Болезни Военный билет Призыв

От чего зависит скорость распространения радиоволн. Радиоволны и распространение радиоволн. Замирание радиосигналов диапазона КВ

При определении дальности действия радиосистем приходится учитывать поглощение и преломление радиоволн при их распространении в атмосфере, их отражение от ионосферы, влияние подстилающей поверхности вдоль трассы, по которой распространяется радиосигнал.

Степень влияния этих факторов зависит от частотного диапазона и условий эксплуатации радиосистемы (время суток,географический район, высота антенны передатчика и приемника).

Влияние поглощения и преломления радиоволн наиболее существенно в нижнем основном слое атмосферы, называемом тропосферой. Тропосфера простирается по высоте до 8-10 км в полярных районах и до 16-18 км в тропических широтах Земного шара. В тропосфере сосредоточена основная часть водяного пара, образуются облака и турбулентные потоки, что влияет на распространение радиоволн, особенно миллиметрового, сантиметрового и дециметрового диапазонов, используемых в радиолокации и ближней радионавигаций.

Отражение радиоволн от ионосферы наиболее сильно сказывается на декаметровых и более длинных волнах, применяемых в системах навигации и связи.

Рассмотрим кратко влияние перечисленных факторов.

Влияние затухания радиоволн в тропосфере связано с их поглощением молекулами кислорода и водяного пара, гидрометеорами (дождь, туман, снег) и твердыми частицами. Поглощение и рассеяние ведет к снижению плотности потока мощности радиоволны с расстоянием по экспоненциальному закону, т. е. мощность сигнала на входе ослабляется в раз. Значение множителя ослабления зависит от коэффициента затухания , и расстояния, проходимого радиоволнами D. Если коэффициент , вдоль всей трассы постоянен и рассматривается случай активной РЛС с пассивным ответом, то и мощность сигнала на входе приемника уменьшается за счет затухания от до

Если выразить , в , то . При наличии в атмосфере гидрометеоров и других частиц коэффициент затухания , является суммой частных коэффициентов затухания, вызванных поглощением молекулами кислорода и водяного пара, а также влиянием жидких и твердых частиц. Молекулярное поглощение в атмосфере происходит в основном на частотах, близких к резонансным. Резонансные линии всех газов атмосферы, за исключением кислорода и водяного пара, расположены вне диапазона радиоволн, поэтому существенно влияет на дальность действия РТС только поглощение молекулами кислорода и водяного пара. Поглощение молекулами водяного пара максимально на волне , а молекулами кислорода - на волнах .

Таким образом, молекулярное поглощение значительно в сантиметровом и особенно в миллиметровом диапазонах, где оно ограничивает дальность действия радиосистем, особенно радиолокационных, работающих по отраженным сигналам.

Другой причиной, вызывающей потери энергии сигнала при распространении, является рассеяние радиоволн, прежде всего дождевыми каплями и туманом. Чем больше отношение радиуса капли , к длине волны , к длине волны , тем больше потери энергии за счет ее рассеяния во всех направлениях. Это рассеяние возрастает пропорционально четвертой степени частоты, поскольку ЭПР капли при

где - диэлектрическая проницаемость воды.

Если известны диаметр капель и их число на единицу объема, то можно определить коэффициент затухания . В справочниках коэффициент , для дождя обычно указывается в зависимости от его интенсивности и длины волны . В сантиметровом диапазоне коэффициент затухания изменяется приблизительно пропорционально квадрату частоты сигнала . Если на частоте при мм/ч, , то на частоте при той же интенсивности дождя .

Ослабление радиоволн в тумане прямо пропорционально концентрации воды в нем. Ослабление радиоволн в результате града и снега значительно меньше, чем в результате дождя или тумана, и их влиянием обычно пренебрегают.

Максимальная дальность действия РЛС с учетом затухания может быть найдена по формуле

если известна дальность действия в свободном пространстве . Это уравнение можно решать графически, представив в логарифмической форме . После простых преобразований найдем

Обозначим относительное уменьшение дальности и запишем уравнение в виде, удобном для графического решения:

На рис 9.4 привидена зависимость позволяющая при заданных и найти , а следовательно, .

Влияние рефракции радиоволн в атмосфере. Рефракцией (преломлением, искривлением) радиоволн называют отклонение распространения радиоволн от прямолинейного при прохождении ими среды с изменяющимися электрическими параметрами. Преломляющие свойства среды характеризуются коэффициентом преломления , определяемым ее диэлектрической проницаемостью . Вместе с коэффициент преломления в атмосфере меняется с высотой . Скорость изменения с высотой характеризуется градиентом , значение и знак которого характеризуют рефракцию.

При рефракция отсутствует. Если , то рефракцию считают отрицательной и траектория радиоволны искривляется в сторону от поверхности Земли. рефракция положительна и траектория радиоволны искривлена в сторону Земли, что приводит к ее огибанию радиоволной и увеличению дальности действия радиосистем и, в частности, дальности радиолокационного обнаружения кораблей и низколетящнх .

Для нормального состояния атмосферы , т. е. рефракция положительна, что ведет к увеличению дальности радиогоризонта. Влияние нормальной рефракции учитывается кажущимся увеличением радиуса Земли в раза, что равносильно увеличению дальности радиогоризонта до . Радиус кривизны траектории радиоволны обратно пропорционален градиенту , т. е. . При радиус кривизны траектории радиоволны равен радиусу Земли , и радиоволна, направленная горизонтально, распространяется параллельно поверхности Земли, огибая ее. Это случай критической рефракции, при котором возможно значительное увеличение дальности действия РЛС.

При аномальных условиях в тропосфере (резкое увеличение давления, влажности, температуры) возможна и сверхрефракция, при которой радиус кривизны траектории радиоволны становится меньше радиуса Земли. При этом в тропосфере возможно волноводное распространение радиоволн на очень большие расстояния, если антенна РЛС и объект находятся на высотах в пределах слоя тропосферы, образующего волноводный канал.

Влияние подстилающей поверхности. Кроме атмосферной рефракции огибание земной поверхности происходит вследствие дифракции радиоволн. Однако в зоне тени (за горизонтом) напряженность радиоволн быстро падает из-за потерь в подстилающей поверхности, которые быстро растут с увеличением частоты радиосигнала. Поэтому только на волнах более 1000 м поверхностная волна, т. е. волна, огибающая поверхность Земли, может обеспечить большую дальность действия системы (несколько сотен и даже тысяч километров). Поэтому в РНС дальнего действия используют волны длинноволнового и сверхдлинноволнового диапазонов.

Затухание поверхностной волны зависит от диэлектрической проницаемости и электропроводности подстилающей поверхности, причем для морской поверхности и для песчаных или горных пустынь; при этом изменяется в пределах 0,0001 - 5 См/м. С уменьшением проводимости почвы затухание резко увеличивается, поэтому наибольшая дальность действия обеспечивается при распространении радиоволн над морем, что существенно для морской радионавигации.

Влияние подстилающей поверхности сказывается не только на дальности действия РНС, но и на их точности, поскольку фазовая скорость распространения радиоволн также зависит от параметров подстилающей поверхности. Создаются специальные карты поправок фазовой скорости в зависимости от параметров подстилающей поверхности, однако, поскольку эти параметры меняются в зависимости от времени года и суток и даже погоды, полностью исключить погрешности местоопределения, вызванные изменением фазовой скорости распространения радиоволн, практически невозможно.

Радиоволны с длиной более 10 м могут распространяться за горизонт также в результате однократного или многократного отражения от ионосферы.

Влияние отражения радиоволн ионосферой. Радиоволны, достигающие приемной антенны после отражения ионосферой, называют пространственными.

Такие волны обеспечивают очень большую дальность действия, что я используется в связных системах коротковолнового (декаметрового) диапазона. На пространственных волнах осуществляется также сверхдальнее радиолокационное обнаружение некоторых целей (ядерных взрывов и запуска ракет) с помощью отраженных целью сигналов, которые на трассе распространения испытывают одно или несколько отражений от ионосферы и поверхности Земли. Явление приема таких сигналов (эффект Кабанова) было открыто советским ученым Н. И. Кабановым в 1947 г. РЛС, основанные на этом эффекте, называют ионосферными или загоризонтными. В таких станциях, работающих на волнах длиной 10-15 м, как и в обычных РЛС, дальность цели определяется по времени запаздывания сигнала, а направление фиксируется с помощью направленной антенны. Вследствие неустойчивости ионосферы точность таких станций невелика, а расчет дальности действия представляет сложную задачу из-за трудности учета потерь на рассеяние и поглощение радиоволн на пути распространения, а также при их отражении от Земли и ионосферы. При этом нужно учитывать также потери из-за изменения плоскости поляризации радиоволн.

Зависимость высоты ионосферы от многих причин приводит к непредсказуемым изменениям задержки сигнала, что затрудняет использование пространственных волн для радионавигации. Более того, интерференция пространственных и поверхностных волн ведет к искажению поверхностного сигнала и снижает точность местоопре-деления.

В заключение рассмотрим особенности распространения радиоволн мириаметрового (сверхдлинноволнового) диапазона длиной 10-30 км, применяемых в системах глобальной навигации наземного базирования. Эти волны плохо поглощаются подстилающей поверхностью и хорошо отражаются от нее, а также от ионосферы как ночью, так и днем. В результате сверхдлинные волны распространяются вокруг Земли, как в волноводе, ограниченном поверхностью Земли и ионосферой, на очень большие расстояния. При этом изменение скорости распространения и фазовые сдвиги можно прогнозировать, что обеспечивает точность местоопределения, достаточную для судовождения в открытом море.

В настоящее время для глобальной навигации применяют спутниковые РНС, в которых благодаря большой высоте орбит ИСЗ обеспечивается прямая «видимость» на больших расстояниях при использовании дециметровых волн, которые свободно проходят через ионосферу Дециметровые волны позволяют получать с помощью спутниковых РНС очень высокую точность местоопределения в рабочей области системы, которая для глобальных СРНС охватывает все околоземное пространство.

Напишите уравнение дальности РЛС в свободном пространстве.

Каким образом дальность действия РЛС зависит от ее длины волны?

Как влияет отражение радиоволн от поверхности Земли на дальность действия РЛС?

В чем особенность обнаружения низкорасположенных объектов?

Каковы основные причины ослабления радиолокационного сигнала при распространении?

Определите дальность действия РЛС трехсантиметрового диапазона, работающей в условиях дождя интенсивностью мм/ч(). Дальность действия РЛС в свободном пространстве .

При каких условиях рефракция радиоволн приводит к аномальному увеличению дальности действия РЛС?

В чем выражается влияние подстилающей поверхности на работу РНС?

Что такое «эффект Кабанова» и как его применяют на практике?

Почему в глобальных РНС наземного базирования используются радиоволны СДВ-диапазона?

РАСПРОСТРАНЕНИЕ РАДИОВОЛН - процесс передачи в пространстве эл--магн. радиодиапазона (см. Радиоволны ).В естеств. условиях Р. р. происходит в разл. средах, напр. в атмосфере, космич. плазме, в поверхностном слое Земли.

Общие закономерности распространения радиоволн . Скорость Р. р. в свободном пространстве в вакууме равна с. Полная энергия, переносимая радиоволной, остаётся постоянной, а плотность потока энергии убывает с увеличением расстояния r от источника обратно пропорционально r 2 . Р. р. в др. средах происходит с фазовой скоростью, отличающейся от с , и в равновесной среде сопровождается поглощением эл--магн. энергии. Оба эффекта объясняются возбуждением колебаний электронов и ионов среды под действием электрич. поля волны. Если напряжённость поля E гармонич. волны мала по сравнению с напряжённостью поля, действующего на заряды в самой среде (напр., на электрон в атоме), то колебания происходят также по гармонич. закону с частотой w пришедшей волны. Колеблющиеся электроны излучают вторичные радиоволны той же частоты, но с др. амплитудами и фазами. В результате сложения вторичных волн с приходящей формируется результирующая волна с новой амплитудой и фазой. Сдвиг фаз между первичной и переизлучёнными волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн .

Амплитуда волны убывает с расстоянием по закону а фаза волны изменяется по закону y = wt - (w/с)nr , где x - показатель поглощения, n - преломления показатель ; n и x зависят от диэлектрической проницаемости e среды, её проводимости s и частоты волн w:


гденаз. тангенсом угла потерь. Фазовая скорость u = с/n , коэф. поглощения Среда ведёт себя как диэлектрик , если и как проводник, еслиВ первом случае во втором -и волна затухает на расстояниях - толщина скин-слоя (см. Скин-эффект) . В среде e ц s являются ф-циями частоты (см. Дисперсия волн) . Вид частотной зависимости е и s определяется структурой среды. Дисперсия радиоволн особенно существенна в тех случаях, когда частота волны близка к характерным собств. частотам среды (напр., при Р. р. в ионосферной и космич. плазме, см. ниже).

При Р. р. в средах, не содержащих свободных электронов (тропосфера, толща Земли), происходит смещение связанных электронов в атомах и молекулах среды в сторону, противоположную полю волны Е , при этом n > 1, u Ф < с . В плазме поле волны вызывает смещение свободных электронов в направлении E , при этом n < 1 и u Ф > с, т. е. фазовая скорость монохро-матич. волны может быть как меньше, так и больше с . Однако для того чтобы передать при помощи радиоволн к--л. информацию (энергию), необходимо иметь ограниченный во времени радиосигнал, представляющий собой нек-рый набор гармонич. волн. Спектральный состав сигнала зависит от его длительности и формы. Радиосигнал распространяется с групповой скоростью u гр. В любой среде u гр < с .

В однородных средах радиоволны распространяются прямолинейно, подобно световым лучам. Процесс Р. р. в этом случае подчиняется законам геометрической оптики . Однако реальные среды неоднородны. В них п , а следовательно, и u Ф различны в разных участках среды, что приводит к рефракции радиоволн . В случае плавных (в масштабе l) неоднородности справедливо приближение геом. оптики. Если показатель преломления зависит только от высоты h , отсчитываемой от сферической поверхности Земли, то вдоль траектории луча выполняется условие

Соотношение (2) представляет собой Снелля закон преломления для сферическислоистой среды. Здесь R 0 - радиус Земли, f - угол наклона луча к вертикали в произвольной точке траектории. Если вместо действит. показателя преломления га ввести приведённый показатель преломления

то закон преломления (2) получит вид

Соотношение (4) наз. законом преломления Снелля для плоскослоистой среды.

Если n убывает при увеличении h , то в результате рефракции луч, по мере распространения, отклоняется от вертикали и на нек-рой высоте h m становится параллельным горизонтальной плоскости, а затем распространяется вниз (рис. 1, а). Макс. высота h m , на к-рую луч может углубиться в неоднородную плоскослоистую среду, зависит от угла падения f 0 и определяется из условия


Рис. 1. а - рефракция радиоволн в плоскослоистой среде с grad n < 0; б - зависимость квадрата амплитуды напряжённости электрического поля радиоволны от высоты h .

В область h > h m лучи не проникают, и, согласно приближению геом. оптики, волновое поле в этой области должно быть равно 0. В действительности вблизи плоскости h = h m волновое поле возрастает, а при h > h m убывает экспоненциально (рис. 1, б) . Нарушение законов геом. оптики при Р. р. связано также с дифракцией волн , вследствие к-рой радиоволны могут проникать в область геом. тени. На границе области геом. тени образуется сложное распределение волновых полей. радиоволн возникает при наличии на их пути препятствий (непрозрачных или полупрозрачных тел) и особенно существенна в тех случаях, когда размеры препятствий сравнимы с l.

Если Р. р. происходит вблизи резкой границы (в масштабе l) между двумя средами с разл. электрич. свойствами (напр., атмосфера - поверхность Земли или тропосфера - ниж. граница ионосферы для достаточно длинных волн), то при падении радиоволн на резкую границу образуются отражённая и преломлённая (прошедшая) радиоволны. Если отражение происходит от границы проводящей среды (напр., от поверхностного слоя Земли), то глубина проникновения в него определяется толщиной скин-слоя.

В неоднородных средах возможно волноводное распространение радиоволн , при к-ром происходит локализация потока энергии между определ. поверхностями, за счёт чего волновые поля между ними убывают с расстоянием медленнее, чем в однородной среде (атм. волновод). В средах с плавными неоднородностями локализация связана с рефракцией, а в случае резких границ - с отражением.

В среде, содержащей случайные локальные неоднородности, вторичные волны излучаются беспорядочно в разл. направлениях. Рассеянные волны частично уносят энергию исходной волны, что приводит к её ослаблению. При рассеянии на неоднородностях размером l l (т. н. рассеяние Рэлея; см. Рассеяние света )рассеянные волны распространяются почти изотропно. В случае рассеяния на крупномасштабных прозрачных неоднородностях рассеянные волны распространяются в направлениях, близких к исходной волне. При l ! l возникает сильное резонансное рассеяние.

Влияние поверхности Земли на распространение радиоволн определяется как электрич. параметрами e и s грунтов и водных пространств, образующих земную кору, так и структурой поверхности Земли, т. е. её кривизной и неоднородностью. Р. р.- процесс, захватывающий большую область пространства, но наиб. существ. роль в Р. р. играет область, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах к-рого A и B на расстоянии r расположены передатчик и приёмник (радиотрасса, рис. 2). Большая ось эллипсоида равнамалая ось определяется размерами первой Френеля зоны и Ширина трассы уменьшается с убыванием l. Если высоты z 1 и z 2 , на к-рых расположены антенны передатчика и приёмника над поверхностью Земли, велики по сравнению с l, то эллипсоид не касается поверхности Земли и она не влияет на Р. р. (рис. 2, а) . При понижении обеих или одной из конечных точек радиотрассы (или увеличении длины волны) поверхность Земли пересекает эллипсоид. В этом случае на Р. р. оказывают влияние электрич. параметры области поверхности Земли, ограниченной эллипсом сечения, вытянутым вдоль трассы. При сохранении условий и в точке приёма возникает между прямой и отражённой волнами (см. Интерференция волн ).Амплитуда и фаза отражённой волны определяются с учётом Френеля формул для коэф. отражения. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля, к-рая характерна для декаметровых и более коротких радиоволн. Если z 1 /l < 1 и z 2 /l < 1, то радиотрасса выделяет участок поверхности Земли, ограниченный эллипсом с осями r + l(p/4) и


Рис. 2. Эллипсоидальная область пространства, существенная при распространении радиоволн (радиотрасса); А - излучатель; В - приёмник.

Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной) , обусловлено проводимостью поверхности в этой области. При P.p. вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной скин-слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны.

Рис. 3. Дальность "прямой видимости" r ограничена выпуклостью земной поверхности; R 0 - радиус Земли, z 1 , и z 2 , - высоты передающей А и приёмной В антенн соответственно.


Выпуклость земной поверхности ограничивает расстояние, на к-ром из точки приёма В "виден" передатчик А (область "прямой видимости", рис. 3). Однако радиоволны, огибая Землю в результате дифракции, могут проникать в область тени на большее расстояние(R 0 - радиус Земли). Практически в эту область за счёт дифракции могут проникать только километровые и более длинные волны (рис. 4).

Рис. 4 . График, иллюстрирующий связь дальности r распространения от величины W = 20lg|E/E * | , где E - напряжённость поля радиоволны в реальных условиях распространения с учётом огибания выпуклости земной поверхности (излучатель расположен на поверхности Земли); Е * - напряжённость поля для разных частот без учёта дифракции.


Фазовая скорость земных волн вблизи излучателя зависит от электрич. свойств. Однако на расстоянии в неск. l от излучателя u ф! с . Если радиоволны распространяются над электрич. неоднородной поверхностью, напр. сначала над сушей, а затем над морем, то при нересечении береговой линии резко изменяются амплитуда и направление Р. р. (береговая рефракция, рис. 5).

Рис. 5. Изменение напряжённости электрического поля волны при пересечении береговой линии.


Влияние рельефа земной поверхности на Р. р. зависит от высоты неровностей h , их горизонтальной протяжённости l , l и угла q падения волны на поверхность. Если неровности достаточно малы и пологи, так что kh cosq < < 1 (k - волновое число), и выполняется т. н. критерий Рэлея k 2 l 2 cosq < 1, то они слабо влияют на Р. р. Влияние неровностей зависит также от поляризации волн. Напр., для горизонтально поляризованных волн оно меньше, чем для волн, поляризованных вертикально. Когда неровности не малы и не пологи, энергия радиоволны может рассеиваться (радиоволна отражается от них). Высокие горы и холмы с h > l "возмущают" волновое поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению прямых и отражённых волн. Вершина горы служит естеств. ретранслятором. Это существенно при распространении метровых радиоволн в гористой местности (рис. 6).


Распространение радиоволн в тропосфере. Тропосфера - область атмосферы, расположенная между поверхностью Земли и тропопаузой, в к-рой темп-pa воздуха обычно убывает с высотой (в тропопаузе темп-ра с высотой увеличивается). Высота тропопаузы на земном шаре неодинакова, над экватором она больше, чем над полюсами, а в средних широтах, где существует система сильных западных ветров, изменяется скачкообразно. Тропосфера состоит из смеси нейтральных молекул и атомов газов, входящих в состав сухого воздуха, и паров воды. Диэлектрическая проницаемость, а следовательно, и показатель преломления газа, не содержащего свободных электронов и ионов, обусловлены дополнительными полями, создаваемыми смещением электронов в молекулах ( сухого воздуха) я ориентацией полярных молекул (пары воды) под действием электрич. поля волны.

Показатель преломления тропосферы

где p - давление сухого воздуха, е - давление водяного пара в миллибарах, Т - темп-pa. Показатель преломления не зависит от частоты и очень мало отличается от единицы. Так, у поверхности Земли с увеличением высоты происходит изменение параметров р, Т, е , определяющих значение показателей преломления. При нормальных метеорологич. условиях показатель преломления уменьшается с высотой:

Это приводит к искривлению траектории лучей. Для правильной оценки положения луча относительно поверхности Земли необходимо учитывать сферичность её поверхности, что можно сделать, вводя приведённый показатель преломления (3):

отличающийся от grad n не только по абс. величине, но и по знаку. В условиях нормальной тропосферной рефракции grad n пр > 0. В этом случае луч, вышедший из приподнятого над землёй излучателя под углом к вертикали, при распространении приближается к ней. При распространение лучей происходит в сторону уменьшающихся значений n пр. При этом, в зависимости от значений f 0 , луч может достигнуть поверхности Земли и отразиться от неё, достигнуть точки поворота, определяемой из условия (5), и при нек-ром значении угла f 0 точка поворота может лежать на поверхности Земли. В этом случае траектория луча является границей между областью, в к-рую могут попасть лучи, и областью тени. Нормальная тропосферная рефракция способствует увеличению области прямой видимости.

Метеорологич. условия существ. образом влияют на изменение показателя преломления, т. е. и на рефракцию радиоволн. Обычно в тропосфере давление воздуха н темп-pa С высотой уменьшаются, а давление водяного пара увеличивается. При нек-рых метеорологич. условиях, напр. при движении нагретого над сушей воздуха над более холодной поверхностью моря, темп-ра воздуха с высотой увеличивается, а давление водяного пара уменьшается (инверсия темп-ры и влажности). В этом случае показатель преломления изменяется с высотой не монотонно, т. е. dn пр /dh на нек-рой высоте может изменить знак. Если в интервале высот, определяемом толщиной слоя инверсии, то gradn np <0. В плоскослоистой среде с grad n пр < О лучи отражаются от высоты, определяемой из условия (5). В пространстве, ограниченном снизу поверхностью Земли, а сверху высотой, на к-рой dn пр /dh изменяет знак, возникают условия для волноводного распространения (рис. 7). В тропосферных волноводах, как правило, могут распространяться волны с l < 1 м.

Рис. 7. Траектории УКВ в тропосферном волноводе.


Поглощение радиоволн в тропосфере пренебрежимо мало для всех радиоволн вплоть до сантиметрового диапазона. Поглощение сантиметровых и более коротких волн резко увеличивается, когда частота волны w совпадает с одной из собств. частот колебаний молекул воздуха (резонансное поглощение). Молекулы получают от приходящей волны энергию, к-рая превращается в теплоту p только частично передаётся вторичным волнам. Известен ряд линий резонансного поглощения в тропосфере: l = 1,35 см, 1,5 см, 0,75 см (поглощение в парах воды) и l = 0,5 см, 0,25 см (поглощение в кислороде). Между резонансными линиями лежат области более слабого поглощения (окна прозрачности).

Ослабление радиоволн может быть также вызвано рассеянием на неоднородностях, возникающих при турбулентном движении воздушных масс (см. Турбулентность ).Рассеяние резко увеличивается, когда в воздухе присутствуют капельные неоднородности в виде дождя, снега, тумана. Почти изотропное рассеяние Рэлея на мелкомасштабных неоднородностях делает возможной радиосвязь на расстояниях, значительно превышающих прямую видимость (рис. 8). Т. о., тропосфера существенно влияет на распространение УКВ. Для декаметровых и более длинных волн тропосфера практически прозрачна, и на их распространение влияют земная поверхность и более высокие слои атмосферы.

Рис. 8. Рассеяние радиоволн на мелкомасштабных неоднородностях.


Распространение радиоволн в ионосфере. Ионосферу образуют верх. слои земной атмосферы, в к-рой газы частично (до 1%) ионизированы под влиянием УФ-, рентг. и корпускулярного солнечного излучения. Ионосфера электрически нейтральна, она содержит равное кол-во положит. и отрицат. частиц, т. е. является плазмой. Достаточно большая ионизация, оказывающая влияние на Р. р., начинается на высоте 60 км (слой D ), увеличивается до высоты 300-400 км, образуя слои Е. F 1 , F 2 , и затем медленно убывает. В гл. максимуме концентрация электронов N достигает 10 6 см -3 . Зависимость N от высоты меняется со временем суток, года, с солнечной активностью, а также с широтой и долготой. Ионизиров. слой между 200 и 400 км состоит в осн. из равного кол-ва ионов О + и электронов. Эти частицы погружены в нейтральный газ с концентрацией 10 8 см -3 , состоящий в осн. из частиц О 2 , О, N 2 и Не.

В многокомпонентной плазме, содержащей электроны, ионы и нейтральные молекулы и пронизанной магн. полем Земли (см. Земной магнетизм) , могут возникать разл. виды собств. колебаний, имеющих разные частоты. Напр., плазменные (ленгмюровские) частоты электронов и ионов ги-ромагн. частоты электронов и ионов где т, М - массы электрона и иона, е - их заряд, N - концентрация, Н 0 - напряжённость магн. поля Земли. Т. к. то . Напр., для электронов=1,4 МГц, а для ионов атомарного кислорода= 54 Гц.

В зависимости от частоты w радиоволны осн. роль в Р. р. играют те или др. виды собств. колебаний, поэтому электрич. свойства ионосферы различны для разных участков радиодиапазона. При высоких w ионы не успевают следовать за изменениями поля и в Р. р. принимают участие только электроны. Вынужденные колебания свободных электронов ионосферы происходят в про-тивофазе с действующей силой и вызывают поляризацию плазмы в сторону, противоположную электрич. полю волны Е. Поэтому диэлектрич. проницаемость ионосферы e < 1. Она уменьшается с уменьшением частоты: Учёт соударений электронов с атомамии ионами даёт более точные ф-лы для e и s ионосферы:


Здесь v - эфф. частота соударений. Для декаметровых и более коротких волн в большей части ионосферы и показатели преломления h и поглощения приближённо равны:

Поскольку h < 1, фазовая скорость Р. р. УФ = = с/п > с , групповая скорость u гр = с/n < с .

Поглощение в ионосфере пропорц. v, т. к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы (слой D) , где v больше, т. к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния.

Рефракция радиоволн в ионосфере. В ионосфере распространяются только радиоволны с частотой w > w 0 . При w < w 0 показатель преломления становится чисто мнимым и эл--магн. поле экспоненциально убывает в глубь плазмы. Радиоволна с частотой w, падающая на ионосферу вертикально, отражается от уровня, на к-ром w = w 0 и n = 0. В ниж. части ионосферы электронная концентрация и w 0 увеличиваются с высотой, поэтому с увеличением w посланная с Земли волна всё глубже проникает в ионосферу. Макс. частота радиоволны, к-рая отражается от слоя ионосферы при вертикальном падении, наз. критич. частотой слоя:

Критич. частота слоя F 2 (гл. максимума) изменяется в течение суток и года в широких пределах (от 3-5 до 10 МГц). Для волн с показатель преломления не обращается в нуль и падающая вертикально волна проходит через ионосферу, не отражаясь.

При наклонном падении волны на ионосферу происходит рефракция, как в тропосфере. В ниж. части ионосферы gradM -1 , т. е. поэтому gradи траектория луча отклоняется по направлению к Земле (рис. 9). Радиоволна, падающая на ионосферу под углом f 0 , поворачивает к Земле на высоте h , для к-рой выполнено условие (5). Макс. частота волны, отражающейся от ионосферы при падении под углом (т. е. для данной дальности трассы), равнаи наз. максимально применимой частотой (МПЧ). Волны с отражаясь от ионосферы, возвращаются на Землю, что используется для дальней радиосвязи.


Рис. 9. Схематическое изображение радиолучей определённой частоты при различных углах падения на ионосферу.

Рис. 10. Распространение коротких волн между Землёй и ионосферой: а - много-скачковая траектория; б - скользящая траектория.


Вследствие сферичности Земли величина угла f 0 ограничена и дальность связи при однократном отражении от ионосферы3500-4000 км. Связь на большие расстояния осуществляется за счёт неск. последоват. отражений от ионосферы и Земли ("скачков", рис. 10,а ). Возможны и более сложные волноводные траектории, возникающие за счёт горизонтального градиента N или рассеяния на неоднородностях ионосферы при Р. р. с частотой w> w МПЧ. В результате рассеяния угол падения луча на слой F 2 оказывается больше, чем при обычном распространении. Луч испытывает ряд последоват. отражений от слоя F 2 , пока не попадёт в область с таким градиентом N , к-рый вызовет отражение части энергии назад к Земле (рис. 10, б) .

Влияние магнитного поля Земли Н 0 . В магн. поле Н 0 на электрон, движущийся со скоростью u , действует Лоренца сила под влиянием к-рой он вращается по окружности в плоскости, перпендикулярной Н 0 , с гиромагн. частотой w H . Траектория каждой заряж. частицы - винтовая линия с осью вдоль Н 0 . Действие силы Лоренца приводит к изменению характера вынужденных колебаний электронов под действием электрич. поля волны, а следовательно, к изменению электрич. свойств среды. В результате ионосфера становится анизотропной гиротропной средой, электрич. свойства к-рой зависят от направления Р. р. и описываются не скалярной величиной e, а тензором диэлект-рич. проницаемости . Падающая на такую среду волна испытывает двойное лучепреломление ,т. е. расщепляется на две волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. Если направление Р. р.то падающую волну можно представить себе в виде суммы двух линейно поляризованных волн си. Для первой, "необыкновенной", волны (е )характер вынужденного движения электронов под действием поля волны Е изменяется (появляется компонента ускорения, перпендикулярная Е )и поэтому изменяется п . Для второй, "обыкновенной", волны (о ) вынужденное движение остаётся таким же, как и без поля Н 0 (присила Лоренца равна 0). Для этих двух волн (без учёта соударений) квадраты показателей преломления равны

При Р. р. вдоль

В последнем случае обе волны имеют круговую поляризацию, причём у "необыкновенной" волны вектор E вращается в сторону вращения электрона, а у "обыкновенной" - в противоположную сторону. При произвольном направлении Р. р. (относительно Н„) поляризация нормальных волн эллиптическая.

По мере Р. р. в ионосфере увеличивается сдвиг фаз между волнами и изменяется поляризация суммарной волны. Напр., при P.p. вдоль Н 0 это приводит к повороту плоскости поляризации (Фарадея эффект ),а при Р. р. перпендикулярно Н 0 - к периодич. чередованию линейной и круговой поляризаций (см. Коттона - Мутона эффект) , Т. к. показатели преломления волн различны, отражение их происходит на разной высоте (рис. 11). Направление k при Р. р. в ионосфере может отличаться от u гр.

Рис. 11 . Расщепление радиоволны в результате в ионосфере.


Низкочастотные волны в ионосфере. Осн. часть энергии НЧ-радиоволн практически не проникает в ионосферу. Волны отражаются от её ниж. границы (днём - вследствие сильной рефракции в D -слое, ночью - от E-слоя , как от границы двух сред с разными электрич. свойствами). Распространение этих волн хорошо описывается моделью, согласно к-рой однородные и изотропные Земля и ионосфера образуют приземный волновод с резкими сферич. стенками, в к-ром и происходит Р. р. Такая модель объясняет наблюдаемое убывание поля с расстоянием и возрастание амплитуды поля с высотой. Последнее связано со скольжением волн вдоль вогнутой поверхности волновода, приводящим к своеобразной "фокусировке" поля. Это явление аналогично открытому Рэлеем в акустике эффекту "шепчущей галереи". Амплитуда радиоволн значительно возрастает в антиподной по отношению к источнику точке Земли. Это объясняется сложением радиоволн, огибающих Землю по всем направлениям и сходящихся на противоположной стороне.

Влияние магн. поля Земли обусловливает ряд особенностей распространения НЧ-волн в ионосфере: сверхдлинные волны могут выходить из приземного волновода за пределы ионосферы, распространяясь вдоль силовых линий геомагн. поля между сопряжёнными точками А и В Земли (рис. 12). Из ф-лы (8) видно, что при в случае продольного распространения нигде не обращается в 0, т. е. волна проходит через ионосферу без отражения. В ночной атмосфере приближение геом. оптики нарушается и частичное прохождение есть при любом угле падения. Разряды молний · в атмосфере - естеств. источник НЧ-волн. В диапазоне 1-10 кГц они приводят к образованию т. н. свистящих атмосфериков ,к-рые распространяются указанным образом и создают на выходе приёмника сигнал с характерным свистом.


Рис. 12 .

При Р. р. инфразвуковых частот с w " W H важную роль играют колебания ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение к-рой описывается ур-ниями магнитной гидродинамики . В ионосфере возможно распространение неск. типов маг-нитогидродинамич. волн, в частности альвеновских волн , распространяющихся вдоль геомагн. поля с характерной скоростью(где r - плотность газа), и магнитозвуковых волн, к-рые распространяются изотропно (подобно звуку).

Нелинейные эффекты при распространении радиоволн в ионосфере проявляются уже для радиволн сравнительно небольшой интенсивности и связаны с нарушением линейной зависимости поляризации среды от электрич. поля волны (см. Нелинейная оптика )."На-гревная" нелинейность играет осн. роль, когда характерные размеры возмущённой электрич. полем области плазмы во много раз больше длины свободного пробега электронов. Т. к. длина свободного пробега электронов в плазме значительна, электрон успевает получить от поля заметную энергию за время одного пробега. Передача энергии при столкновениях от электронов к ионам, атомам и молекулам затруднена из-за большого различия в их массах. В результате электроны плазмы сильно "разогреваются" уже в сравнительно слабом электрич. поле, что изменяет эфф. частоту соударений. Поэтому b и s плазмы становятся зависящими от поля Е волны и Р. р. приобретает нелинейный характер. "Возмущение" диэлектрич. проницаемости

Где - характерное "плазменное" поле, Т - темп-pa плазмы, d - ср. доля энергии, теряемая электроном при одном соударении с тяжёлой частицей, - частота соударений.

Т. о., нелинейные эффекты становятся заметными, когда поле волны E сравнимо с E p , к-рое в зависимости от частоты волны и области ионосферы составляет ~10 -4 -10 -1 В/см.

Нелинейные эффекты могут проявляться как самовоздействие волны и как взаимодействие волн между собой. Самовоздействие мощной волны приводит к изменению её поглощения и глубины модуляции. Поглощение мощной радиоволны нелинейно зависит от её амплитуды. Частота соударений v с увеличением темп-ры электронов может как расти (в ниж. слоях, где осн. роль играют соударения с нейтральными частицами), так и убывать (при соударении с ионами). В первом случае поглощение резко возрастает с увеличением мощности волны ("насыщение" поля в плазме). Во втором случае поглощение падает (т. и. просветление плазмы для мощной радиоволны). Из-за нелинейного изменения поглощения амплитуда волны нелинейно зависит от амплитуды падающего поля, поэтому её модуляция искажается (автомодуляция и демодуляция волны). Изменение h в поле мощной волны приводит к искажению траектории луча. При распространении узконаправленных пучков радиоволн это может привести к самофокусировке пучка аналогично самофокусировке света и к образованию волноводного канала в плазме.

Взаимодействие волн в условиях нелинейности приводит к нарушению суперпозиции принципа .В частности, если мощная волна с частотой w 1 модулирована по амплитуде, то благодаря изменению поглощения эта модуляция может передаться др. волне с частотой w 2 , проходящей в той же области ионосферы (рис. 13) Это явление, называемое кросс модуляцией или Люксембург-Горьковским эффектом , имеет практич. значение при радиовещании в диапазоне ср. волн.


Рис. 13 . Ионосферная кроссмодуляция происходит в области пересечения лучей.

Нагрев ионосферы в поле мощной волны в КВ-диапа-зоне может вызвать тепловую параметрич. неустойчивость в ионосфере, к-рая приводит к аномально большому поглощению радиоизлучения и расслоению плазмы (см. Параметрический резонанс) . В области образуются сильно вытянутые вдоль Н 0 неоднородности ионосферы (с продольным масштабом 1 км, поперечным - 0,5100 м), к-рые перспективны для дальней связи в диапазоне УКВ. В поле очень мощных радиоволн электроны столь сильно разогреваются, что возникает электрич. пробой газа.

Если размеры возмущённой полем волны области плазмы много меньше длины свободного пробега электронов, нагревная нелинейность становится слабой. Это имеет место при коротких импульсах и узких пучках радиоволн. В этом случае осн. роль играет т. н. стрикционная нелинейность, связанная с тем, что неоднородное перем. электрич. поле волны оказывает давление на электроны, вызывающее сжатие плазмы. Концентрация электронов N , а следовательно, e и s становятся зависящими от амплитуды поля. Стрикционная нелинейность приводит к изменению диэлектрич. проницаемости меньшей нагревного изменения на неск. порядков (при той же мощности волны). Стрикционная нелинейность играет важную роль в параметрич. неустойчивости ионосферы.

Распространение радиоволн в космических условиях. За исключением планет и их ближайших окрестностей, б. ч. вещества во Вселенной ионизована. Параметры космич. плазмы меняются в широких пределах. Напр., концентрация электронов и ионов вблизи орбиты Земли ~1-10 см -3 , в ионосфере Юпитера ~10 5 см -3 , в солнечной короне ~10 8 см -3 , в недрах звёзд~10 27 см -3 . Из космич. пространства к Земле приходит широкий спектр эл--магн. волн, к-рые на пути из космоса должны пройти через ионосферу и тропосферу. Через атмосферу Земли без заметного затухания распространяются волны двух осн. частотных диапазонов: "радиоокно" соответствует диапазону от ионосферных критич. частот w кr до частот сильного поглощения аэрозолями и газами атмосферы (10 МГц - 20 ГГц), "оптич. окно" охватывает диапазон видимого и ИК-излучения (1-10 3 ТГц). Атмосфера также частично прозрачна в диапазоне НЧ (<300 кГц), где распространяются свистящие атмосферики и магнитогидродинамич. волны.

В космич. условиях источник радиоволн и их приёмник часто быстро движутся один относительно другого. В результате Доплера эффекта это приводит к изменению w на , где u - относит. скорость. Понижение частоты при удалении корреспондентов (красное смещение )свойственно излучению удаляющихся от нас далёких галактик. Радиоволны в космич. плазме подвержены рефракции, связанной с неоднородностью среды (рис. 14). Напр., вследствие рефракции в атмосфере Земли источник радиоволн виден выше над горизонтом, чем в действительности. Для определения расстояния до пульсаров и при интерпретации результатов Солнца и планет необходимо учитывать, что в космич. плазме

Рис. 14. Траектории радиолучей с l = 5 м в солнечной короне.


Возможности радиосвязи с объектами, находящимися в космич. пространстве или на др. планетах, разнообразны и связаны с наличием и строением их атмосфер. Если космич. плазма находится в магн. поле (магнитосфера Юпитера, области солнечных пятен, магнитосферы пульсаров), то она является гиротропной средой, подобно земной ионосфере. Для всех планет с атмосферами общая трудность радиосвязи состоит в том, что при входе космич. аппарата в плотные слои атмосферы вокруг него создаётся плотная плазменная оболочка, затрудняющая прохождение радиоволн. На планетах типа Меркурия и Луны, практически не имеющих атмосферы и ионосферы, на Р. р. оказывает влияние только поверхность планеты. Из-за отсутствия отражения от ионосферы дальность связи вдоль поверхности такой планеты невелика (рис. 15) и может быть увеличена только при помощи ретрансляции через спутник.

Рис. 15. Зависимость дальности r радиосвязи на поверхности Луны от частоты w/2p.


Распространение радиоволн разных диапазонов. Радиоволны очень низких (3-30 кГц) и низких (30- 300 кГц) частот огибают земную поверхность вследствие волноводного распространения и дифракции, сравнительно слабо проникают в ионосферу и мало поглощаются ею. Отличаются высокой фазовой стабильностью и способностью равномерно покрывать большие площади, включая полярные районы. Это обусловливает возможность их использования для устойчивой дальней и сверхдальней радиосвязи и радионавигации, несмотря на высокий уровень атм. помех. Полоса частот от 150 до 300 кГц используется для радиовещания. Большое число геофиз. исследований выполняется путём наблюдений за сигналами естеств. происхождения, к-рые генерируются, напр., молниевыми разрядами и частицами радиац. поясов Земли. Трудности применения этого частотного диапазона обусловлены громоздкостью антенных систем с высоким уровнем атм. помех, с относит. ограниченностью скорости передачи информации.

Средние волны (300-3000 кГц) днём распространяются вдоль поверхности Земли (земная, или прямая, волна). Отражённая от ионосферы волна практически отсутствует, т. к. волны сильно поглощаются в D -слое ионосферы. Ночью из-за отсутствия солнечного излучения D -слой исчезает, появляется ионосферная волна, отражённая от E -слоя, и дальность приёма возрастает. Сложение прямой и отражённой волн влечёт за собой сильную изменчивость поля, поэтому ионосферная волна - источник помех для мн. служб, использующих распространение земной волны. Ср. волны применяются для радиовещания, радиотелеграфной и радиотелефонной связи, радионавигации.

Короткие волны (3-30 МГц) слабо поглощаются D - и Е -слоями и отражаются от F-слоя , когда их частотымпч. В результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах. Этот диапазон применяется для радиотелефонной и радиотелеграфной связи, радиовещания, а также для радиолюбительской связи. Особенность радиосвязи в этом диапазоне - наличие замираний (фединга) сигнала из-за изменений условий отражения от ионосферы и интер-ференц. эффектов. КВ-линии связи подвержены влиянию атм. помех. Ионосферные бури вызывают прерывание связи.

Для очень высоких частот и УКВ (30 - 1000 МГц) преобладает Р. р. внутри тропосферы и проникновение сквозь ионосферу. Роль земной волны падает. Поля помех в НЧ-части этого диапазона всё ещё могут определяться отражениями от ионосферы, и до частоты 60 МГц ионосферное рассеяние продолжает играть значит. роль. Все виды Р. р., за исключением тропосферного рассеяния, позволяют передавать сигналы с шириной полосы частот в неск. МГц. В этой части спектра возможно очень высокое качество звукового радиовещания при дальности 50-100 км. Радиовещание с частотной модуляцией работает на частотах вблизи 100 МГц.

В этом же диапазоне частот ведётся телевиз. вещание. Для радиоастрономии выделено неск. узких спектральных полос, к-рые используют также для космич. связи, радиолокации, метеорологии, кроме того, для любительской связи.

Волны УВЧ и СВЧ (1000-10 000 МГц) распространяются в осн. в пределах прямой видимости и характеризуются низким уровнем шумов. В этом диапазоне при Р. р. играют роль известные области макс. поглощения и частоты излучения хим. элементов (напр., линии водорода вблизи 1420 МГц). В этом диапазоне размещены многоканальные системы широкополосной связи для передачи телефонных и телевиз. сигналов. Высокая направленность антенн позволяет использовать низкий уровень мощности в радиорелейных системах, а тропосферное рассеяние обеспечивает дальность радиосвязи ~ 800 км. Этот диапазон применяют в радионавигац. и радиолокац. службах. Для радиоастрономич. наблюдений выделены полосы частот за атомарным водородом, радикалом ОН и континуальным излучением. В космич. радиосвязи полоса частот ~ 1000- 10 000 МГц - наиб. важная часть радиодиапазона.

Волны СВЧ (>10 ГГц) распространяются только в пределах прямой видимости. Потери в этом диапазоне неск. выше, чем на более низких частотах, причём на их величину сильно влияет кол-во осадков. Роет потерь на этих частотах частично компенсируется возрастанием эффективности антенных систем. СВЧ служат в радиолокации, радионавигации и метеорологии. На линиях связи между поверхностью Земли и космосом могут использоваться частоты < 20 ГГц. Для связи в космосе могут применяться значительно более высокие частоты. При этом отсутствуют взаимные помехи между космич. и некосмич. службами. Диапазон СВЧ важен также для радиоастрономии.

Лит.: Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967; Fок В. А., Проблемы дифракции и распространения электромагнитных волн, М., 1970; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Железняков В. В., Электромагнитные волны в космической плазме, М., 1977.

П. А. Беспалов, М. Б, Виноградова .

Радиоволны, и их распространение, являются неоспоримой загадкой для начинающих любителей эфира. Здесь можно познакомиться с азами теории распространения радиоволн. Данная статья предназначена для ознакомления начинающих любителей эфира, а также и для тех, кто имеет некоторое представление о нём.

Самая главная вводная, про которую часто забывают сказать, прежде чем познакомить с теорией распространения радиоволн, так это то, что радиоволны распространяются вокруг нашей планеты за счет отражения от ионосферы и от земли как от полупрозрачных зеркал отражается луч света.

Особенности распространения средних волн и перекрёстная модуляция

К средним волнам относятся радиоволны длиной от 1000 до 100 м (частоты 0,3 — 3,0МГц). Средние волны используются главным образом для вещания. А так же они являются колыбелью отечественного радиопиратства. Они могут распространяться земным и ионосферным путём. Средние волны испытывают значительное поглощение в полупроводящей поверхности Земли, дальность распространения земной волны 1, (см. рис. 1), ограничена расстоянием 500-700 км. На большие расстояния радиоволны 2 и 3 распространяются ионосферной (пространственной) волной.

В ночное время средние волны распространяются путем отражения от слоя Е ионосферы (см. рис. 2), электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения волны расположен слой D, чрезвычайно сильно поглощающий средние волны. Поэтому при обычных мощностях передатчиков, напряженность электрического поля недостаточна для приема, и в дневные часы распространение средних волн происходит практически только земной волной на сравнительно небольшие расстояния, порядка 1000 км. В диапазоне средних волн, более длинные волны испытывают меньшее поглощение, и напряженность электрического поля ионосферной волны больше на более длинных волнах. Поглощение увеличивается в летние месяцы и уменьшается в зимние. Ионосферные возмущения не влияют на распространение средних волн, так как слой Е мало нарушается во время ионосферно-магнитных бурь.

В ночные часы см. рис. 1, на некотором расстоянии от передатчика (точка В), возможен приход одновременно пространственной 3 и поверхностной волн 1, причем длина пути пространственной волны меняется с изменением электронной плотности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряженности электрического поля, называемому ближним замиранием поля.

На значительное расстояние от передатчика (точка С) могут прийти волны 2 и 3 путем одного и двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженности электрического поля, называемому дальним замиранием поля.

Для борьбы с замираниями на передающем конце линии связи применяются антенны, у которых максимум диаграммы направленности «прижат» к земной поверхности, к ним можно отнести простейшую антенну «Inverted-V», достаточно часто применяемую радиолюбителями. При такой диаграмме направленности зона ближних замираний удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.

К сожалению не все начинающие радиовещатели, работающие в диапазоне частот 1600-3000кГц знают, что слабый сигнал от маломощного передатчика подвержен ионосферным искажениям. Сигнал от более мощных радиопередатчиков ионосферным искажениям подвержен меньше. Ввиду нелинейной ионизации ионосферы, происходит модуляция слабого сигнала модулирующим напряжением сигналов мощных станций. Это явление называется перекрестной модуляцией. Глубина коэффициента модуляции достигает 5-8%. Со стороны приема создаётся впечатление не качественно выполненного передатчика, со всевозможными гулами и хрипами, особенно это заметно в режиме АМ модуляции.

За счет перекрестной модуляции в приемник часто проникают интенсивные грозовые помехи, которые невозможно отфильтровать — грозовой разряд модулирует принимаемый сигнал. Именно по этой причине радиовещатели для проведения двусторонней радиосвязи стали применять однополосные передатчики и стали чаще работать на более высоких частотах. Зарубежные радиовешатели СВ станций, умощняют их, и подвергают компрессии модулирующие сигналы, а для неискаженной работы в эфире, применяют инверсные частоты.

Явления демодуляции и перекрестной модуляции в ионосфере наблюдаются только в диапазоне средних волн (СВ). В диапазоне коротких волн (КВ) скорость электрона под действием электрического поля ничтожно мала по сравнению с его тепловой скоростью и присутствие поля не меняет числа столкновений электрона с тяжелыми частицами.

Наиболее благоприятны, в диапазоне частот от 1500 до 3000кГц для дальних связей, являются зимние ночи и периоды минимума солнечной активности. Особо дальние связи, более 10000 км, обычно возможны в часы захода и восхода солнца. В дневные часы связь возможна на расстояние до 300 км. Свободные радиовещатели FM диапазона могут только позавидовать таким большим радиотрассам.

В летнее время на этом диапазоне часто мешают помехи от статических разрядов в атмосфере.

Особенности распространения коротких волн и их характеристики

К коротким волнам относятся радиоволны длиной от 100 до 10 м (частоты 3-30 МГц). Преимуществом работы на коротких волнах по сравнению с работой на более длинных волнах является то, что в этом диапазоне можно легко создать направленные антенны. Короткие волны могут распространяться как земные, в низкочастотной части диапазона, и как ионосферные.

С повышением частоты сильно возрастает поглощение волн в полупроводящей поверхности Земли. Поэтому при обычных мощностях передатчика земные волны коротковолнового диапазона распространяются на расстояния, не превышающие нескольких десятков километров. На морской глади, это расстояние значительно увеличивается.

Ионосферной волной короткие волны могут распространяться на многие тысячи километров, причем для этого не требуется передатчиков большой мощности. Поэтому в настоящее время короткие волны используются главным образом для связи и вещания на большие расстояния.

Короткие волны распространяются на дальние расстояния путем отражения от ионосферы и поверхности Земли. Такой способ распространения называют скачковым см. рис. 2 и характеризуется расстоянием скачка, числом скачков, углами выхода и прихода, максимальной применимой частотой (МПЧ) и наименьшей применимой частотой (НПЧ).

Если ионосфера однородна в горизонтальном направлении, то и траектория волны симметрична. Обычно излучение происходит в некотором спектре углов, так как ширина диаграммы направленности коротковолновых антенн в вертикальной плоскости составляет 10-15°. Минимальное расстояние скачка, для которого выполняется условие отражения, называют расстоянием зоны молчания (ЗМ). Для отражения волны необходимо, чтобы рабочая частота была не выше значения, максимально применимой частоты (МПЧ), являющаяся верхней границей рабочего диапазона для данного расстояния. Волна 4.

Применение антенн зенитного излучения, как один из приёмов уменьшения зоны молчания, ограничивается понятием максимально применимой частоты (МПЧ) с учётом снижения её на 15-20% от МПЧ. Антенны зенитного излучения применяют для вещания в ближней зоне методом односкачкового отражения от ионосферы.

Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере. Наименьшую — применимую частоту (НПЧ) определяют из условия, что при мощности передатчика в 1кВт, напряженность электрического поля сигнала должна превышать уровень шумов, а следовательно, поглощение сигнала в слоях ионосферы должно быть не больше допустимого. Электронная плотность ионосферы меняется в течение суток, в течение года, и периода солнечной активности. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток.

Диапазон частот 1,5–3 МГц, является ночным. Понятно, что для успешного проведения сеанса радиосвязи нужно каждый раз правильно выбирать частоту (длину волны), к тому же это усложняет конструкцию станции, но для настоящего ценителя дальних связей это не является трудностью, это часть хобби. Проведём оценку КВ диапазона по участкам.

Диапазон частот 5-8 мГц, во многом схож с диапазоном 3 мГц, и в отличае от него, здесь в дневное время можно связаться до 2000 км, зона молчания (ЗМ) отсутствует и составляет несколько десятков километров. В ночные часы возможна связь на любое расстояние за исключением ЗМ, которая увеличивается до нескольких сот километров. В часы смены времени суток (заход/восход), наиболее удобны для дальних связей. Атмосферные помехи менее выражены, чем в диапазоне 1,5-3 мГц.

В диапазоне частот 10-15 мГц в периоды солнечной активности возможны связи в дневное время суток практически с любой точкой земного шара. Летом продолжительность радиосвязи в этом диапазоне частот бывает круглосуточной, за исключением отдельных дней. Зона молчания ночью имеет расстояния в 1500-2000 км и по этому возможны только дальние связи. В дневное время они уменьшаются до 400-1000 км.

Диапазон частот 27-30 мГц пригоден для связи только в светлое время суток. Это самый капризный диапазон. Он обычно открывается на несколько часов, дней или недель особенно при смене сезонов, т.е. осенью и весной. Зона молчания (ЗМ) достигает 2000-2500 км. Это явление относится к теме МПЧ, здесь угол отраженной волны должен быть малым по отношению к ионосфере, иначе он имеет большое затухание в ионосфере, или простой уход в космические просторы. Малые углы излучения соответствуют большим скачкам и соответственно большим зонам молчания. В периоды максимума солнечной активности возможна связь и ночью.

Помимо перечисленных моделей, возможны случаи аномального распространения радиоволн. Аномальное распространение может возникнуть при появлении на пути волны спорадического слоя, от которого могут отражаться более короткие волны, вплоть до метровых. Это явление можно наблюдать на практике прохождением дальних телестанций и FM радиостанций. МПЧ радиосигнала в эти часы доходит до 60-100 мГц в годы солнечной активности.

В диапазоне УКВ FM, за исключением редких случаев аномального распространения радиоволн, распространение обусловлено строго так называемой «прямой видимостью». Распространение радиоволн в пределах прямой видимости говорит само за себя, и обусловлено высотой расположения передающей и приёмной антенн. Понятно, что в условиях городской застройки ни о какой визуальной и прямой видимости говорить нельзя, но радиоволны проходят сквозь городские застройки с некоторым ослаблением. Чем выше частота, тем выше затухание в городских застройках. Диапазон частот 88-108 МГц так же подвержен некоторым затуханиям в условиях города.

Замирание радиосигналов диапазона КВ

Приём коротких радиоволн всегда сопровождается измерением уровня принимаемого сигнала, причем это изменение носит случайный и временной характер. Такое явление называют замираниями (федингом) радиосигнала. В эфире наблюдаются быстрые и медленные фединги сигнала. Глубина фединга может достигать до нескольких десятков децибел.

Основной причиной быстрых замираний сигнала является многолучевое распространение радиоволн. В этом случае причиной федингов служит приход в точку приема двух лучей, распространяющихся путем одного и двух отражений от ионосферы, волна 1 и волна 3, см. рис 2.

Поскольку лучи проходят различные пути по расстоянию, фазы прихода их неодинаковы. Изменения электронной плотности, непрерывно происходящие в ионосфере, приводят к изменению длины пути каждого из лучей, а следовательно, и к изменению разности фаз между лучами. Для изменения фазы волны на 180° достаточно, чтобы длина пути изменилась всего на ½. Следует напомнить, что при приходе лучей одного сигнала в точку приёма с одинаковой силой и с разностью фаз на 180°, они полностью вычитаются по закону векторов, а сила приходящего сигнала в этом случае может быть равна нулю. Такие незначительные изменения длины пути могут происходить непрерывно, поэтому, колебания напряженности электрического поля в диапазоне коротких волн являются частыми и глубокими. Интервал их наблюдения в 3-7 минут может составлять на низких частотах КВ диапазона, и до 0,5 секунд на частотах ближе к 30 МГц.

Помимо этого, фединг сигнала вызываются рассеянием радиоволн на не однородностях ионосферы и интерференцией рассеянных волн.

Кроме интерференционных федингов, на коротких волнах, имеют место поляризационные фединги. Причиной поляризационных федингов является поворот плоскости поляризации волны относительно принимаемой антенны. Это происходит при распространении волны в направлении силовых линий магнитного поля Земли, и с изменением электронной плотности ионосферы. Если передающая и приемная антенны представляют собой горизонтальные вибраторы, то излученная горизонтально — поляризованная волна, после прохождения в ионосфере претерпит поворот плоскости поляризации. Это приводит к колебаниям э. д. с., наводимой в антенне, которое имеет дополнительное затухание до 10 дБ.

На практике все указанные причины замираний сигнала действуют, как правило, комплексно и подчиняются описанным законом распределения Релея.

Помимо быстрых замираний, наблюдаются медленные замирания, которые наблюдаются с периодом в 40-60 мин в низкочастотной части КВ диапазона. Причиной этих федингов является изменение поглощения радиоволн в ионосфере. Распределение огибающей амплитуды сигнала при медленных замираниях подчиняется нормально логарифмическому закону с уменьшением сигнала до 8-12 дБ.

Для борьбы с замираниями, на коротких волнах применяют метод приема на разнесенные антенны. Дело в том, что увеличение и уменьшение напряженности электрического поля происходят не одновременно даже на сравнительно небольшой площади земной поверхности. В практике коротковолновой связи используют обычно две антенны, разнесенные на расстояние нескольких длин волн, а сигналы складывают после детектирования. Эффективным является разнесение антенн по поляризации, т. е. одновременный прием на вертикальную и горизонтальную антенны с последующим сложением сигналов после детектирования.

Хочется отметить, что указанные меры борьбы действенны только для устранения быстрых замираний, медленные изменения сигнала не устраняются, так как это связано с изменением поглощения радиоволн в ионосфере.

В радиолюбительской практике метод разнесённых антенн используется довольно редко, ввиду конструктивной дороговизны и отсутствием необходимости приёма достаточно достоверной информации. Это связано с тем, что любители часто используют резонансные и диапазонные антенны, количество которых в его хозяйстве составляет около 2-3 штук. Использование разнесённого приёма требует увеличение парка антенн минимум вдвое.

Другое дело, когда любитель живёт в сельской местности, имея при этом достаточную площадь для размещения антифединговой конструкции, он может применить для этого просто два широкополосных вибратора, перекрывающие все, или почти все необходимые диапазоны. Один вибратор должен быть вертикальным, другой горизонтальным. Для этого совсем не обязательно иметь несколько мачт. Достаточно разместить их так, на одной мачте, чтобы они были сориентированы относительно друг друга под углом в 90°. Две антенны, в этом случае будут напоминать широко известную антенну «Inverted-V».

Расчет радиуса покрытия радиосигналом в УКВ/FM диапазонах

Частоты метрового диапазона распространяются в пределах прямой видимости. Радиус действия распространения радиоволны в пределах прямой видимости без учета мощности излучения передатчика и прочих природных явлений, уменьшающих эффективность связи, выглядит так:

r = 3,57 (√h1 + √h2), км,

Рассчитаем радиусы прямой видимости при установке приемной антенны на разных высотах, где h1 — параметр, h2 = 1,5 м. Сведем их в таблицу 1.

Таблица 1

h1 (м) 10 20 25 30 35 40 50 60
r (км) 15,6 20,3 22.2 24 25.5 27,0 29,6 32

Данная формула не учитывает затухание сигнала и мощности передатчика, она говорит лишь о возможности прямой видимости с учетом идеально круглой земли.

Произведем расчет необходимого уровня радиосигнала вместе приема для длины волны 3 м.

Поскольку на трассах между передающей станцией и подвижным объектом всегда присутствуют такие явления как, отражения, рассеяния, поглощения радиосигналов различными объектами и пр, следует вводить поправки в уровень затухания сигнала, что предложил японский ученый Okumura. Среднеквадратическое отклонение для этого диапазона с городскими застройками составит 3 дБ, а при вероятности связи в 99% введем множитель 2, что составит общую поправку П в уровне радиосигнала в
П = 3 × 2 = 6 дБ.

Чувствительность приемников определяется соотношением полезного сигнала над шумами в 12 дБ, т.е. в 4 раза. Такое соотношение при качественном радиовещании не приемлемо, поэтому введем дополнительную поправку еще в 12–20 дБ, примем 14 дБ.

Итого общая поправка в уровне принимаемого сигнала с учетом затухания его по трассе и специфике приемного устройства, составит: 6+16 20дБ (в 10 раз). Тогда при чувствительности приемника в 1,5 мкВ. в месте приема должно создаваться поле с напряженностью в 15 мкВ/м.

Рассчитаем по формуле Введенского радиус действия при заданной напряженности поля в 15 мкВ/м с учетом мощности передатчика, чувствительности приемника и городских застроек:

где r — км; Р — кВт; G — дБ (=1); h — м; λ — м; Е — мВ.

В данном расчете не учитывается коэффициент усиления приемной антенны, а также затухание в фидере и полосовом фильтре.

Ответ: При мощности в 10 Вт, высоте излучения h1=27 метров и h2=1,5м, реально качественный радиоприем с радиусом в городских застройках составит 2,5-2,6 км. Если учитывать, что прием радиосигналов вашего радиопередатчика будет осуществляться на средних и высоких этажах жилых зданий, то этот радиус действия увеличится примерно в 2-3 раза. Если принимать радиосигналы на вынесенную антенну, то радиус действия будет исчисляться десятками километров.

73! UA9LBG & Радио-Вектор-Тюмень

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию высокочастотного генератора выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

Законы распространения радиоволн в свободном пространстве сравнительно просты, но чаще всего радиотехника имеет дело не со свободным пространством, а с распространением радиоволн над земной поверхностью. Как показывает и опыт и теория, поверхность Земли сильно влияет на распространение радиоволн, причем сказываются как физические свойства поверхности пример, разлития между морем и сушей), так и ее геометрическая форма (общая кривизна поверхности например, различия между морем и сушей), так и ее геометрическая форма (общая кривизна поверхности земного шара и отдельные неровности рельефа - горы, ущелья и т. п.). Влияние это различно для волн разной длины и для волн разной длины и для разных расстояний между передатчиком и приемником.

Влияние, оказываемое на распространение радиоволн формой земной поверхности, понятно из предыдущего. Ведь мы имеем здесь, в сущности, разнообразные проявления дифракции идущих от излучателя волн (§ 41),- как на земном шаре в целом, так и на отдельных особенностях рельефа. Мы знаем, что дифракция сильно зависит от соотношения между длиной волны и размерами тела, находящегося на пути волны. Неудивительно поэтому, что кривизна земной поверхности и ее рельеф по-разному сказываются на распространении волн различной длины.

Так, например, горная цепь отбрасывает «радиотень» в случае коротких волн, в то время как достаточно длинные (в несколько километров) волны хорошо огибают это препятствие и на горном склоне, противоположном радиостанции, ослабляются незначительно (рис. 147).

Рис. 147. Гора отбрасывает «радиотень» в случае коротких волн. Длинные волны огибают гору

Что касается земного шара в целом, то он чрезвычайно велик даже по сравнению с наиболее длинными волнами, применяемыми в радио. Очень короткие волны, например метровые, вообще не заворачивают сколько-нибудь заметно за горизонт, т. е. за пределы прямой видимости. Чем волны длиннее, тем лучше они огибают поверхность земного шара, но и самые длинные из применяемых волн не могли бы благодаря дифракции завернуть так сильно, чтобы обойти вокруг земного шара - от нас к антиподам. Если, тем не менее, радиосвязь осуществляется между любыми точками земного шара, причем на волнах самой различной длины, то это возможно не из-за дифракции, а по совсем другой причине, о которой мы скажем немного дальше.

Влияние физических свойств земной поверхности на распространение радиоволн связано с тем, что под воздействием этих волн в почве и в морской воде возникают электрические токи высокой частоты, наиболее сильные вблизи антенны передатчика. Часть энергии радиоволны расходуется на поддержание этих токов, выделяющих в почве или воде соответствующее количество джоулева тепла. Эти потери энергии (а значит, и ослабления волны из-за потерь) зависят, с одной стороны, от проводимости почвы, а с другой - от длины волны. Короткие волны затухают значительно сильнее, чем длинные. При хорошей проводимости (морская вода) высокочастотные токи проникают на меньшую глубину от поверхности, чем при плохой (почва), и потери энергии в первом случае существенно меньше. В результате дальность действия одного и того же передатчика оказывается при распространении волн над морем значительно (в несколько раз) большей, чем при распространении над сушей.

Мы уже отметили, что распространение радиоволн на очень большие расстояния нельзя объяснить дифракцией вокруг земного шара. Между тем дальняя радиосвязь (на несколько тысяч километров) была осуществлена уже в первые годы после изобретения радио. В настоящее время каждый радиолюбитель знает, что длинноволновые ( больше ) и средневолновые станции зимними ночами слышны па расстоянии многих тысяч километров, в то время как днем, особенно в летние месяцы, эти же станции слышны на расстоянии всего в несколько сот километров. В диапазоне коротких волн положение иное. Здесь в любое время суток и любое время года можно найти такие длины волн, на которых надежно перекрываются любые расстояния. Для обеспечения круглосуточной связи при этом приходится в разное время суток работать на волнах различной длины. Зависимость дальности распространения радиоволн от времени года и суток заставила связать условия распространения радиоволн на Земле с влиянием Солнца. Эта связь в настоящее время хорошо изучена и объяснена.

Солнце испускает наряду с видимым светом сильное ультрафиолетовое излучение и большое количество быстрых заряженных частиц, которые, попадая в земную атмосферу, сильно ионизуют ее верхние области. В результате образуется несколько слоев ионизованных газов, расположенных на различных высотах .

Наличие таких следов дало основание к тому, чтобы назвать верхние слои земной атмосферы ионосферой.

Присутствие ионов и свободных электронов придает ионосфере свойства, резко отличающее ее от остальной атмосферы. Сохраняя способность пропускать видимый свет, инфракрасное излучение и метровые радиоволны, ионосфера сильно отражает более длинные волны; для таких волн ( больше ) земной шар оказывается окруженным как бы сферическим «зеркалом», и роспространение этих радиоволн происходит между двумя отражающими сферическими поверхностями-поверхностью Земли и «поверхностью» ионосферы (рис. 148). Именно поэтому радиоволны получают возможность огибать земной шар.

Рис. 148. Волна идет между Землей и ионосферой

Конечно, не следует понимать слова «поверхность сферического зеркала ионосферы» буквально. Никакой резкой границы у ионизованных слоев нет, правильная сферическая форма тоже не соблюдается (по край ней мере, одновременно вокруг всего земного шара); ионизация различна в разных слоях (в верхних она больше, чем в нижних), и сами слои состоят из непрерывно движущихся и меняющихся «облаков». Такое неоднородное «зеркало» не только отражает, но и поглощает и рассеивает радиоволны, причем опять-таки различно в зависимости от длины волны. Кроме того, свойства «зеркала» меняются с течением времени. Днем при действии солнечного излучения ионизации значительно больше, чем ночью, когда происходит только воссоединение положительных ионов и отрицательных электронов в нейтральные молекулы (рекомбинация). Особенно велико различие в ионизации днем и ночью в нижних слоях ионосферы. Здесь плотность воздуха выше, столкновения между ионами и электронами происходят чаще и рекомбинация протекает более интенсивно. В течение ночи ионизация нижних слоев ионосферы может успеть упасть до нуля. Ионизация различна и в зависимости от времени года, т, е. от высоты подъема Солнца над горизонтом.

Изучение суточных и сезонных изменений состояния ионосферы позволило не только объяснить, но и предсказывать условия прохождения радиоволн различной длины в разное время суток и года (радиопрогнозы).

Наличие ионосферы не только делает возможной коротковолновую связь на большие расстояния, но и позволяет радиоволнам иногда обогнуть весь земной шар, и даже несколько раз. Из-за этого возникает своеобразное явление при радиоприеме, так называемое радиоэхо, при котором сигнал воспринимается приемником несколько раз: после прихода сигнала по кратчайшему пути от передатчика могут быть слышны повторные сигналы, обогнувшие земной шар.

Часто случается, что волна доходит от передатчика к приемнику по нескольким различным путям, испытав различное число отражений от ионосферы и земной поверхности (рис. 149). Очевидно, волны, идущие от одного и того же передатчика, когерентны и могу интерферировать в месте приема, ослабляя или усиливая друг друга в зависимости от разности хода. Так как ионосфера не является абсолютно устойчивым «зеркалом», а меняется с течением времени, то меняется и разность хода волн, пришедших по разным путям от передатчика к приемнику, в результате чего усилением и т.д. Можно сказать, что интерференционные полосы «ползают» над поверхностями Земли, и приемник оказывается то в максимуме, то в минимуме колебаний. В принимаемой передаче получается при этом смена хорошей слышимости и замираний приема, при которых слышимость может падать до нуля.

Рис. 149. Различные пути волны от передатчика к приемнику

Аналогичное явление наблюдается на экране телевизора, если над окрестностью приемной антенны пролетает самолет. Отраженная самолетом радиоволна интерферирует с волной от передающей станции, и мы видим, как изображение «мигает» из-за того, что интерференционные «полосы» поочередного усиления и ослабления сигнала пробегают (из-за движения самолета) мимо приемной антенны.

Заметим, что при приеме телевизионной передачи в городе довольно часто наблюдается удвоение (и даже «размножение») изображения на экране кинескопа: оно состоит из двух или несколько изображений, в различной степени сдвинутых по горизонтали друг относительно друга. Это результат отражения радиоволны от домов, башен и т.п. Отраженные волны проходят более длинный путь, чем расстояние между передающей и приемной антеннами, и поэтому запаздывают, давая картину. сдвинутую в направлении развертки электронного пучка в кинескопе. В сущности, мы здесь воочию наблюдаем результат распространения радиоволн с конечной скоростью .

Прозрачность ионосферы для радиоволн, длина которых меньше , позволила обнаружить радиоизлучение, приходящее от внеземных источников. Возникла и с 40-х гг. нашего века быстро развивается радиоастрономия, открывшая новые возможности для изучения Вселенной, сверх тех, какими располагает обычная (оптическая) астрономия. Строится все больше радиотелескопов, увеличиваются размеры их антенн, повышается чувствительность приемников и в результате непрерывно возрастает количество и разнообразие открытых внеземных радиоисточников.

Оказалось, что радиоволны излучают и Солнце, и планеты, а за пределами нашей Солнечной системы – многие туманности и так называемые сверхновые звезды. Множество источников радиоизлучения открыто вне нашей звездной системы (Галактики). В основном – это другие галактические системы, причем лишь, небольшая их доля отождествлена с оптически наблюдаемыми туманностями. «Радиогалактики» обнаружены и на таких больших расстояниях от нас (многие миллиарды лет), которые находятся за пределами досягаемости самых сильных современных оптических телескопов. Были открыты интенсивные источники радиоизлучения, обладающие очень малыми угловыми размерами (доли угловой секунды). Первоначально их считали особого рода звездами, принадлежащими нашей Галактике, и поэтому назвали квазизвездными источниками или квазарами. Но с 1962 г. Стало ясно, что квазары – это внегалактические объекты с огромной мощностью радиоизлучения.

Отдельные, или, как говорят, дискретные радиоисточники нашей Галактики излучают широкий спектр длин волн. Но было обнаружено и «монохроматическое» радиоизлучение с длиной волны , испускаемое межзвездным водородом. Исследование этого излучения позволило найти общую массу межзвездного водорода и установить, как он распределен по Галактике. В самое последнее время удалось обнаружить монохроматическое радиоизлучение на длинах волн, свойственных другим химическим элементам.

К всех источников радиоизлучения, о которых говорилось выше, интенсивность очень постоянна. Лишь в некоторых случаях (в частности, у Солнца) наблюдаются на общем постоянном фоне отдельные беспорядочные вспышки радиоизлучения. 1968 г. был ознаменован новым радиоастрономическим открытием большого значения: были обнаружены источники (находящиеся в большинстве своем в пределах Галактики), излучающие строго периодические импульсы радиоволн. Эти источники получили название пульсаров. Периоды повторения импульсов у разных пульсаров различны и доставляют от нескольких секунд до несколько сотых долей секунды и даже меньше. Характер радиоизлучения пульсаров получает, по-видимому, наиболее правдоподобное объяснение, если допустить, что пульсары - это вращающиеся звезды, состоящие в основном из нейтронов (нейтронные звезды). В обнаружении и возможности наблюдения таких звезд и состоит большое научное значение этого радиоастрономического открытия.

Кроме приема собственного радиоизлучения тел Солнечной системы, применяется также их радиолокация. Это так называемая радиолокационная астрономия. Принимая отраженные от какой-либо из планет радиосигналы мощных локаторов, можно очень точно измерять расстояние до этой планеты, оценивать скорость ее вращения вокруг оси и судить (по интенсивности отражения радиоволн различной длины) о свойствах поверхности и атмосферы планеты.

Отметим в заключение, что прозрачность ионосферы для достаточно коротких радиоволн позволяет также осуществлять все виды радиосвязи с искусственными спутниками Земли и космическими кораблями (собственно связь, радиоуправление, телевидение, а также телеметрия – передача на Землю показаний различных измерительных приборов). По той же причине можно использовать теперь метровые радиоволны для связи и телевидения между сильно удаленными друг от друга пунктами земной поверхности (например, между Москвой и нашими дальневосточными городами), применяя однократную ретрансляции передач специальными спутниками, на которых установлена приемно-передающая радиоаппаратура.