью протекающего через р-n переход тока от приложенного к нему внешнего напря­жения I=f(U) . Вольт-амперная характе­ристика р-n перехода при пря­мом и обратном включе­нии приведена ниже.

Она состоит из прямой (0-А) и обратной (0-В-С) ветвей; на вертикальной оси отложены значения прямого и обратного тока , а на оси абсцисс - значения прямого и обратного напряжения .

Напряжение от внешнего источника, подведенное к кристаллу с р-п переходом, практически полностью со­средотачивается на обедненном носителями переходе. В зависимости от полярности возможны два варианта включения постоянного напряжения - прямое и обрат­ное .

При прямом включении (рис. справа - верх) внешнее элект­рическое поле направлено навстречу внутреннему и частично или полиостью ос­лабляет его, снижает высо­ту потенциального барьера (Rпр ). При обратном включении (рис. справа - низ) элект­рическое поле совпадает по направлению с полем р-п перехода и приводит к росту потенциального барьера (Rобр ).

ВАХ p-n перехода описывает­ся аналитической функцией:

где

U - приложенное к переходу внешнее напряжение соответствующего знака;

Iо = Iт - обратный (тепловой) ток р-п перехода;

- температурный потенциал, где k - постоянная Больцмана, q - элементарный заряд (при T = 300К , 0,26 В ).

При прямом напряжении (U>0 ) - экспоненциальный член быстро возрастает [], единицей в скобках можно пренебречь и считать . При обратном напряжении (U<0 ) экспоненциальный член стремится к нулю, и ток через переход практически равен обратному току; Ip-n = -Io .

Вольт-амперная характеристика р-n-перехода показывает, что уже при сравнительно небольших прямых напряжениях сопротивление перехода падает, а прямой ток резко увеличивается.

Пробой p–n перехода.

Пробоем называют резкое изме­нение режима работы перехода, находящегося под обрат­ным напряжением.

Характерной особенностью этого из­менения является резкое уменьшение дифференциального сопротивления перехода (Rдиф ). Соответствующий участок вольт-ампер­ной характеристики изображен на рисунке справа (обратная ветвь). После начала пробоя незначительное увеличение об­ратного напряжения сопровождается резким увеличени­ем обратного тока. В процессе пробоя ток может увели­чиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление Rдиф оказывается отрицатель­ным).

Пробой бывает лавинный, тунельный, тепловой. И туннельный и лавинный пробой принято называть электрическим пробоем .

Сильно зависит от концентрации примесей. Полупроводники, электрофизические свойства которых зависят от примесей других химических элементов, называются примесными полупроводниками. Примеси бывают двух видов донорной и акцепторной.

Донорной называется примесь, атомы которой дают полупроводнику свободные электроны, а получаемая в этом случае электропроводность, связанная с движением свободных электронов, - электронной . Полупроводник с электронной проводимостью называется электронным полупроводником и условно обозначается латинской буквой n - первой буквой слова «негативный».

Рассмотрим процесс образования электронной проводимости в полупроводнике. За основной материал полупроводника возьмём кремний (кремниевые полупроводники самые распространённые). У кремния (Si) на внешней орбите атома есть четыре электрона, которые обуславливают его электрофизические свойства (т.е. они перемещаясь под действием напряжения создают электрический ток). При введении в кремний атомов примеси мышьяка (As), у которого на внешней орбите пять электронов, четыре электрона вступают во взаимодействие с четырьмя электронами кремния, образуя ковалентную связь, а пятый электрон мышьяка остаётся свободным. При этих условиях он легко отделяется от атома и получает возможность перемещаться в веществе.

Акцепторной называется примесь, атомы которой принимают электроны от атомов основного полупроводника. Получаемая при этом электропроводность, связанная с перемещением положительных зарядов - дырок, называется дырочной. Полупроводник с дырочной электропроводностью называется дырочным полупроводником и условно обозначается латинской буквой p - первой буквой слова «позитивный».

Рассмотрим процесс образования дырочной проводимости. при введении в кремний атомов примеси индия (In), у которого на внешней орбите три электрона, они вступают в связь с тремя электронами кремния, но эта связь оказывается неполной: не хватает ещё одного электрона для связи с четвёртым электроном кремния. Атом примеси присоединяет к себе недостающий электрон от одного из расположенных поблизости атомов основного полупроводника, после чего он оказывается связанным со всеми четырьмя соседними атомами. Благодаря добавлению электрона он приобретает избыточный отрицательный заряд, то есть превращается в отрицательный ион. В тоже время атом полупроводника, от которого к атому примеси ушёл четвёртый электрон оказывается связанным с соседними атомами только тремя электронами. таким образом, возникает избыток положительного заряда и появляется незаполненная связь, то есть дырка .

Одним из важных свойств полупроводника является то, что при наличии дырок через него может проходить ток, даже если в нём нет свободных электронов. Это объясняется способностью дырок переходить с одного атома полупроводника на другой.

Перемещение «дырок» в полупроводнике

Вводя в часть полупроводника донорную примесь, а в другую часть - акцепторную, можно получить в нём области с электронной и дырочной проводимостью. На границе областей электронной и дырочной проводимости образуется так называемый электронно-дырочный переход.

P-N-переход

Рассмотрим процессы происходящий при прохождении тока через электронно-дырочный переход . Левый слой, обозначенный буквой n, имеет электронную проводимость. Ток в нём связан с перемещением свободных электронов, которые условно обозначены кружками со знаком «минус». Правый слой, обозначенный буквой p, обладает дырочной проводимостью. Ток в этом слое связан с перемещением дырок, которые на рисунке обозначены кружками с «плюсом».



Движение электронов и дырок в режиме прямой проводимости



Движение электронов и дырок в режиме обратной проводимости.

При соприкосновении полупроводников с различными типами проводимости электроны вследствие диффузии начнут переходить в p-область, а дырки - в n-область, в результате чего пограничный слой n-области заряжается положительно, а пограничный слой p-области - отрицательно. Между областями возникает электрическое поле, которое является как бы барьеров для основных носителей тока, благодаря чему в p-n переходе образуется область с пониженной концентрацией зарядов. Электрическое поле в p-n переходе называют потенциальным барьером, а p-n переход - запирающим слоем. Если направление внешнего электрического поля противоположно направлению поля p-n перехода («+» на p-области, «-» на n-области), то потенциальный барьер уменьшается, возрастает концентрация зарядов в p-n переходе, ширина и, следовательно, сопротивление перехода уменьшается. При изменении полярности источника внешнее электрическое поле совпадает с направлением поля p-n перехода, ширина и сопротивление перехода возрастает. Следовательно, p-n переход обладает вентильными свойствами.

Полупроводниковый диод

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:


Вольт-амперная характеристика (ВАХ) диода: 1 — прямая вольт-амперная характеристика; 2 — обратная вольт-амперная характеристика; 3 — область пробоя; 4 — прямолинейная аппроксимация прямой вольт-амперной характеристики; Uпор — пороговое напряжение; rдин — динамическое сопротивление; Uпроб — пробивное напряжение

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Вольт-амперные характеристики диодов проходят через нуль, но достаточно заметный ток появляется лишь при пороговом напряжении (U пор), которое для германиевых диодов равно 0,1 - 0,2 В, а у кремниевых диодов равно 0,5 - 0,6 В. В области отрицательных значений напряжения на диоде, при уже сравнительно небольших напряжениях (U обр.) возникает обратный ток (І обр). Этот ток создается неосновными носителями: электронами р-области и дырками n-области, переходу которых из одной области в другую способствует потенциальный барьер вблизи границы раздела. С ростом обратного напряжения увеличение тока не происходит, так как количество неосновных носителей, оказывающихся в единицу времени на границе перехода, не зависит от приложенного извне напряжения, если оно не очень велико. Обратный ток для кремниевых диодов на несколько порядков меньше, чем для германиевых. Дальнейшее увеличение обратного напряжения до напряжения пробоя (U проб) приводит к тому что электроны из валентной зоны переходят в зону проводимости, возникает эффект Зенера . Обратный ток при этом резко увеличивается, что вызывает нагрев диода и дальнейшее увеличение тока приводит к тепловому пробою и разрушению p-n-перехода.

Обозначение и определение основных электрических параметров диодов


Обозначение полупроводникового диода

Как указывалось ранее диод в одну сторону ток проводит (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую – нет (т. е. превращается в проводник с очень большим сопротивлением), одним словом, обладает односторонней проводимостью . Соответственно выводов у него всего два. Они как повелось ещё со времён ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным).

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды , как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Выпрямительные диоды

Конструктивно выпрямительные диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные. Плоскостные диоды благодаря большой площади p-n-перехода используют для выпрямления больших токов . Точечные диоды имеют малую площадь перехода и, соответственно, предназначены для выпрямления малых токов . Для увеличения напряжения лавинного пробоя используют выпрямительные столбы, состоящие из ряда последовательно включенных диодов.

Выпрямительные диоды большой мощности называют силовыми . Материалом для таких диодов обычно служит кремний или арсенид галлия. Кремниевые сплавные диоды используют для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенидгалиевые диоды способны работать в диапазоне частот до нескольких МГц.

Силовые диоды обычно характеризуются набором статических и динамических параметров. К статическим параметрам диода относятся:

  • падение напряжения U пр на диоде при некотором значении прямого тока;
  • обратный ток I обр при некотором значении обратного напряжения;
  • среднее значение прямого тока I пр.ср. ;
  • импульсное обратное напряжение U обр.и. ;

К динамическим параметрам диода относятся его временные и частотные характеристики. К таким параметрам относятся:

  • время восстановления t вос обратного напряжения;
  • время нарастания прямого тока I нар. ;
  • предельная частота без снижения режимов диода f max .

Статические параметры можно установить по вольт-амперной характеристике диода.

Время обратного восстановления диода t вос является основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока I пр на заданное обратное напряжение U обр. Во время переключения напряжение на диоде приобретает обратное значение. Из-за инерционности диффузионного процесса ток в диоде прекращается не мгновенно, а в течении времени t нар. По существу, происходит рассасывание зарядов на границе p-n-перехода (т. е. разряд эквивалентной емкости). Из этого следует, что мощность потерь в диоде резко повышается при его включении, особенно, при выключении. Следовательно, потери в диоде растут с повышением частоты выпрямляемого напряжения.

При изменении температуры диода изменяются его параметры. Наиболее сильно от температуры зависят прямое напряжение на диоде и его обратный ток. Приблизительно можно считать, что ТКН (температурный коэффициент напряжения) Uпр = -2 мВ/К, а обратный ток диодаимеет положительный коэффициент. Так при увеличении температуры на каждые 10 °С обратный ток германиевых диодов увеличивается в 2 раза, а кремниевых – 2,5 раз.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки . В этих диодах вместо p-n-перехода используется контакт металлической поверхности с . В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.

Если блок полупроводника P-типа соединить с блоком полупроводника N-типа (рисунок ниже (a)), результат не будет иметь никакого значения. У нас будут два проводящих блока соприкасающихся друг с другом, не проявляя никаких уникальных свойств. Проблема заключается в двух отдельных и различных кристаллических структурах. Количество электронов уравновешивается количеством протонов в обоих блоках. Таким образом, в результате ни один блок не имеет какого-либо заряда.

Тем не менее, один полупроводниковый кристалл, изготовленный из материала P-типа с одной стороны и материала N-типа с другой стороны (рисунок ниже (b)), обладает уникальными свойствами. У материала P-типа основными являются положительные носители заряда, дырки, которые свободно передвигаются по кристаллической решетке. У материала N-типа основными и подвижными являются отрицательные носители заряда, электроны. Вблизи перехода электроны материала N-типа диффундируют через переход, соединяясь с дырками в материале P-типа. Область материала P-типа вблизи перехода приобретает отрицательный заряд из-за привлеченных электронов. Так как электроны покинули область N-типа, та приобретает локальный положительный заряд. Тонкий слой кристаллической решетки между этими зарядами теперь обеднен основными носителями, таким образом, он известен, как обедненная область . Эта область становится непроводящим материалом из собственного полупроводника. По сути, мы имеем почти изолятор, разделяющий проводящие легированные области P и N типов.

(a) Блоки полупроводников P и N типов при контакте не обладают пригодными для использования свойствами.
(b) Монокристалл, легированный примесями P и N типа, создает потенциальный барьер.

Такое разделение зарядов в P-N-переходе представляет собой потенциальный барьер. Этот потенциальный барьер может быть преодолен под воздействием внешнего источника напряжения, заставляющего переход проводить электрический ток. Формирование перехода и потенциального барьера происходит во время производственного процесса. Величина потенциального барьера зависит от материалов, используемых при производстве. Кремниевые P-N-переходы обладают более высоким потенциальным барьером, по сравнению с германиевыми переходами.

На рисунке ниже (a) батарея подключена так, что отрицательный вывод источника поставляет электроны к материалу N-типа. Эти электроны диффундируют к переходу. Положительный вывод источника удаляет электроны из полупроводника P-типа, создавая дырки, которые диффундируют к переходу. Если напряжение батареи достаточно велико для преодоления потенциала перехода (0,6В для кремния), электроны из области N-типа и дырки из области P-типа объединяются, уничтожая друг друга. Это освобождает пространство внутри решетки для перемещения в сторону перехода большего числа носителей заряда. Таким образом, токи основных зарядов областей N-типа и P-типа протекают в сторону перехода. Рекомбинация в переходе позволяет току батареи протекать через P-N переход диода. Такое включение называется прямым смещением .


(a) Прямое смещение отталкивает носителей зарядов к переходу, где рекомбинация отражается на токе батареи.
(b) Обратное смещение притягивает носителей зарядов к выводам батареи, подальше от перехода. Толщина обедненной области увеличивается. Устойчивый ток через батарею не протекает.

Если полярность батареи изменена на противоположную, как показано выше на рисунке (b), основные носители зарядов притягиваются от перехода к клеммам батареи. Положительный вывод батареи оттягивает от перехода основных носителей заряда в области N-типа, электронов. Отрицательный вывод оттягивает от перехода основных носителей в области P-типа, дырок. Это увеличивает толщину непроводящей обедненной области. В ней отсутствует рекомбинация основных носителей; и таким образом, отсутствует и проводимость. Такое подключение батареи называется обратным смещением .

Условное обозначение диода, показанное ниже на рисунке (b), соответствует пластине легированного полупроводника на рисунке (a). Диод представляет собой однонаправленное устройство. Электронный ток протекает только в одном направлении, против стрелки, соответствующем прямому смещению. Катод, полоса на условном обозначении диода, соответствует полупроводнику N-типа. Анод, стрелка, соответствует полупроводнику P-типа.

Примечание: в оригинале статьи предлагается алгоритм запоминания расположения типов полупроводника в диоде. Неуказывающая (N ot-pointing) часть условного обозначения (полоса) соответствует полупроводнику N -типа. Указывающая (P ointing) часть условного обозначения (стрелка) соответствует P -типу.


(a) Прямое смещение PN-перехода
(b) Соответствующее условное графическое обозначение диода
(c) График зависимости тока от напряжения кремниевого диода

Если к диоду приложено прямое смещение (как показано на рисунке (a) выше), при увеличении напряжения от 0 В ток будет медленно возрастать. В случае с кремниевым диодом протекающий ток можно будет измерить, когда напряжение приблизится к 0,6 В (рисунок (c) выше). При увеличении напряжения выше 0,6 В ток после изгиба на графике начнет резко возрастать. Увеличение напряжения выше 0,7 В может привести к току, достаточно большому, чтобы вывести диод из строя. Прямое напряжение U пр является одной из характеристик полупроводников: 0,6-0,7 В для кремния, 0,2 В для германия, несколько вольт для светоизлучающих диодов. Прямой ток может находиться в диапазоне от нескольких мА для точечных диодов до 100 мА для слаботочных диодов и до десятков и тысяч ампер для силовых диодов.

Если диод смещен в обратном направлении, то протекает только ток утечки собственного полупроводника. Это изображено на графике слева от начала координат (рисунок (c) выше). Для кремниевых диодов этот ток в самых экстремальных условиях будет составлять примерно 1 мкА. Это ток при росте напряжения обратного смещения увеличивается незаметно, пока диод не будет пробит. При пробое ток увеличивается настолько сильно, что диод выходит из строя, если последовательно не включено сопротивление, ограничивающее этот ток. Обычно мы выбираем диод с обратным напряжением, превышающим напряжения, которые могут быть приложены при работе схемы, чтобы предотвратить пробой диода. Как правило, кремниевые диоды доступны с напряжениями пробоя 50, 100, 200, 400, 800 вольт и выше. Также возможно производство диодов с меньшим напряжением пробоя (несколько вольт) для использования в качестве эталонов напряжения.

Ранее мы упоминали, что обратный ток утечки до микроампера в кремниевых диодах обусловлен проводимостью собственного полупроводника. Эта утечка может быть объяснена теорией. Тепловая энергия создает несколько пар электрон-дырка, которые проводят ток утечки до рекомбинации. В реальной практике этот предсказуемый ток является лишь частью тока утечки. Большая часть тока утечки обусловлена поверхностной проводимостью, связанной с отсутствием чистоты поверхности полупроводника. Обе составляющие тока утечки увеличиваются с ростом температуры, приближаясь к микроамперу для небольших кремниевых диодов.

Для германия ток утечки на несколько порядков выше. Так как германиевые полупроводники сегодня редко используются на практике, то это не является большой проблемой.

Подведем итоги

P-N переходы изготавливаются из монокристаллического куска полупроводника с областями P и N типа в непосредственной близости от перехода.

Перенос электронов через переход со стороны N-типа к дыркам на сторону P-типа с последующим взаимным уничтожением создает падение напряжения на переходе, составляющее от 0,6 до 0,7 вольта для кремния и зависящее от полупроводника.

Прямое смещение P-N перехода при превышении значения прямого напряжения приводит к протеканию тока через переход. Прикладываемая внешняя разность потенциалов заставляет основных носителей заряда двигаться в сторону перехода, где происходит рекомбинация, позволяющая протекать электрическому току.

Обратное смещение P-N перехода почти не создает ток. Прикладываемое обратное смещение оттягивает основных носителей заряда от перехода. Это увеличивает толщину непроводящей обедненной области.

Через P-N переход, к которому приложено обратное смещение, протекает обратный ток утечки, зависящий от температуры. В небольших кремниевых диодах он не превышает микроампер.

Подавляющее большинство современных полупроводниковых приборов функционируют благодаря тем явлениям, которые происходят на самих границах материалов, имеющих различные типы электропроводности.

Полупроводники бывают двух типов – n и p . Отличительной особенностью полупроводниковых материалов n -типа является то, в них в качестве носителей электрического заряда выступают отрицательно заряженные электроны . В полупроводниковых материалах p -типа эту же роль играют так называемые дырки , которые заряжены положительно. Они появляются после того, как от атома отрывается электрон , и именно поэтому и образуются положительный заряд.

Для изготовления полупроводниковых материалов n -типа и p -типа используются монокристаллы кремния. Их отличительной особенностью является чрезвычайно высокая степень химической чистоты. Существенно изменить электрофизические свойства этого материала можно, внося в него совсем незначительные, на первый взгляд, примеси.

Символ « n », используемый при обозначении полупроводников, происходит от слова «negative » («отрицательный »). Главными носителями заряда в полупроводниковых материалах n -типа являются электроны . Для того чтобы их получить, в кремний вводятся так называемые донорные примеси: мышьяк, сурьму, фосфор.

Символ « p », используемый при обозначении полупроводников, происходит от слова «positive » («положительный »). Главными носителями заряда в них являются дырки . Для того чтобы их получить, в кремний вводятся так называемые акцепторные примеси: бор, алюминий.

Число свободных электронов и число дырок в чистом кристалле полупроводника совершенно одинаково. Поэтому когда полупроводниковый прибор находится в равновесном состоянии, то электрически нейтральной является каждая из его областей.

Возьмем за исходное то, что n -область тесно соединена с p -областью. В таких случаях между ними образуется переходная зона, то есть некое пространство, которое обеднено зарядами. Его ёщё называют «запирающим слоем », где дырки и электроны , подвергаются рекомбинации. Таким образом, в месте соединения двух полупроводников, которые имеют различные типы проводимости, образуется зона, называемая p-n переходом .

В месте контакта полупроводников различных типов дырки из области p -типа частично следуют в область n -типа, а электроны, соответственно, – в обратном направлении. Поэтому полупроводник p -типа заряжается отрицательно, а n -типа – положительно. Эта диффузия, однако, длится только до тех пор, пока возникающее в зоне перехода электрическое поле не начинает ей препятствовать, в результате чего перемещение и электронов , и дырок прекращается.

В выпускаемых промышленностью полупроводниковых приборах для использования p-n перехода к нему необходимо приложить внешнее напряжение. В зависимости от того, какими будет его полярность и величина, зависит поведение перехода и проходящий непосредственно через него электрической ток. Если к p -области подключается положительный полюс источника тока, а к n -области – полюс отрицательный, то имеет место прямое включение p-n перехода . Если же полярность изменить, то возникнет ситуация, называемая обратным включением p-n перехода .

Прямое включение

Когда осуществляется прямое включение p-n перехода , то под воздействием внешнего напряжения в нем создается поле. Его направление по отношению к направлению внутреннего диффузионного электрического поля противоположно. В результате этого происходит падение напряженности результирующего поля, а запирающий слой сужается.

Вследствие такого процесса в соседнюю область переходит немалое количество основных носителей заряда. Это означает, что из области p в область n результирующий электрический ток будет протекать дырками , а в обратном направлении – электронами .

Обратное включение

Когда осуществляется обратное включение p-n перехода , то в образовавшейся цепи сила тока оказывается существенно ниже, чем при прямом включении. Дело в том, что дырки из области n будут следовать в область p , а электроны – из области p в область n . Невысокая сила тока обуславливается тем обстоятельством, что в области p мало электронов , а в области n, соответственно, – дырок .

Прямое и обратноевключение p-n перехода.

Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направлено навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального

барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэтому через p-n переход будет протекать сравнительно большой ток, вызванный основными носителями заряда.

Свойства p-n перехода.

К основным свойствам p-n перехода относятся:

1, свойство односторонней проводимости;

2, температурные свойства p-n перехода;

3, частотные свойства p-n перехода;

4, пробой p-n перехода.

Свойство односторонней проводимости p-n перехода нетрудно рассмотреть на вольтамперной

характеристике. Вольтамперной характеристикой (ВАХ) называется графически выраженная

зависимость величины протекающего через p-n переход тока от величины приложенного

напряжения. I=f(U).При увеличении прямого напряжения прямой ток изменяется по экспоненциальному закону. Так как величина обратного тока во много раз меньше, чем прямого, то обратным током можно пренебречь и считать, что p-n переход проводит ток только в одну сторону.

Температурное свойство p-n перехода показывает, как изменяется работа p-n перехода при изменении температуры. На p-n переход в значительной степени влияет нагрев, в очень малой

степени – охлаждение. При увеличении температуры увеличивается термогенерация носителей заряда, что приводит к увеличению как прямого, так и обратного тока. Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на негопеременного напряжения высокой частоты. Частотные свойства p-n перехода определяютсядвумя видами ёмкости перехода.Первый вид ёмкости – это ёмкость, обусловленная неподвижными зарядами ионов донорнойи акцепторной примеси. Она называется зарядной, или барьерной ёмкостью.Второй тип ёмкости – это диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода.

2. Биполярные транзисторы: устройство, принцип действия, схемы включения.

Биполярный транзистор - трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) - электронный тип примесной проводимости, p (positive) - дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» - «два»)

1. Устройство биполярных транзисторов. Основой биполярного транзистора является кристалл полупроводника p-типа или n-типа проводимости, который также как и вывод отнего называется базой.

Диффузией примеси или сплавлением с двух сторон от базы образуются области с противоположным типом проводимости, нежели база.

Область, имеющая бoльшую площадь p-n перехода, и вывод от неё называют коллектором. Область, имеющая меньшую площадь p-n перехода, и вывод от неё называют эмиттером. p-n переход между коллектором и базой называютколлекторным переходом, а между эмиттером и базой – эмиттерным переходом.

Направление стрелки в транзисторе показывает направление протекающего тока. Основнойособенностью устройства биполярных транзисторов является неравномерность концентрацииосновных носителей зарядов в эмиттере, базе и коллекторе. В эмиттере концентрация носителей заряда максимальная. Вколлекторе – несколько меньше, чем в эмиттере. В базе – вомного раз меньше, чем в эмиттере и коллекторе

2. Принципдействиябиполярныхтранзисторов. При работе транзистора в усилительном

режиме эмиттерный переход открыт, а коллекторный – закрыт. Это достигается соответствующим включением источников питания.Так как эмиттерный переход открыт, то через него будет протекать ток эмиттера, вызванный

переходом электронов из эмиттера в базу и переходом дырок из базы в эмиттер. Следователь-

но, ток эмиттера будет иметь две составляющие – электронную и дырочную.Инжекцией зарядов называется переход носителей зарядов из области, где они были основными в область, где они становятся неосновными. В базе электроны рекомбинируют, а их концентрация в базе пополняется от «+» источника Еэ, за счёт чего в цепи базы будет протекатьочень малый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под ускоряющим действием поля закрытого коллекторного перехода как неосновные носители будут переходить в коллектор, образуя ток коллектора. Переход носителей зарядов из области, где они

были не основными, в область, где они становятся основными, называется экстракцией зарядов.