Болезни Военный билет Призыв

P-n переход. P–n переход и его электрические свойства

P-n-переход и его свойства

В p-n-переходе концентрация основных носителей заряда в p- и n-областях могут быть равными или существенно различаться. В первом случае p-n-переход называется симметричным, во втором - несимметричным. Чаще используются несимметричные переходы.

Пусть концентрация акцептной примеси в p-области больше, чем концентрация донорной примеси в n-области (рис. 1.1,а). Соответственно и концентрация дырок (светлые кружки) в p-области будет больше, чем концентрация электронов (черные кружки) в n-области.

За счет диффузии дырок из p-области и электронов из n-области они стремятся равномерно распределится по всему объему. Если бы электроны и дырки были нейтральными, то диффузия в конечном итоге привела бы к полному выравниванию их концентрации по всему объему кристалла. Однако этого не происходит. Дырки, переходя из p-области в n-область, рекомбинируют с частью электронов, принадлежащих атомам донорной примеси. В результате оставшиеся без электронов положительно заряженные ионы донорной примеси образуют приграничный слой с положительным зарядом. В тоже время уход этих дырок из p-области приводит к тому, что атомы акцепторной примеси, захватившие соседний электрон, образуют нескомпенсированный отрицательный заряд ионов в приграничной области. Аналогично происходит диффузионное перемещение электронов из n-области в p-область, приводящее к тому же эффекту.

Рис.1.1. Р-n структура: а- равновесном состоянии; б- при прямом внешнем напряжении; в- при обратном внешнем напряжением; l- ширина р-n – перехода

В результате на границе, разделяющей n-область и p-область, образуется узкий, в доли микрона, приграничный слой l , одна сторона которого заряжена отрицательно (p-область), а другая - положительно (n-область).

Разность потенциалов, образованную приграничными зарядами, называют контактной разностью потенциалов U (рис 1.1,а) или потенциальным барьером , преодолеть который носители не в состоянии. Дырки, подошедшие к границе со стороны p-области, отталкиваются назад положительным зарядом, а электроны, подошедшие из n-области, - отрицательным зарядом. Контактной разностью потенциалов Uсоответствует электрическое поле напряженностью Е . Таким образом, образуется p-n-переход шириной l , представляющий собой слой полупроводника с пониженным содержанием носителей - так называемый обедненный слой, который имеет относительно высокое электрическое сопротивление R .

Свойства p-n-структуры изменяются, если к ней приложить внешнее напряжение U пр. Если внешнее напряжение противоположно по знаку контактной разности потенциалов и напряженность внешнего поля Е пр противоположна Е (рис. 1.1,б), то дырки p-области, отталкиваясь от приложенного положительного потенциала внешнего источника, приближаются к границе между областями, компенсируют заряд части отрицательных ионов и сужают ширину р-n-перехода со стороны p-области. Аналогично, электроны n-области, отталкиваясь от отрицательного потенциала внешнего источника, компенсируют заряд части положительных ионов и сужают ширину p-n-перехода со стороны n-области. Потенциальный барьер сужается, через него начинают проникать дырки из p-области и электроны из n-области и через p-n-переход начинает течь ток.

С увеличением внешнего напряжения ток возрастает неограниченно, так как создается основными носителями, концентрация которых постоянно восполняется источником внешнего напряжения.

Полярность внешнего напряжения, приводящая к снижению потенциального барьера, называется прямой, открывающей, а созданный ею ток - прямым. При подаче такого напряжения p-n-переход открыт и его сопротивление R пр <

Если к p-n-структуре приложить напряжение обратной полярности U обр (рис. 1.1,в), эффект будет противоположный. Электрическое поле напряженностью Е обр совпадает по направлению с электрическим полем Е р-n-перехода. Под действием электрического поля источника дырки p-области смещаются к отрицательному потенциалу внешнего напряжения, а электроны n-области - к положительному потенциалу. Таким образом, основные носители заряда отодвигаются внешним полем от границы, увеличивая ширину p-n-перехода, который оказывается почти свободным от носителей заряда. Электрическое сопротивление p-n-перехода при этом возрастает. Такая полярность внешнего напряжения называется обратной, запирающей. При подаче такого напряжения p-n-переход закрыт и его сопротивление R обр >>R .

Тем не менее при обратном напряжении наблюдается протекание небольшого тока I обр. Этот ток в отличие от прямого определяется носителями не примесной, а собственной проводимости, образующейся в результате генерации пар "свободный электрон - дырка" под воздействием температуры. Эти носители обозначены на рис. 1.1,в единственный электрон в p-области и единственной дыркой в n-области. Значение обратного тока практически не зависит от внешнего напряжения. Это объясняется тем, что в единицу времени количество генерируемых пар "электрон - дырка" при неизменной температуре остается постоянным, и даже при U обр в доли вольт все носители участвуют в создании обратного тока.

При подаче обратного напряжения p-n-переход уподобляется конденсатору, пластинами которого является p- и n-области, разделенные диэлектриком. Роль диэлектрика выполняет приграничная область, почти свободная от носителей заряда. Эту емкость p-n-перехода называют барьерной . Она тем больше, чем меньше ширина p-n-перехода и чем больше его площадь.

Принцип работы p-n-перехода характеризуется его вольт-амперной характеристикой. На рис.1.2 показана полная вольт-амперная характеристика открытого и закрытого p-n-переходов.

Как видно, эта характеристика является существенно нелинейной. На участке 1 Е пр < Е и прямой ток мал. На участке 2 Е пр > Е , запирающий слой отсутствует, ток определяется только сопротивлением полупроводника. На участке 3 запирающий слой препятствует движению основных носителей, небольшой ток определяется движением неосновных носителей заряда. Излом вольт-амперной характеристики в начале координат обусловлен различными масштабами тока и напряжения при прямом и обратном направлениях напряжения, приложенного к p-n-переходу. И наконец, на участке 4 при U обр =U проб происходит пробой p-n-перехода и обратный ток быстро возрастает. Это связанно с тем, что при движении через p-n-переход под действием электрического поля неосновные носители заряда приобретают энергию, достаточную для ударной ионизации атомов полупроводника. В переходе начинается лавинообразное размножение носителей заряда - электронов и дырок, - что приводит к резкому увеличению обратного тока через p-n-переход при почти неизменном обратном напряжении. Этот вид электрического пробоя называется лавинным. Обычно он развивается в относительно широких p-n-переходах, которые образуются в слаболегированных полупроводниках.



В сильнолегированных полупроводниках ширина запирающего слоя меньше, что препятствует возникновению лавинного пробоя, так как движущиеся носители не приобретают энергию, достаточной для ударной ионизации. В тоже время может возникать электрический пробой p-n-перехода, когда при достижении критического напряжения электрического поля в p-n-переходе за счет энергии поля появляются пары носителей электрон - дырка, и существенно возникает обратный ток перехода.

Для электрического пробоя характерна обратимость, заключающаяся в том, что первоначальные свойства p-n-перехода полностью восстанавливаются, если снизить напряжение на p-n-переходе. Благодаря этому электрическому пробою используют в качестве рабочего режима в полупроводниковых диодах.

Если температура p-n-перехода возрастает в результате его нагрева обратным током и недостаточного теплоотвода, то усиливается процесс генерации пар носителей заряда. Это, в свою очередь, приводит к дальнейшему увеличению тока (участок 5 рис. 1.2) и нагреву p-n-перехода, что может вызвать разрушение перехода. Такой процесс называется тепловым пробоем. Тепловой пробой разрушает p-n-переход.

Прямое и обратноевключение p-n перехода.

Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направлено навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального

барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэтому через p-n переход будет протекать сравнительно большой ток, вызванный основными носителями заряда.

Свойства p-n перехода.

К основным свойствам p-n перехода относятся:

1, свойство односторонней проводимости;

2, температурные свойства p-n перехода;

3, частотные свойства p-n перехода;

4, пробой p-n перехода.

Свойство односторонней проводимости p-n перехода нетрудно рассмотреть на вольтамперной

характеристике. Вольтамперной характеристикой (ВАХ) называется графически выраженная

зависимость величины протекающего через p-n переход тока от величины приложенного

напряжения. I=f(U).При увеличении прямого напряжения прямой ток изменяется по экспоненциальному закону. Так как величина обратного тока во много раз меньше, чем прямого, то обратным током можно пренебречь и считать, что p-n переход проводит ток только в одну сторону.

Температурное свойство p-n перехода показывает, как изменяется работа p-n перехода при изменении температуры. На p-n переход в значительной степени влияет нагрев, в очень малой

степени – охлаждение. При увеличении температуры увеличивается термогенерация носителей заряда, что приводит к увеличению как прямого, так и обратного тока. Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на негопеременного напряжения высокой частоты. Частотные свойства p-n перехода определяютсядвумя видами ёмкости перехода.Первый вид ёмкости – это ёмкость, обусловленная неподвижными зарядами ионов донорнойи акцепторной примеси. Она называется зарядной, или барьерной ёмкостью.Второй тип ёмкости – это диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода.

2. Биполярные транзисторы: устройство, принцип действия, схемы включения.

Биполярный транзистор - трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) - электронный тип примесной проводимости, p (positive) - дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» - «два»)

1. Устройство биполярных транзисторов. Основой биполярного транзистора является кристалл полупроводника p-типа или n-типа проводимости, который также как и вывод отнего называется базой.

Диффузией примеси или сплавлением с двух сторон от базы образуются области с противоположным типом проводимости, нежели база.

Область, имеющая бoльшую площадь p-n перехода, и вывод от неё называют коллектором. Область, имеющая меньшую площадь p-n перехода, и вывод от неё называют эмиттером. p-n переход между коллектором и базой называютколлекторным переходом, а между эмиттером и базой – эмиттерным переходом.

Направление стрелки в транзисторе показывает направление протекающего тока. Основнойособенностью устройства биполярных транзисторов является неравномерность концентрацииосновных носителей зарядов в эмиттере, базе и коллекторе. В эмиттере концентрация носителей заряда максимальная. Вколлекторе – несколько меньше, чем в эмиттере. В базе – вомного раз меньше, чем в эмиттере и коллекторе

2. Принципдействиябиполярныхтранзисторов. При работе транзистора в усилительном

режиме эмиттерный переход открыт, а коллекторный – закрыт. Это достигается соответствующим включением источников питания.Так как эмиттерный переход открыт, то через него будет протекать ток эмиттера, вызванный

переходом электронов из эмиттера в базу и переходом дырок из базы в эмиттер. Следователь-

но, ток эмиттера будет иметь две составляющие – электронную и дырочную.Инжекцией зарядов называется переход носителей зарядов из области, где они были основными в область, где они становятся неосновными. В базе электроны рекомбинируют, а их концентрация в базе пополняется от «+» источника Еэ, за счёт чего в цепи базы будет протекатьочень малый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под ускоряющим действием поля закрытого коллекторного перехода как неосновные носители будут переходить в коллектор, образуя ток коллектора. Переход носителей зарядов из области, где они

были не основными, в область, где они становятся основными, называется экстракцией зарядов.

pn переход это тонкая область, которая образуется в том месте, где контактируют два полупроводника разного типа проводимости. Каждый из этих полупроводников электрически нейтрален. Основным условием является то что в одном полупроводнике основные носители заряда это электроны а в другом дырки.

При контакте таких полупроводников в результате диффузии зарядов дырка из p области попадает в n область. Она тут же рекомбенирует с одним из электронов в этой области. В результате этого в n области появляется избыточный положительный заряд. А в p области избыточный отрицательный заряд.

Таким же образом один из электронов из n области попадает в p область, где рекомбенирует с ближайшей дыркой. Следствием этого также является образование избыточных зарядов. Положительного в n области и отрицательного в p области.

В результате диффузии граничная область наполняется зарядами, которые создают электрическое поле. Оно будет направлено таким образом, что будет отталкивать дырки находящиеся в области p от границы раздела. И электроны из области n также будут отталкиваться от этой границы.

Если говорить другими словами на границе раздела двух полупроводников образуется энергетический барьер. Чтобы его преодолеть электрон из области n должен обладать энергией больше чем энергия барьера. Как и дырка из p области.

Наряду с движением основных носителей зарядов в таком переходе существует и движение неосновных носителей зарядов. Это дырки из области n и электроны из области p. Они также двигаются в противоположную область через переход. Хотя этому способствует образовавшееся поле, но ток получается, ничтожно мал. Так как количество неосновных носителей зарядов очень мало.

Если к pn переходу подключить внешнюю разность потенциалов в прямом направлении, то есть к области p подвести высокий потенциал, а к области n низкий. То внешнее поле приведет к уменьшению внутреннего. Таким образом, уменьшится энергия барьера, и основные носители заряда смогут легко перемещаться по полупроводникам. Иначе говоря, и дырки из области p и электроны из области n будут двигаться к границе раздела. Усилится процесс рекомбинации и увеличится ток основных носителей заряда.

Рисунок 1 — pn переход, смещённый в прямом направлении

Если разность потенциалов приложить в обратном направлении, то есть к области p низкий потенциал, а к области n высокий. То внешнее электрическое поле сложится с внутренним. Соответственно увеличится энергия барьера не дающего перемещаться основным носителям зарядов через переход. Другими словами электроны из области n и дырки из области p будут двигаться от перехода к внешним сторонам полупроводников. И в зоне pn перехода попросту не останется основных носителей заряда обеспечивающих ток.

Рисунок 2 — pn переход, смещённый в обратном направлении

Если обратная разность потенциалов будет чрезмерно высока, то напряжённость поля в области перехода увеличится до тех пор, пока не наступит электрический пробой. То есть электрон ускоренный полем не разрушит ковалентную связь и не выбьет другой электрон и так далее.

Если блок полупроводника P-типа соединить с блоком полупроводника N-типа (рисунок ниже (a)), результат не будет иметь никакого значения. У нас будут два проводящих блока соприкасающихся друг с другом, не проявляя никаких уникальных свойств. Проблема заключается в двух отдельных и различных кристаллических структурах. Количество электронов уравновешивается количеством протонов в обоих блоках. Таким образом, в результате ни один блок не имеет какого-либо заряда.

Тем не менее, один полупроводниковый кристалл, изготовленный из материала P-типа с одной стороны и материала N-типа с другой стороны (рисунок ниже (b)), обладает уникальными свойствами. У материала P-типа основными являются положительные носители заряда, дырки, которые свободно передвигаются по кристаллической решетке. У материала N-типа основными и подвижными являются отрицательные носители заряда, электроны. Вблизи перехода электроны материала N-типа диффундируют через переход, соединяясь с дырками в материале P-типа. Область материала P-типа вблизи перехода приобретает отрицательный заряд из-за привлеченных электронов. Так как электроны покинули область N-типа, та приобретает локальный положительный заряд. Тонкий слой кристаллической решетки между этими зарядами теперь обеднен основными носителями, таким образом, он известен, как обедненная область . Эта область становится непроводящим материалом из собственного полупроводника. По сути, мы имеем почти изолятор, разделяющий проводящие легированные области P и N типов.

(a) Блоки полупроводников P и N типов при контакте не обладают пригодными для использования свойствами.
(b) Монокристалл, легированный примесями P и N типа, создает потенциальный барьер.

Такое разделение зарядов в P-N-переходе представляет собой потенциальный барьер. Этот потенциальный барьер может быть преодолен под воздействием внешнего источника напряжения, заставляющего переход проводить электрический ток. Формирование перехода и потенциального барьера происходит во время производственного процесса. Величина потенциального барьера зависит от материалов, используемых при производстве. Кремниевые P-N-переходы обладают более высоким потенциальным барьером, по сравнению с германиевыми переходами.

На рисунке ниже (a) батарея подключена так, что отрицательный вывод источника поставляет электроны к материалу N-типа. Эти электроны диффундируют к переходу. Положительный вывод источника удаляет электроны из полупроводника P-типа, создавая дырки, которые диффундируют к переходу. Если напряжение батареи достаточно велико для преодоления потенциала перехода (0,6В для кремния), электроны из области N-типа и дырки из области P-типа объединяются, уничтожая друг друга. Это освобождает пространство внутри решетки для перемещения в сторону перехода большего числа носителей заряда. Таким образом, токи основных зарядов областей N-типа и P-типа протекают в сторону перехода. Рекомбинация в переходе позволяет току батареи протекать через P-N переход диода. Такое включение называется прямым смещением .


(a) Прямое смещение отталкивает носителей зарядов к переходу, где рекомбинация отражается на токе батареи.
(b) Обратное смещение притягивает носителей зарядов к выводам батареи, подальше от перехода. Толщина обедненной области увеличивается. Устойчивый ток через батарею не протекает.

Если полярность батареи изменена на противоположную, как показано выше на рисунке (b), основные носители зарядов притягиваются от перехода к клеммам батареи. Положительный вывод батареи оттягивает от перехода основных носителей заряда в области N-типа, электронов. Отрицательный вывод оттягивает от перехода основных носителей в области P-типа, дырок. Это увеличивает толщину непроводящей обедненной области. В ней отсутствует рекомбинация основных носителей; и таким образом, отсутствует и проводимость. Такое подключение батареи называется обратным смещением .

Условное обозначение диода, показанное ниже на рисунке (b), соответствует пластине легированного полупроводника на рисунке (a). Диод представляет собой однонаправленное устройство. Электронный ток протекает только в одном направлении, против стрелки, соответствующем прямому смещению. Катод, полоса на условном обозначении диода, соответствует полупроводнику N-типа. Анод, стрелка, соответствует полупроводнику P-типа.

Примечание: в оригинале статьи предлагается алгоритм запоминания расположения типов полупроводника в диоде. Неуказывающая (N ot-pointing) часть условного обозначения (полоса) соответствует полупроводнику N -типа. Указывающая (P ointing) часть условного обозначения (стрелка) соответствует P -типу.


(a) Прямое смещение PN-перехода
(b) Соответствующее условное графическое обозначение диода
(c) График зависимости тока от напряжения кремниевого диода

Если к диоду приложено прямое смещение (как показано на рисунке (a) выше), при увеличении напряжения от 0 В ток будет медленно возрастать. В случае с кремниевым диодом протекающий ток можно будет измерить, когда напряжение приблизится к 0,6 В (рисунок (c) выше). При увеличении напряжения выше 0,6 В ток после изгиба на графике начнет резко возрастать. Увеличение напряжения выше 0,7 В может привести к току, достаточно большому, чтобы вывести диод из строя. Прямое напряжение U пр является одной из характеристик полупроводников: 0,6-0,7 В для кремния, 0,2 В для германия, несколько вольт для светоизлучающих диодов. Прямой ток может находиться в диапазоне от нескольких мА для точечных диодов до 100 мА для слаботочных диодов и до десятков и тысяч ампер для силовых диодов.

Если диод смещен в обратном направлении, то протекает только ток утечки собственного полупроводника. Это изображено на графике слева от начала координат (рисунок (c) выше). Для кремниевых диодов этот ток в самых экстремальных условиях будет составлять примерно 1 мкА. Это ток при росте напряжения обратного смещения увеличивается незаметно, пока диод не будет пробит. При пробое ток увеличивается настолько сильно, что диод выходит из строя, если последовательно не включено сопротивление, ограничивающее этот ток. Обычно мы выбираем диод с обратным напряжением, превышающим напряжения, которые могут быть приложены при работе схемы, чтобы предотвратить пробой диода. Как правило, кремниевые диоды доступны с напряжениями пробоя 50, 100, 200, 400, 800 вольт и выше. Также возможно производство диодов с меньшим напряжением пробоя (несколько вольт) для использования в качестве эталонов напряжения.

Ранее мы упоминали, что обратный ток утечки до микроампера в кремниевых диодах обусловлен проводимостью собственного полупроводника. Эта утечка может быть объяснена теорией. Тепловая энергия создает несколько пар электрон-дырка, которые проводят ток утечки до рекомбинации. В реальной практике этот предсказуемый ток является лишь частью тока утечки. Большая часть тока утечки обусловлена поверхностной проводимостью, связанной с отсутствием чистоты поверхности полупроводника. Обе составляющие тока утечки увеличиваются с ростом температуры, приближаясь к микроамперу для небольших кремниевых диодов.

Для германия ток утечки на несколько порядков выше. Так как германиевые полупроводники сегодня редко используются на практике, то это не является большой проблемой.

Подведем итоги

P-N переходы изготавливаются из монокристаллического куска полупроводника с областями P и N типа в непосредственной близости от перехода.

Перенос электронов через переход со стороны N-типа к дыркам на сторону P-типа с последующим взаимным уничтожением создает падение напряжения на переходе, составляющее от 0,6 до 0,7 вольта для кремния и зависящее от полупроводника.

Прямое смещение P-N перехода при превышении значения прямого напряжения приводит к протеканию тока через переход. Прикладываемая внешняя разность потенциалов заставляет основных носителей заряда двигаться в сторону перехода, где происходит рекомбинация, позволяющая протекать электрическому току.

Обратное смещение P-N перехода почти не создает ток. Прикладываемое обратное смещение оттягивает основных носителей заряда от перехода. Это увеличивает толщину непроводящей обедненной области.

Через P-N переход, к которому приложено обратное смещение, протекает обратный ток утечки, зависящий от температуры. В небольших кремниевых диодах он не превышает микроампер.

Электронно-дырочный переход (сокращенно n-р-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.

Допустим, у нас есть кристалл, в котором справа находится область полупроводника с дырочной, а слева - с электронной проводимостью (рис. 1). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора.

Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.

Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.

Диффузия основных носителей через переход создает электрический ток I осн, направленный из р-области в n-область.

В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l которого не превышает долей микрометра.

Между слоями ионов возникает электрическое поле с напряженностью \(~\vec E_i\). Это поле препятствует дальнейшей диффузии основных носителей: электронов из n-области и дырок из р-области.

Необходимо заметить, что в n-области наряду с электронами имеются неосновные носители - дырки, а в р-области - электроны. В полупроводнике непрерывно происходят процессы рождения и рекомбинации пар. Интенсивность этого процесса зависит только от температуры и одинакова во всем объеме полупроводника. Предположим, что в n-области возникла пара "электрон-дырка". Дырка будет хаотически перемещаться по η области до тех пор, пока не рекомбинирует с каким-либо электроном. Однако если пара возникает достаточно близко к переходу, то прежде, чем произойдет рекомбинация, дырка может оказаться в области, где существует электрическое поле, и под его действием она перейдет в р-область, т.е. электрическое поле перехода способствует переходу неосновных носителей в соседнюю область. Соответственно, создаваемый ими ток I неосн мал. так как неосновных носителей мало.

Таким образом, возникновение электрического поля \(~\vec E_i\) приводит к появлению неосновного тока I неосн. Накопление зарядов около перехода за счет диффузии и увеличение \(~\vec E_i\) будут продолжаться до тех пор, пока ток I неосн не уравновесит ток I осн (I неосн = I осн) и результирующий ток через электронно-дырочный переход станет равным нулю.

Если к n-р-переходу приложить разность потенциалов, то внешнее электрическое поле \(~\vec E_{ist}\) складывается с полем \(~\vec E_i\) . Результирующее поле, существующее в области перехода, \(~\vec E = \vec E_{ist} + \vec E_i\). Токи I осн и I неосн совершенно различно ведут себя по отношению к изменению поля в переходе, I неосн с изменением поля очень слабо изменяется, так как он обусловлен количеством неосновных носителей, а оно в свою очередь зависит только от температуры.

I осн (диффузия основных носителей) очень чувствителен к полю напряженностью \(~\vec E\). I осн быстро увеличивается с ее уменьшением и быстро падает при увеличении.

Пусть клемма источника тока соединена с n-областью. а "-" - с р-областью (обратное включение (рис. 2, а)). Суммарное поле в переходе усиливается: E > E ist и основной ток уменьшается. Если \(~\vec E\) достаточно велика, то I осн << I неосн и ток через переход создается неосновными носителями. Сопротивление n-р-перехода велико, ток мал.

Если включить источник так, чтобы область n-типа оказалась подключена к а область р-типа к (рис. 2, б), то внешнее поле будет направлено навстречу \(~\vec E_i\), и \(~\vec E = \vec E_i + \vec E_{ist} \Rightarrow E = E_i - E_{ist} < E_i\), т.е. поле в переходе ослабляется. Поток основных носителей через переход резко увеличивается, т.е. I осн резко возрастает.