Болезни Военный билет Призыв

Особенные теоретические методы научного познания абстрагирование, идеализация, формал

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Методы построения теории

1. Частные, используемые только в какой-то отдельной области (например, метод раскопок в археолгии)

2. Общенаучные, используемые разными науками, дающие возможность связывать воедино все стороны процесса познания:

– общелогические методы (анализ, синтез, индукция, дедукция, аналогия)

– методы эмпирического познания (наблюдение, эксперимент, измерение, моделирование)

– методы теоретического познания (абстрагирование, идеализация, формализация)

4. Всеобщие (диалектика, метафизика, метод проб и ошибок)

Абстрагирование – мысленное отвлечение от несущественных свойств, связей познаваемого объекта с одновременным фиксированием внимания на тех его сторонах, которые важны в настоящий момент.

Результат абстрагирования – абстракция.

Абстракция отождествления – понятие, которое получается в результате отождествления некоторого множества предметов и объединения их в особую группу (в жив. мире – отряды, классы).

Изолирующая абстракция – выделение некоторых свойств, связанных с предметами материального мира, в самостоятельные сущности («устойчивость», «растворимость», «электропроводность»).

Формирование научных абстракций – не конечная цель познания, а средство более глубокого познания конкретного. Поэтому затем идет возврат к конкретному. Конкретное в начале и в конце познавательного процесса коренным образом отличаются друг от друга. Исследователь получает в результате целостную картину изучаемого объекта.

Формализация (структурный метод) – выявление отношений между частями, элементами, характеризующими форму предмета. Формализация отражает структуру предмета в знаковой форме языком математики.

Идеализация - разновидностью абстрагирования, мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований, исключение из рассмотрения какие-то свойств, признаков объектов. (материальная точка лишена всяких размеров), позволяет заменить реал. объекты в исследовании (атомы вокруг ядра = планеты вокруг Солнца). Могут также присваиваться свойства, не существующие в реальности (абс. черн. тело). Важна для мысленного эксперимента.

Мысленный эксперимент – оперирование идеализированным объектом. Мысленный эксперимент выступает в роли предварительного идеального плана реального эксперимента, но играет и самостоятельную роль в науке.

К особенным методам научного познания относятся процедуры абстрагирования и идеализации, в ходе которых образуются научные понятия.

Абстрагирование - мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории.

Результат процесса абстрагирования называется абстракцией. Примером абстракций являются такие понятия, как точка, прямая, множество и т.д.

Идеализация - это операция мысленного выделения какого-либо одного, важного для данной теории свойства или отношения (не обязательно, чтобы это свойство существовало реально), и мысленного конструирования объекта, наделенного этим свойством.

Именно посредством идеализации образуются такие понятия, как «абсолютно черное тело», «идеальный газ», «атом» в классической физике и т.д. Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. В этом состоит главное отличие идеальных объектов от абстрактных.

Формализация - использование специальной символики вместо реальных объектов.

Ярким примером формализации является широкое использование математической символики и математических методов в естествознании. Формализация дает возможность исследовать объект без непосредственного обращения к нему и записывать полученные результаты в краткой и четкой форме.

Индукция

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента, получение общего вывода на основании частных посылок, движение от частного к общему.

Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Но в окружающем нас мире не так много подобных объектов одного класса, число которых ограниченно настолько, что исследователь может изучить каждый из них.

Поэтому гораздо чаще ученые прибегают к неполной индукции, которая строит общий вывод на основании наблюдения ограниченного числа фактов, если среди них не встретились такие, которые противоречат индуктивному умозаключению. Например, если ученый в ста или более случаях наблюдает один и тот же факт, он может сделать вывод, что этот эффект проявится и при других сход ных обстоятельствах. Естественно, что добытая таким путем истин неполна, полученное знание носит вероятностный характер и тре бует дополнительного подтверждения.

Дедукция

Индукция не может существовать в отрыве от дедукции.

Дедукция - метод научного познания, представляющий собой получение частных выводов на основе общих знаний, вывод от общего к частному.

Дедуктивное умозаключение строится по следующей схеме: все предметы класса А обладают свойством В, предмет а относится к классуА; следовательно, а обладает свойством В. Например: «Все люди смертны»; «Иван - человек»; следовательно, «Иван - смертен».

Дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Поэтому она не может существовать в отрыве от индукции. Как индукция, так и дедукция незаменимы в процессе научного познания.

Гипотеза

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории.

Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании.

Поэтому гипотеза - это не достоверное, а вероятное знание, истинность или ложность которого еще не установлена.

Особенные универсальные методынаучного познания

К универсальным методам научного познания относятся аналогия, моделирование, анализ и синтез.

Аналогия

Аналогия - метод познания, при котором происходит перенос знания, полученного при рассмотрении какого-либо одного объекта, на другой, менее изученный, но схожий с первым объектом по каким-то существенным свойствам.

Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, причем сходство устанавливается в результате

сравнения предметов между собой. Таким образом, в основе метода аналогии лежит метод сравнения.

Применение метода аналогии в научном познании требует определенной осторожности. Дело в том, что можно принять чисто внешнее, случайное сходство между двумя объектами за внутреннее, существенное, и на этом основании сделать вывод о сходстве, которого на самом деле нет. Так, хотя и лошадь, и автомобиль используются как транспортные средства, было бы неверным переносить знания об устройстве машины на анатомию и физиологию лошади. Данная аналогия будет ошибочной.

Тем не менее, метод аналогии занимает намного более значимое место в познании, чем это может показаться на первый взгляд. Ведь аналогия не просто намечает связи между явлениями. Важнейшей особенностью познавательной деятельности человека является то, что наше сознание не способно воспринять абсолютно новое знание, если у него нет точек соприкосновения с уже известным нам знанием. Именно поэтому при объяснении нового материала на занятиях всегда прибегают к примерам, которые и должны провести аналогию между известным и неизвестным знанием.

Моделирование

Метод аналогии тесно связан с методом моделирования.

Метод моделирования предполагает изучение каких-либо объектов посредством их моделей с дальнейшим переносом полученных данных на оригинал.

В основе этого метода лежит существенное сходство объекта-оригинала и его модели. К моделированию следует относиться с той же осторожностью, что и к аналогии, строго указывать пределы и границы допустимых при моделировании упрощений.

Современной науке известно несколько типов моделирования: предметное, мысленное, знаковое и компьютерное.

Предметное моделирование представляет собой использование моделей, воспроизводящих определенные геометрические, физические, динамические или функциональные характеристики прототипа. Так, на моделях исследуются аэродинамические качества самолетов и других машин, ведется разработка различных сооружений (плотин, электростанций и др.).

Мысленное моделирование - это использование различных мысленных представлений в форме воображаемых моделей. Широко известна идеальная планетарная модель атома Э. Резерфорда, напоминавшая Солнечную систему: вокруг положительно заряженно-

го ядра (Солнца) вращались отрицательно заряженные электроны (планеты).

Знаковое (символическое) моделирование использует в качестве моделей схемы, чертежи, формулы. В них в условно-знаковой форме отражаются какие-то свойства оригинала. Разновидностью знакового является математическое моделирование, осуществляеемое средствами математики и логики. Язык математики позволяет выразить любые свойства объектов и явлений, описать их функционирование или взаимодействие с другими объектами с помощью системы уравнений. Так создается математическая модель явления. Часто математическое моделирование сочетается с предметным моделированием.

Компьютерное моделирование получило широкое распространение в последнее время. В данном случае компьютер является одновременно и средством, и объектом экспериментального исследования, заменяющим оригинал. Моделью при этом является компьютерная программа (алгоритм).

Анализ

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части и их отдельное изучение.

Эта процедура ставит своей целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи этих частей друг с другом.

Анализ - органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от описания нерасчлененного изучаемого объекта к выявлению его строения, состава, а также свойств и признаков. Для постижения объекта как единого целого недостаточно знать, из чего он состоит. Важно понять, как связаны друг с другом составные части объекта, а это можно сделать, лишь изучив их в единстве. Для этого анализ дополняется синтезом.

Синтез

Синтез - метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета.

Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. Важно понять, что синтез вовсе не является простым механическим соединением разъединенных элементов в единую систему. Он показывает место и роль каждого элемента в этой системе, его связь с другими составными частями системы. Таким образом, при синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта.

Синтез - такая же необходимая часть научного познания, как и анализ, и идет вслед за ним. Анализ и синтез - это две стороны единого аналитико-синтетического метода познания, которые не существуют друг без друга.

Классификация

Классификация - метод научного познания, позволяющий объединить в один класс объекты, максимально сходные друг с другом в существенных признаках.

Классификация позволяет свести накопленный многообразный материал к сравнительно небольшому числу классов, типов и форм, выявить исходные единицы анализа, обнаружить устойчивые признаки и отношения. Как правило, классификации выражаются в виде текстов на естественных языках, схем и таблиц.

Разнообразие методов научного познания создает трудности в их использовании и понимании их значимости. Эти проблемы решаются особой областью знания - методологией, т.е. учением о методах. Важнейшая задача методологии - изучение происхождения, сущности, эффективности и других характеристик методов познания.

К особенным методам научного познания относятся процедуры абстрагирования и идеализации, в ходе которых образуются научные понятия.

Абстрагирование - мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории.

Результат процесса абстрагирования называется абстракцией. Примером абстракций являются такие понятия, как точка, прямая, множество и т.д.

Идеализация - это операция мысленного выделения какого-либо одного, важного для данной теории свойства или отношения (не обязательно, чтобы это свойство существовало реально), и мысленного конструирования объекта, наделенного этим свойством.

Именно посредством идеализации образуются такие понятия, как «абсолютно черное тело», «идеальный газ», «атом» в классической физике и т.д. Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. В этом состоит главное отличие идеальных объектов от абстрактных.

Формализация - использование специальной символики вместо реальных объектов.

Ярким примером формализации является широкое использование математической символики и математических методов в естествознании. Формализация дает возможность исследовать объект без непосредственного обращения к нему и записывать полученные результаты в краткой и четкой форме.

Использование символики обеспечивает полноту обозрения определенной области проблем, краткость и четкость фиксации знания, позволяет избежать многозначности терминов. Познавательная ценность формализации состоит в том, что она является средством систематизации и уточнения логической структуры теории. Одно из наиболее ценных достоинств формализации - ее эвристические возможности, в частности возможность обнаружения и доказательства ранее неизвестных свойств изучаемых объектов. Различают два типа формализованных теорий: полностью формализованные и частично формализованные теории. Полностью формализованные теории строятся в аксиоматически дедуктивной форме с явным указанием языка формализации и использованием четких логических средств. В частично формализованных теориях язык и логические средства, используемые для развития данной научной дисциплины, явным образом не фиксируются. На современном этапе развития науки в ней преобладают частично формализованные теории. В методе формализации заложены большие эвристические возможности. Процесс формализаций носит творческий характер. Отталкиваясь от определенного уровня обобщения научных фактов, формализация преобразует их, выявляет в них такие особенности, которые не были зафиксированы на содержательно-интуитивном уровне. Идеализация, абстрагирование - замена отдельных свойств предмета или всего предмета символом или знаком, мысленное отвлечение от чего-то с целью выделения чего-то другого. Идеальные объекты в науке отражают устойчивые связи и свойства объектов: массу, скорость, силу и др. Но идеальные объекты могут и не иметь реальных прообразов в предметном мире, т.е. по мере развития научного знания одни абстракции могут образовываться из других без обращения к практике. Поэтому различают эмпирические и идеальные теоретические объекты. Идеализация является необходимым предварительным условием построения теории, поскольку система идеализированных, абстрактных образов и определяет специфику данной теории.



Моделирование. Модель - мысленное или материальное замещение наиболее существенных сторон изучаемого объекта. Модель - это специально созданный человеком предмет или система, устройство, которое в определенном отношении имитирует, воспроизводит реально существующие предметы или системы, являющиеся объектом научного исследования. В моделировании опираются на аналогии свойств и отношений между оригиналом и моделью. Изучив взаимосвязи, существующие между величинами, описывающими модель, их затем переносят на оригинал и таким образом делают правдоподобное заключение об особенностях поведения последнего. Моделирование как метод, научного познания основано на способности человека абстрагировать изучаемые признаки или свойства у различных предметов, явлений и устанавливать определенные соотношения между ними. Хотя ученые давно пользовались этим методом, только с середины XIX в. моделирование завоевывает прочное, признание у ученых и инженеров. В связи с развитием электроники и кибернетики моделирование превращается в чрезвычайно эффективный метод исследования. Благодаря применению моделирования закономерностей действительности, которые могли в оригинале изучаться лишь, путем наблюдения, они становятся доступными экспериментальному исследованию. Возникает возможность многократного повторения в модели явлений, соответствующих уникальным процессам природы или общественной жизни. Если рассматривать историю науки и техники с точки зрения применения тех или иных моделей, то можно констатировать, что на первых порах развития науки и техники применялись материальные, наглядные модели. В последующем они постепенно утрачивали одну за другой конкретные черты оригинала, их соответствие оригиналу приобретало все более абстрактный характер. В настоящее время все боль­шее значение приобретает поиск моделей, базирующихся на логических основаниях. Существует множество вариантов классификации моделей. На наш взгляд, наиболее убедительным является следующий вариант: а) естественно-природные модели (существующие в природе в естественном виде). Пока ни одна из конструкций, созданная человеком, не может конкурировать с природными конструкциями по сложности решаемых задач. Существует наука бионика, цель которой - исследование уникальных природных моделей с целью дальнейшего использования полученных знаний при создании искусственных устройств. Известно например, что создатели модели формы подводной лодки в качестве аналога взяли форму тела дельфина, при конструировании первых летательных аппаратов использовалась модель размаха крыльев птиц и т.д.; б) вещественно-технические модели (в уменьшенном или увеличенном виде полностью воспроизводящие оригинал). При этом эксперты различают а) модели, создаваемые для того, чтобы воспроизвести пространственные свойства изучаемого объекта (макеты домов, застройки районов и т.д.); б) модели воспроизводящие динамику изучаемых объектов, закономерные связи, величины, параметры (модели самолетов, кораблей, платан и т.д.). Наконец существует третий вид моделей - в) знаковые модели, в том числе математические. Знаковое моделирование позволяет упростить изучаемый предмет, выделить в нем те структурные отношения, которые больше всего интересуют исследователя. Проигрывая вещественно-техническим моделям в наглядности, знаковые модели выигрывают за счет более глубокого проникновения в структуру изучаемого фрагмента объективной реальности. Так, с помощью знаковых систем удается понять сущность таких сложных явлений, как устройство атомного ядра, элементарных частиц, Вселенной. Поэтому применение знаковых моделей особенно важно в тех областях науки, техники, где имеют дело с изучением предельно общих связей, отношений, структур. Особенно расширились возможности знакового моделирования в связи с появлением компьютеров. Появились варианты построения сложных знаково-математических моделей, позволяющих выбирать наиболее оптимальные значения величин сложных изучаемых реальных процессов и осуществлять длительные эксперименты над ними. В ходе исследования часто возникает необходимость построения разнообразных моделей изучаемых процессов, начиная от вещественных и кончая концептуальными и математическими моделями. В целом «построение моделей не только наглядных, но и концептуальных, математических сопровождает процесс научного поиска от его начала до конца, давая возможность охватить в единой системе наглядных и абстрактных образов основные особенности исследуемых процессов» (70. С. 96). Метод исторического и логического: первый воспроизводит развитие объекта с учетом всех действующих на него факторов, второй воспроизводит только общее, главное в предмете в процессе развития.

Абстрагирование и формализация

Абстрагирование – это метод научного исследования, основанный на том, что при изучении некоторого объекта отвлекаются от его несущественных в данной ситуации сторон, признаков. Это позволяет упрощать картину исследуемого явления и рассматривать его в «чистом» виде. Абстрагирование связано с представлением об относительной независимости явлений и их сторон, что позволяет отделить существенные стороны от несущественных. При этом, как правило, производится замещение первоначального предмета исследования другим – эквивалентным, исходя из условий данной задачи. Например, при исследовании работы какого-либо механизма анализируют расчетную схему, которая отображает основные, существенные свойства механизма.

Различают следующие виды абстрагирования:

– отождествление (образование понятий путем объединения предметов, связанных по своим свойствам в особый класс). Т. е. на основе одинаковости некоторого множества предметов, сходных в некотором отношении, производится построение абстрактного предмета. Например, в результате обобщения-свойства электронных, магнитных, электромашинных, релейных, гидравлических, пневматических устройств усиливать входные сигналы возникла такая обобщенная абстракция (абстрактный предмет), как усилитель. Он является представителем свойств приравненных в определенном отношении разнокачественных предметов.

– изолирование (выделение свойств, неразрывно связанных с предметами). Изолирующая абстракция производится для вычленения и четкой фиксации исследуемого явления. Примером может служить абстракция действительной суммарной силы, действующей на границе подвижного жидкого элемента. Число этих сил, как и число свойств, жидкого элемента, бесконечно. Однако из этого разнообразия можно вычленить силы давления и трения путем мысленного выделения на границе потока элемента поверхности, через которую внешняя: среда действует на поток с некоторой силой (причинами возникновения такой силы в данном случае исследователь не интересуется). Мысленно разложив силу на две составляющие, силу давления можно определить как нормальную составляющую внешнего воздействия, а силу трения – как касательную.

– идеализация соответствует цели замещения реальной ситуации идеализированной схемой для упрощения изучаемой ситуации и более эффективного использования методов и средств исследования. Процесс идеализации – это мысленное конструирование понятий об объектах несуществующих и неосуществимых, но имеющих прообразы в реальном мире. Например, идеальный газ, абсолютно твердое тело, материальная точка и т.п. В результате идеализации реальные объекты лишаются некоторых присущих им свойств и наделяются гипотетическими свойствами.

Современный исследователь часто с самого начала ставит задачу упрощения изучаемого явления и построения его абстрактной идеализированной модели. Идеализация выступает здесь как исходный пункт в построении теории. Критерием плодотворности идеализации является удовлетворительное во многих случаях совпадение теоретических и эмпирических результатов исследования.

Формализация – метод изучения некоторых областей знания в формализованных системах с помощью искусственных языков. Таковы, например, формализованные языки химии, математики, логики. Формализованные языки позволяют кратко и четко фиксировать знания, избегать многозначности терминов естественного языка. Формализацию, основой которой являются абстрагирование и идеализация, можно рассматривать как разновидность моделирования (знаковое моделирование).

- 23.78 Кб

Специфика и основные методы теоретического познания: абстрагирование, идеализация, формализация, мысленный эксперимент.

1. Абстрагирование. Восхождение от абстрактного к конкретному.

Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т. е. научным абстракциям. Получение этих абстракций связано со сложной абстрагирующей деятельностью мышления.

В процессе абстрагирования происходит отход (восхождение) от чувственно воспринимаемых конкретных объектов (со всеми их свойствами, сторонами и т. д.) к воспроизводимым в мышлении абстрактным представлениям о них. При этом чувственно-конкретное восприятие как бы «...испаряется до степени абстрактного определения» 1 . Абстрагирование, таким образом, заключается в мысленном отвлечении от каких-то - менее существенных - свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией (или используют термин «абстрактное» - в отличие от конкретного).

В научном познании широко применяются, например, абстракции отождествления и изолирующие абстракции. Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов (при этом отвлекаются от целого ряда индивидуальных свойств, признаков данных предметов) и объединения их в особую группу. Примером может служить группировка всего множества растений и животных, обитающих на нашей планете, в особые виды, роды, отряды и т. д. Изолирующая абстракции получается путем выделения некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности («устойчивость», «растворимость», «электропроводность» и т. д.).

Переход от чувственно-конкретного к абстрактному всегда связан с известным упрощением действительности. Вместе с тем, восходя от чувственно-конкретного к абстрактному, теоретическому, исследователь получает возможность глубже понять изучаемый объект, раскрыть его сущность. При этом исследователь вначале находит главную связь (отношение) изучаемого объекта, а затем, шаг за шагом прослеживая, как она видоизменяется в различных условиях, открывает новые связи, устанавливает их взаимодействия и таким путем отображает во всей полноте сущность изучаемого объекта.

Процесс перехода от чувственно-эмпирических, наглядных представлений об изучаемых явлениях к формированию определенных абстрактных, теоретических конструкций, отражающих сущность этих явлений, лежит в основе развития любой науки.

Поскольку конкретное (т. е. реальные объекты, процессы материального мира) есть совокупность множества свойств, сторон, внутренних и внешних связей и отношений, его невозможно познать во всем его многообразии, оставаясь на этапе чувственного познания, ограничиваясь им. Поэтому и возникает потребность в теоретическом осмыслении конкретного, т. е. восхождении от чувственно-конкретного к абстрактному.

Но формирование научных абстракций, общих теоретических положений не является конечной целью познания, а представляет собой только средство более глубокого, разностороннего познания конкретного. Поэтому необходимо дальнейшее движение (восхождение) познания от достигнутого абстрактного вновь к конкретному. Получаемое на этом этапе исследования знание о конкретном будет качественно иным по сравнению с тем, которое имелось на этапе чувственного познания. Другими словами, конкретное в начале процесса познания (чувственно-конкретное, являющееся его исходным моментом) и конкретное, постигаемое в конце познавательного процесса (его называют логически-конкретным, подчеркивая роль абстрактного мышления в его постижении), коренным образом отличаются друг от друга.

Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное во всем богатстве его содержания.

Оно содержит в себе уже не только чувственно воспринимаемое, но и нечто скрытое, недоступное чувственному восприятию, нечто существенное, закономерное, постигнутое лишь с помощью теоретического мышления, с помощью определенных абстракций.

Метод восхождения от абстрактного к конкретному применяется при построении различных научных теорий и может использоваться как в общественных, так и в естественных науках. Например, в теории газов, выделив основные законы идеального газа - уравнения Клапейрона, закон Авогадро и т. д., исследователь идет к конкретным взаимодействиям и свойствам реальных газов, характеризуя их существенные стороны и свойства. По мере углубления в конкретное вводятся все новые абстракции, которые выступают в качестве более глубокого отображения сущности объекта. Так, в процессе развития теории газов было выяснено, что законы идеального газа характеризуют поведение реальных газов только при небольших давлениях. Это было вызвано тем, что абстракция идеального газа пренебрегает силами притяжения молекул. Учет этих сил привел к формулировке закона Ван-дер-Ваальса. По сравнению с законом Клапейрона этот закон выразил сущность поведения газов более конкретно и глубоко.

2. Идеализация. Мысленный эксперимент.

Мыслительная деятельность исследователя в процессе научного познания включает в себя особый вид абстрагирования, который называют идеализацией. Идеализация представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований.

В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в механике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров. Такой абстрактный объект, размерами которого пренебрегают, удобен при описании движения, самых разнообразных материальных объектов от атомов и молекул и до планет Солнечной системы.

Изменения объекта, достигаемые в процессе идеализации, могут производиться также и путем наделения его какими-то особыми свойствами, в реальной действительности неосуществимыми. Примером может служить введенная путем идеализации в физику абстракция, известная под названием абсолютно черного тела (такое тело наделяется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя).

Целесообразность использования идеализации определяется следующими обстоятельствами:

Во-первых, «идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности математического, анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих реальных объектов. Последнее, в сущности, и удостоверяет плодотворность идеализации, отличает ее от бесплодной фантазии» 2 .

Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.

В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. При этом правильный выбор допустимости подобной идеализации играет очень большую роль.

Следует отметить, что характер идеализации может быть весьма различным, если существуют разные теоретические подходы к изучению какого-то явления. В качестве примера можно указать на три разных понятия «идеального газа», сформировавшихся под влиянием различных теоретико-физических представлений: Максвелла-Больцмана, Бозе-Эйнштейна и Ферми-Дирака. Однако полученные при этом все три варианта идеализации оказались плодотворными при изучении газовых состояний различной природы: идеальный газ Максвелла-Больцмана стал основой исследований обычных молекулярных разреженных газов, находящихся при достаточно высоких температурах; идеальный газ Бозе-Эйнштейна был применен для изучения фотонного газа, а идеальный газ Ферми-Дирака помог решить ряд проблем электронного газа.

Будучи разновидностью абстрагирования, идеализация допускает элемент чувственной наглядности (обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью). Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент (его также называют умственным, субъективным, воображаемым, идеализированным).

Мысленный эксперимент предполагает оперирование идеализированным объектом (замещающим в абстракции объект реальный), которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного (идеализированного) эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществленным на практике, сначала «проигрывается» исследователем мысленно в процессе обдумывания, планирования. В этом случае мысленный эксперимент выступает в роли предварительного идеального плана реального эксперимента.

Вместе с тем мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него.

В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций, проведение реальных экспериментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.

Научная деятельность Галилея, Ньютона, Максвелла, Карно, Эйнштейна и других ученых, заложивших основы современного естествознания, свидетельствует о существенной роли мысленного эксперимента в формировании теоретических идей. История развития физики богата фактами использования мысленных экспериментов. Примером могут служить мысленные эксперименты Галилея, приведшие к открытию закона инерции. «...Закон инерции, - писали А. Эйнштейн и Л. Инфельд, - нельзя вывести непосредственно из эксперимента, его можно вывести умозрительно - мышлением, связанным с наблюдением. Этот эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов» 3 .

Мысленный эксперимент может иметь большую эвристическую ценность, помогая интерпретировать новое знание, полученное чисто математическим путем. Это подтверждается многими примерами из истории науки.

Метод идеализации, оказывающийся весьма плодотворным во многих случаях, имеет в то же время определенные ограничения. Кроме того, любая идеализация ограничена конкретной областью явлений и служит для решения только определенных проблем. Это, хорошо видно хотя бы на примере вышеуказанной идеализации «абсолютно черное тело».

Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на ее основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.

3. Формализация.

Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков).

Этот прием заключается в построении абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов. Таким путем создается обобщенная знаковая модель некоторой предметной области, позволяющая обнаружить структуру различных явлений и процессов при отвлечении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики и математики представляет формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений.

Ярким примером формализации являются широко используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.

Для построения любой формальной системы необходимо: а) задание алфавита, т. е. определенного набора знаков; б) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»; в) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

В результате создается формальная знаковая система в виде определенного искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (оперирование знаками) без непосредственного обращения к этому объекту.

Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею.

Описание работы

Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т. е. научным абстракциям. Получение этих абстракций связано со сложной абстрагирующей деятельностью мышления.