Болезни Военный билет Призыв

Основы квантовой физики для чайников. Квантовая теория поля. Квантовая запутанность и телепортация

Предупреждаю сразу: этот цикл статей заметно отличается от традиционного введения в квантовую механику.

Во-первых , я не буду цитировать Ричарда Фейнмана, однажды заявившего, что «это нормально - не понимать квантовую механику, потому что никто её не понимает». Когда-то это было так, но времена меняются.

Я не скажу: «Квантовую механику невозможно понять, к ней просто нужно привыкнуть». (Эту цитату приписывают Джону фон Нейману; он жил в те дремучие времена, когда никто и в самом деле не понимал квантовую механику.)

Нельзя заканчивать объяснение словами «Если что-то непонятно, так и должно быть». Нет, так не должно быть . Может, проблема в вас. Может - в вашем учителе. В любом случае, её надо решать , а не сидеть сложа руки и успокаивать себя тем, что все остальные тоже ничего не понимают.

Я не буду говорить, что квантовая механика - это нечто странное , запутанное или недоступное для человеческого понимания . Да, она контринтуитивна - но это беда исключительно нашей интуиции. Квантовая механика возникла задолго до Солнца, планеты Земля или человеческой цивилизации. Она не собирается меняться ради вас. Вообще, не существует обескураживающих фактов , есть только теории, обескураженные фактами ; а если теория не совпадает с практикой, это не делает ей чести.

Всегда стоит рассматривать реальность как совершенно обыденную вещь. С начала времён во Вселенной не случилось ничего необычного.

Наша цель - научиться чувствовать себя как дома в этом квантовом мире. Потому что мы и так дома.

На протяжении всего этого цикла я буду говорить о квантовой механике как о самой обычной теории; а там, где интуитивное представление о мире не совпадает с ней, я буду высмеивать интуицию за несоответствие реальности.

Во-вторых , я не собираюсь следовать традиционному порядку изучения квантовой механики, копирующему порядок, в котором её открывали.

Обычно всё начинается с рассказа о том, что материя иногда ведёт себя как кучка маленьких бильярдных шаров, сталкивающихся между собой, а иногда - как волны на поверхности бассейна. Это сопровождается несколькими примерами, иллюстирующими оба взгляда на материю.

Раньше, когда всё это только зарождалось и никто не имел ни малейшего понятия о математических основах физики, учёные всерьёз считали, что всё состоит из атомов, ведущих себя примерно как бильярдные шары. А потом они стали считать, что всё состоит из волн. А потом они опять вернулись к бильярдным шарам. Всё это привело к тому, что учёные окончательно запутались, и только через несколько десятилетий - к концу девятнадцатого века - им удалось расставить всё по своим местам.

Если применить этот исторический достоверный подход к обучению современных студентов (как сейчас и поступают), с ними закономерно случится то же, что случилось с ранними учёными, а именно - они впадут в полное и абсолютное замешательство . Рассказывать студентам, изучающим физику, о корпускулярно-волновом дуализме, это то же самое, что начинать курс химии лекцией о четырёх стихиях.

Электрон не похож ни на бильярдный шар, ни на гребень океанской волны. Электрон - это совершенно другой объект с математической точки зрения, и он остаётся таким при любых обстоятельствах . А если вы будете упорствовать в своём стремлении считать его и тем, и тем, как вам удобнее , предупреждаю: за двумя зайцами погонишься - ни одного не поймаешь.

Это не единственная причина, по которой исторический порядок - не лучший выбор. Давайте проследим за гипотетическим процессом с самого начала : люди замечают, что они окружены другими животными - внутри животных, оказывается, есть органы - а органы, если присмотреться внимательнее, состоят из тканей - под микроскопом видно, что ткани состоят из клеток - клетки состоят из протеинов и прочих химических соединений - химические соединения состоят из атомов - атомы состоят из протонов, нейтронов и электронов - а последние гораздо проще и понятнее животных, с которых всё началось, но были открыты на десятки тысяч лет позже .

Физику не начинают проходить с биологии. Тогда почему её нужно начинать с обсуждения лабораторных экспериментов и их результатов, которые даже в случае простейших опытов являются следствием множества сложных и запутанных процессов?

С одной стороны, я могу понять, почему во главу угла ставится эксперимент. Мы же о физике говорим, в конце концов.

С другой стороны, давать студентам в руки сложный математический аппарат только для того, чтобы они могли проанализировать простой опыт - это уже чересчур . Программистов, например, сначала учат складывать две переменные, а только потом - писать многопоточные приложения; и плевать на то, что вторые «ближе к реальной жизни».

Классическая механика не следует явным образом из квантовой механики. Более того, классическая механика находится на гораздо более высоком уровне. Сравните атомы и молекулы с кварками: миллионы известных науке химических веществ, сотня химических элементов, и всего шесть кварков. Сначала лучше понять простое, а только потом переходить к сложному.

Наконец , я буду рассматривать квантовую механику со строго реалистической позиции - наш мир является квантовым, наши уравнения описывают территорию, а не её карту, и привычный нам мир неявным образом существует в квантовом мире. Если среди моих читателей есть антиреалисты - пожалуйста , придержите свои комментарии. Квантовую механику гораздо труднее понять и представить, если сомневаешься в её справедливости. Я поговорю об этом подробнее в одной из следующих статей.

Я думаю, что той точки зрения, которую я буду излагать в этом введении, придерживается большинство физиков-теоретиков. Но вы всё же должны знать, что это не единственная возможная точка зрения, и немалая доля учёных сомневается в верности реалистической позиции. Хоть я и не собираюсь уделять внимание каким-либо другим теориям прямо сейчас , я чувствую себя обязанным упомянуть о том, что они есть .

Подводя итог , моя цель - научить вас думать как коренной житель квантового мира , а не как турист поневоле .

Покрепче вцепитесь в реальность. Мы начинаем.

Конфигурации и амплитуды

Посмотрите на рис. 1. В точке A находится полупосеребрённое зеркало, а в точках B и C - два детектора фотонов.

Этот простой эксперимент в своё время заставил учёных поломать головы. Дело в том, что в половине случаев фотон, выпущенный в сторону зеркала, регистрировался первым детектором, а в половине - на вторым. И учёные - внимание, приготовьтесь смеяться - предполагали, что зеркало то пропускало фотон, то отражало его.

Ха-ха-ха, представьте себе зеркало, которое может само выбирать, пропускать ему фотон или не пропускать! Если вы и можете это представить, то все равно не делайте этого - а не то вы запутаетесь так же, как и те учёные. Зеркало ведёт себя абсолютно одинаково в обоих случаях.

Если бы мы попробовали написать компьютерную программу, симулирующую этот эксперимент (а не просто предсказывающую результат), она бы выглядела примерно так…

В начале программы мы объявляем переменную, хранящую в себе определённый математический объект - конфигурацию . Она представляет некое описание состояния мира - в данном случае, «один фотон летит в точку А».

На самом деле конфигурация описывается комплексным числом (напомню, что комплексные числа имеют вид (a + bi ), где a и b - действительные числа, а i - мнимая единица, т.е. такое число, что i ² = -1). Нашей конфигурации «фотон летит в точку A » тоже соответствует какое-то число. Пусть это будет (-1 + 0i ). В дальнейшем мы будем называть число, соответствующее конфигурации, её амплитудой .

Введём ещё две конфигурации: «фотон летит из A в точку B » и «фотон летит из A в точку C ». Мы пока не знаем амплитуды этих конфигураций; им будут присвоены значения в ходе выполнения программы.

Посчитать амплитуды можно, применив правило, по которому работает зеркало, к начальной конфигурации. Не вдаваясь в подробности, можно считать, что правило выглядит так: «умножить на 1, когда фотон пролетает; умножить на i , когда фотон отражается». Применим правило: амплитуда конфигурации «фотон летит в B » равняется (-1 + 0i ) × i = (0 + -i ), а амплитуда конфигурации «фотон летит в C » равняется (-1 + 0i ) × 1 = (-1 + 0i ). Других конфигураций на рис. 1 нету, так что мы закончили.

В принципе, можно считать «первый детектор регистрирует фотон» и «второй детектор регистрирует фотон» отдельными конфигурациями, но это ничего не меняет; их амплитуды будут равны амплитудам двух предыдущих конфигураций соответственно. (На самом деле их ещё надо домножить на множитель, равный расстоянию от A до детекторов, но мы просто предположим, что все расстояния в нашем эксперименте являются множителями единицы.)

Итак, вот конечное состояние программы:

  • «фотон летит в A »: (-1 + 0i )
  • «фотон летит из A в B »: (0 + -i )
  • «фотон летит из A в C »: (-1 + 0i )

И, возможно:

  • «сработал первый детектор»: (0 + -i )
  • «сработал второй детектор»: (-1 + 0i )

Разумеется, сколько бы раз мы ни запускали программу, конечное состояние останется таким же.
Теперь, по довольно сложным причинам, в которые я пока не буду вдаваться, не существует простого способа измерить амплитуду конфигурации. Состояние программы скрыто от нас.

Что же делать?

Хоть мы и не можем измерить амплитуду непосредственно, кое-что у нас есть - а именно, волшебная измерительная штуковина, которая может сообщить нам квадрат модуля амплитуды конфигурации. Другими словами, для амплитуды (a + bi ) штуковина ответит числом (a² + b²).

Точнее было бы сказать, что волшебная штуковина находит всего лишь отношение квадратов модулей друг к другу. Но даже этой информации оказывается достаточно, чтобы понять, что происходит внутри программы и по каким законам она работает.

С помощью штуковины мы можем легко узнать, что квадраты модулей конфигураций «сработал первый детектор» и «сработал второй детектор» равны. А проведя некоторые более сложные эксперименты, мы сможем также узнать отношение самих амплитуд - i к 1.

Кстати, а что это за волшебная измерительная штуковина такая?

Ну, когда такие эксперименты проводят в реальной жизни, в качестве волшебной штуковины служит то, что эксперимент проводят пару тысяч раз и просто считают, сколько раз фотон оказался в первом детекторе, а сколько - во втором. Отношение этих значений и будет отношением квадратов модулей амплитуд. Почему это будет так - вопрос другой, гораздо более сложный. А пока можно пользоваться штуковиной и без понимания того, как да почему она работает. Всему своё время.

Вы можете спросить: «А зачем вообще нужна квантовая теория, если её предсказания совпадают с предсказаниями „бильярдной” теории?» Есть две причины. Во-первых, реальность , что бы вы там ни думали, всё-таки подчиняется квантовым законам - амплитуды, комплексные числа и всё такое. А во-вторых, «бильярдная» теория не работает для любого мало-мальски сложного эксперимента. Хотите пример? Пожалуйста.

На рис. 2 вы можете видеть два зеркала в точках B и C , и два полу-зеркала в точках A и D . Позже я объясню, почему отрезок DE проведён пунктиром; на расчётах это никак не скажется.

Давайте применим правила, которые мы уже знаем.

В начале у нас есть конфигурация «фотон летит в A », её амплитуда - (-1 + 0i ).

Считаем амплитуды конфигураций «фотон летит из A в B » и «фотон летит из A в C »:

  • «фотон летит из A в B » = i × «фотон летит в A » = (0 + -i )
  • «фотон летит из A в C » = 1 × «фотон летит в A » = (-1 + 0i )

Интуитивно ясно, что обычное зеркало ведёт себя как половина полу-зеркала: всегда отражает фотон, всегда умножает амплитуду на i . Итак:

  • «фотон летит из B в D » = i × «фотон летит из A в B » = (1 + 0i )
  • «фотон летит из C в D » = i × «фотон летит из A в C » = (0 + -i )

Важно понять, что «из B в D » и «из C в D » - это две разные конфигурации. Нельзя просто написать «фотон летит в D », потому что от угла, под которым этот фотон приходит в D , зависит то, что с ним случится дальше.

  • B в D », равная (1 + 0i ):
    • умножается на i , и результат (0 + i D в E »
    • умножается на 1, и результат (1 + 0i ) засчитывается в пользу конфигурации «фотон летит из D в F »
  • амплитуда конфигурации «фотон летит из C в D », равная (0 + -i ):
    • умножается на i , и результат (1 + 0i ) засчитывается в пользу конфигурации «фотон летит из D в F »
    • умножается на 1, и результат (0 + -i ) засчитывается в пользу конфигурации «фотон летит из D в E »
  • «фотон летит из D в E » = (0 + i ) + (0 + -i ) = (0 + 0i ) = 0
  • «фотон летит из D в F » = (1 + 0i ) + (1 + 0i ) = (2 + 0i )

Отношение квадратов модулей амплитуд - 0 к 4; из расчётов следует, что первый детектор вообще не будет срабатывать! Поэтому-то отрезок DE и был проведён пунктиром на рис. 2.

Если бы полу-зеркала отражали или пропускали фотон случайным образом, оба детектора реагировали бы примерно с одинаковой частотой. Но это не совпадает с результатами экспериментов. Вот и всё.
Вы могли бы возразить: «А вот и не всё! Предположим, например, что когда зеркало отражает фотон, с ним происходит что-то такое, что второй раз он уже не отразится? И, наоборот, когда зеркало пропускает фотон, в следующий раз ему придётся отразиться.»

Во-первых, бритва Оккама. Не стоит выдумывать сложное объяснение, если уже существует простое (если, конечно, считать квантовую механику простой …) А во-вторых, я могу придумать другой опыт, который опровергнет и эту альтернативную теорию.

Поместим маленький непрозрачный объект между B и D , чтобы амплитуда конфигурации «фотон летит из B в D » всегда равнялась нулю.

Теперь амплитуда конфигурации «фотон летит из D в F » равна (1 + 0i ), а амплитуда конфигурации «фотон летит из D в E » - (0 + -i ). Квадраты модулей равны 1. Это значит, что в половине случаев будет срабатывать первый детектор, а в половине - второй.

Это невозможно объяснить, если считать, что фотон - это маленький бильярдный шарик, который отражается от зеркал.

Дело в том, что об амплитуде нельзя думать, как о вероятности. В теории вероятностей, если событие X может произойти или не произойти, то вероятность события Z равна P(Z |X )P(X ) + P(Z X )P(¬X ), где все вероятности положительны. Если вы знаете, что вероятность Z при условии, что X случилось, равна 0.5, а вероятность X - 0.3, то полная вероятность Z по меньшей мере 0.15, независимо от того, что произойдёт, если X не случится. Не бывает отрицательных вероятностей. Возможные и невозможные события не могут аннулировать друг друга. А амплитуды - могут.

Вот пример неправильного мышления: «Фотон летит в B или в C , но он мог полететь по-другому, и это влияет на вероятность того, что он полетит в E …»

События, которые не случились, не имеют никакого влияния на мир. Единственное, что может повлиять на мир - это наше воображение. «О боже, эта машина чуть не сбила меня», думаете вы, и решаете уйти в монастырь, чтобы больше никогда не встречаться с опасными машинами. Но реально по-прежнему не само событие, а лишь ваше воображение, содержащееся в вашем мозгу - который можно из вас достать, пощупать и положить назад, чтобы убедиться, что он вполне реален.

Реально всё, что влияет на мир. (Если вы полагаете, что это не так, попробуйте дать определение слову «реальный».) Конфигурации и амплитуды непосредственно влияют на мир, так что они тоже реальны. Сказать, что конфигурация - это «то, что могло случиться», так же странно, как сказать, что стул - это «то, что могло случиться».

А что это тогда - конфигурация?

Продолжение следует.

На самом деле всё немного сложнее, чем вам могло показаться после прочтения этой статьи.
Каждая конфигурация описывает все частицы во Вселенной. Амплитуда - это непрерывное распределение по всему пространству конфигураций, а не дискретное, как мы рассматривали сегодня. И в самом деле, фотоны же не телепортируются из одного места в другое мгновенно , а каждое различное состояние мира описывается новой конфигурацией. В конце концов мы и до этого доберёмся.

Если вы ничего не поняли из этого абзаца, не беспокойтесь, я всё объясню. Потом.

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.



Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Многим людям физика кажется такой далекой и запутанной, а квантовая - уж тем более. Но я хочу раскрыть для вас завесу этой великой тайны, потому что на деле все оказывается странно, но распутываемо.

А также квантовая физика - отличный предмет для разговора с умными людьми.

Квантовая физика - это просто

Для начала вам нужно начертить в голове одну большую линию между микромиром и макромиром, потому что эти миры совершенно различны. Все, что вы знаете о привычном себе пространстве и предметах в нем, является ложным и неприемлемым в квантовой физике.

Фактически, микрочастицы не имеют ни скорости, ни определенного положения, пока ученые на них не посмотрят. Это утверждение кажется нам просто абсурдным, таковым оно казалось и Альберту Эйнштейну, но даже великий физик пошел на попятную.

Дело в том, что проводившиеся исследования доказали, что посмотрев один раз частицу, которая занимала определенное положение, а затем отвернувшись и снова посмотрев, вы увидите, что эта частица уже заняла совершенно иное положение.

Эти шаловливые частицы

Все кажется простым, но когда мы смотрим на ту же частицу, она стоит на месте. То есть эти частицы движутся только тогда, когда мы не можем этого видеть.

Суть такова, что каждая частица (по теории вероятности) обладает шкалой вероятностей находиться в том или ином положении. И когда мы отворачиваемся, а затем снова поворачиваемся, то можем застать частицу в любом из ее возможных положений именно согласно шкале вероятности.

По исследованию частицу искали в разных местах, затем прекращали наблюдать за ней, а затем снова смотрели, как изменилось ее положение. Результат был просто ошеломительным. Подведя итоги, ученые действительно смогли составить шкалу вероятностей, где может находиться та или иная частица.

Например, нейтрон имеет возможность находиться в трех положениях. Проведя исследования, вы можете обнаружить, что в первом положении он будет находиться с вероятностью 15%, во втором - 60%, в третьем - 25%.

Эту теорию никто еще не смог опровергнуть, поэтому она является, как ни странно, самой правильной.

Макромир и микромир

Если мы возьмем предмет из макромира, то увидим, что он тоже обладает шкалой вероятности, но она совершенно другая. Например, вероятность того, что отвернувшись, вы найдете свой телефон на другом конце мира равна практически нулю, но она все равно существует.

Тогда спрашивается, как же так еще не было зафиксировано подобных случаев. Это объясняется тем, что вероятность настолько мала, что человечеству пришлось бы ждать столько лет, сколько еще не прожила наша планета и целая вселенная, чтобы увидеть подобное событие. Выходит, что ваш телефон почти со стопроцентной вероятностью окажется именно там, где вы его видели.

Квантовое туннелирование

Отсюда можно выйти на понятие квантового туннелирования. Это понятие о постепенном переходе одного предмета (это если очень грубо выражаться) в совершенно другое место без каких-либо внешних воздействий.

То есть начаться все может с одного нейтрона, который в один прекрасный момент попадет в ту самую почти нулевую вероятность находиться в совершенно ином месте, а чем больше нейтронов будет находиться в другом месте, тем выше будет становится вероятность.

Конечно, для такого перехода потребуется столько лет, сколько еще не прожила наша планета, но, согласно теории квантовой физики, квантовое туннелирование имеет место быть.

Прочтите также:

В данной статье мы дадим полезные советы по изучению квантовой физики для чайников . Ответим, какой должен быть подход в изучении квантовой физики начинающими .

Квантовая физика - это достаточно сложная дисциплина, которая не всем легко подается усвоению. Тем не менее, физика как предмет интересная и полезная, поэтому и квантовая физика (http://www.cyberforum.ru/quantum-physics/) находит своих фанатов, которые готовы ее изучить и получить в итоге практическую пользу. Для того, чтобы было проще усвоить материал, нужно начинать с самого начала, то есть с самых простых учебников квантовой физики для начинающих. Это позволит получить хорошую базу для знаний, и в то же время хорошо структурировать свои знания в голове.

Начинать самостоятельное обучение нужно с хорошей литературы. Именно литература является решающим фактором в процессе получения знаний и обеспечивает их качество. Особый интерес вызывает квантовая механика, и многие начинают свои изучения именно с нее. Физику должен знать каждый, потому что это наука о жизни, которая объясняет многие процессы, и делает их понятными для окружающих.

Учтите, что когда приступите к изучению квантовой физики, вы должны обладать знаниями математики и физики, так как без них вы просто не справитесь. Будет хорошо, если у вас будет возможность обращаться к преподавателю, чтобы найти ответы на возникшие вопросы. Если такой возможности не будет, можете попробовать разъяснить ситуацию на специализированных форумах. Форумы тоже могут сильно пригодиться в обучении.

Когда определитесь с выбором учебника, вы должны быть готовы к тому, что он достаточно сложный и его придется не просто читать, а вникать во всем том, что в нем написано. Чтобы по окончании обучения не возникла мысль, что это все ненужные никому знания, пытайтесь связать каждый раз теорию с практикой. Еще важно определить заранее цель с которой вы начали учить квантовую физику, для того чтобы предотвратить появление мысли о бесполезности полученных знаний. Люди делятся на две категории: люди, которые считают квантовую физику интересным и полезным предметом и те, которые так не считают. Выберите для себя, к какой категории относитесь вы и соответственно определите, есть ли квантовой физике место в вашей жизни или же нет. Можно всегда остаться на уровне начинающего в изучении квантовой физики, а можно добиться реальных успехов, все в ваших руках.

Выбирайте прежде всего действительно интересные и качественные материалы по физике. Некоторые из них вы можете найти по ссылкам ниже.
А на этом у вас пока всё! Изучайте квантовую физику интересно и не будьте чайником!


Никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.

Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.

Сегодня существует множество интерпретаций квантовой механики , но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.

В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).

Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.

Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним детали.

Внутри черного ящика сидит черный кот и вместе с ним флакон с ядом и механизм, который может высвободить яд случайным образом. Например, радиоактивный атом во время распада может разбить пузырек. Точное время распада атома неизвестно. Известен только период полураспада, в течение которого распад происходит с вероятностью 50%.

Очевидно, что для внешнего наблюдателя кот внутри коробки находится в двух состояниях: он либо жив, если все пошло хорошо, либо мертв, если распад произошел и флакон разбился. Оба этих состояния описываются волновой функцией кота, которая меняется с течением времени.

Чем больше времени прошло, тем больше вероятность того, что радиоактивный распад случился. Но как только мы открываем коробку, волновая функция коллапсирует, и мы сразу же видим результаты этого бесчеловечного эксперимента.

На самом деле, пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.

Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.

Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине. Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).

Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.

Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос.

Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. Это мы обсудим позже.

2. Подогретые фуллерены

Эксперименты по дифракции частиц проводились не только с электронами, но и другими, гораздо более крупными объектами. Например, использовались фуллерены, большие и закрытые молекулы, состоящие из нескольких десятков атомов углерода. Недавно группа ученых из Венского университета под руководством профессора Цайлингера пыталась включить элемент наблюдения в эти эксперименты. Чтобы сделать это, они облучали движущиеся молекулы фуллеренов лазерными лучами. Затем, нагретые внешним источником, молекулы начинали светиться и неизбежно отображать свое присутствие для наблюдателя.

Вместе с этим нововведением изменилось и поведение молекул. До начала такого всеобъемлющего наблюдения фуллерены довольно успешно избегали препятствия (проявляя волновые свойства), аналогично предыдущему примеру с электронами, попадающими на экран. Но с присутствием наблюдателя фуллерены стали вести себя как совершенно законопослушные физические частицы.

3. Охлаждающее измерение

Одним из самых известных законов в мире квантовой физики является принцип неопределенности Гейзенберга , согласно которому невозможно определить скорость и положение квантового объекта одновременно. Чем точнее мы измеряем импульс частицы, тем менее точно мы можем измерить ее позицию. Однако в нашем макроскопическом реальном мире обоснованность квантовых законов, действующих на крошечные частицы, обычно остается незамеченной.

Недавние эксперименты профессора Шваба из США вносят весьма ценный вклад в эту область. Квантовые эффекты в этих экспериментах были продемонстрированы не на уровне электронов или молекул фуллеренов (примерный диаметр которых составляет 1 нм), а на более крупных объектах, крошечной алюминиевой ленте. Эта лента была зафиксирована с обеих сторон так, чтобы ее середина находилась в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом было помещено устройство, способное точно записывать положение ленты. В результате эксперимента обнаружилось несколько интересных вещей. Во-первых, любое измерение, связанное с положением объекта, и наблюдение за лентой влияло на нее, после каждого измерения положение ленты изменялось.

Экспериментаторы определили координаты ленты с высокой точностью, и таким образом, в соответствии с принципом Гейзенберга, изменили ее скорость, а значит и последующее положение. Во-вторых, что было довольно неожиданным, некоторые измерения привели к охлаждению ленты. Таким образом, наблюдатель может изменить физические характеристики объектов одним своим присутствием.

4. Замерзающие частицы

Как известно, нестабильные радиоактивные частицы распадаются не только в экспериментах с котами, но и сами по себе. Каждая частица имеет средний срок жизни, который, как выясняется, может увеличиться под бдительным оком наблюдателя. Этот квантовый эффект был предсказан еще в 60-х годах, а его блестящее экспериментальное доказательство появилось в статье, опубликованной группой под руководством нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучался распад нестабильных возбужденных атомов рубидия. Сразу после подготовки системы атомы возбуждались с помощью лазерного луча. Наблюдение проходило в двух режимах: непрерывном (система постоянно подвергалась небольшим световым импульсам) и импульсном (система время от времени облучалась более мощными импульсами).

Полученные результаты полностью соответствовали теоретическим предсказаниям. Внешние световые эффекты замедляют распад частиц, возвращая их в исходное состояние, которое далеко от состояния распада. Величина этого эффекта также совпадала с прогнозами. Максимальный срок существования нестабильных возбужденных атомов рубидия увеличивался в 30 раз.

5. Квантовая механика и сознание

Электроны и фуллерены перестают показывать свои волновые свойства, алюминиевые пластинки остывают, а нестабильные частицы замедляют свой распад. Бдительное око наблюдателя буквально меняет мир. Почему это не может быть доказательством причастности наших умов к работе мира? Возможно, Карл Юнг и Вольфганг Паули (австрийский физик, лауреат Нобелевской премии, пионер квантовой механики) были правы, в конце концов, когда заявили, что законы физики и сознания следует рассматривать как дополняющие одно другое?

Мы находимся в одном шаге от признания того, что мир вокруг нас — просто иллюзорный продукт нашего разума . Идея страшная и заманчивая. Давайте попробуем снова обратиться к физикам. Особенно в последние годы, когда все меньше и меньше людей верят Копенгагенской интерпретации квантовой механики с ее загадочными коллапсами волновой функции, обращаясь к более приземленной и надежной декогеренции.

Дело в том, что во всех этих экспериментах с наблюдениями экспериментаторы неизбежно влияли на систему. Они зажигали ее с помощью лазера и устанавливали измерительные приборы. Их объединял важный принцип: вы не можете наблюдать за системой или измерять ее свойства, не взаимодействуя с ней. Любое взаимодействие есть процесс модификации свойств. Особенно когда крошечная квантовая система подвергается воздействию колоссальных квантовых объектов. Некий вечно нейтральный буддист-наблюдатель невозможен в принципе. И здесь в игру вступает термин «декогеренция», который является необратимым с точки зрения термодинамики: квантовые свойства системы меняются при взаимодействии с другой крупной системой.

Во время этого взаимодействия квантовая система теряет свои первоначальные свойства и становится классической, словно «подчиняясь» крупной системе. Это объясняет и парадокс кота Шредингера: кот — это слишком большая система, поэтому ее нельзя изолировать от остального мира. Сама конструкция этого мысленного эксперимента не совсем корректна.

В любом случае, если допустить реальность акта творения сознанием, декогеренция представляется гораздо более удобным подходом. Возможно, даже слишком удобным. При таком подходе весь классический мир становится одним большим следствием декогеренции. И как заявил автор одной из самых известных книг в этой области, такой подход логически приводит к заявлениям типа «в мире нет частиц» или «нет времени на фундаментальном уровне».

В чем правда: в создателе-наблюдателе или мощной декогеренции? Нам нужно выбрать между двух зол. Тем не менее ученые все больше убеждаются в том, что квантовые эффекты — проявление наших психических процессов. И то, где заканчивается наблюдение и начинается реальность, зависит от каждого из нас.