Болезни Военный билет Призыв

Основные стадии катализа. Катализ. Получение этилена путем дегидродимеризации метана

Катализатор вещество, изменяющее скорость химической реакции, но при этом не расходующееся. Катализаторы бывают ускоряющимися и замедляющимися.

Катализ явление изменения скорости реакции в присутствии катализаторов.

Каталитические реакции реакции, протекающие с участием катализаторов.

Если катализатором является один из продуктов реакции, то реакцию называют автокаталитической , а само явление – автокатализом.

Ингибитор катализатор, замедляющий реакцию.

Примером положительных катализаторов может служить вода при взаимодействии порошка алюминия с йодом.

Ферменты биологические катализаторы белковой природы.

Ферменты присутствуют во всех живых клетках. Принято разделять ферменты на простые и сложные, или однокомпонентные или двухкомпонентные. Простые ферменты состоят только из белка, сложные из белка и небелковой части, которую называют коферментом.

Ферменты отличаются высокой каталитической активностью и избирательностью. По каталитической активности они значительно превосходят неорганические катализаторы. Например, 1 моль каталазы при 0 градусов разлагает за одну секунду 200 000 молей Н 2 О 2 , а 1 моль платины при 20 градусах разлагает за одну секунду от 10 до 80 молей перекиси водорода.

Такие ускорения реакции связаны с тем, что ферменты резко снижают энергетические барьеры на реакционном пути. Например, энергия активации для реакции распада Н 2 О 2 под действием иона железа (II) и молекул каталазы соответственно равна 42 и 7,1 кДж/моль; для гидролиза мочевины кислотой и уреазой – соответственно 103 и 28 кДж/моль.

Ферменты по сравнению с неорганическими катализаторами весьма специфичны. Например, амилаза, содержащаяся в слюне, легко и быстро расщепляет крахмал, но не катализирует процесс распада сахара. Уреаза исключительно эффективно катализирует гидролиз мочевины, но не оказывает никакого воздействия на ее производные. Такая особенность ферментов позволяет живым организмам, имея соответствующий набор ферментов, активно откликаться на воздействия извне. Например, замечено, что в стрессовых ситуациях наш организм проявляет удивительные возможности. Описан факт, когда слабая женщина подняла за бампер легковой автомобиль и удерживала его, пока подоспевшие люди освобождали попавшего под него ребенка; человек, преследуемый разъяренным животным, легко преодолевает препятствия, непреодолимые для него в обычном состоянии; на ответственных соревнованиях спортсмены теряют в весе по несколько килограммов за период выступления.

Все сказанное о замечательных свойствах ферментов объясняется тем, что избирательность действия (селективность) и активность взаимосвязаны: чем выше селективность, тем выше ее активность. Ферменты обладают уникальной селективностью, поэтому и активность их наивысшая.

Катализом называется изменение скорости химических реакций под воздействием веществ – катализаторов, которые участвуют в процессе, вступая в промежуточное химическое взаимодействие с реагентами, но остаются после окончания каталитического акта химически неизменными.

Катализаторами могут быть вещества, находящиеся в любом из трех агрегатных состояний – газы, жидкости и твердые тела.

Каталитические процессы можно разделить на две группы: гомогенные и гетерогенные. Если в присутствии катализатора реакция ускоряется, то это явление называют положительным катализом или просто катализом. Если реакция замедляется – антикатализаторы или ингибиторы.

Сущность катализа одинакова для всех его видов – гомогенного, гетерогенного, но каждый из этих видов имеет свои отличительные особенности. В общем случае ускоряющее действие катализаторов принципиально отличается от действия других факторов, интенсифицирующих химические процессы – температура, давление. Так, при повышении температуры повышается температура реагирующих молекул за счет вводимой извне теплоты.

При внесении катализатора энергетический уровень реагирующих молекул не меняется. Действие катализатора не смещает равновесие простой реакции, а лишь ускоряет достижение равновесия при данной температуре.

Для процессов, протекающих в кинетической области, скорость реакции

Т. к. ΔС не меняется для каталитической и некаталитической реакции, то действие катализатора состоит в повышении константы скорости реакции.

Наиболее распространенной теорией, служащей основой современных представлений о катализе, является теория промежуточных соединений. Согласно этой теории, медленную стадию между исходными веществами можно заменить двумя или несколькими более быстрыми стадиями с участием катализатора, который образует с исходными веществами непрочные соединения. Скорость реакции тем больше, чем меньше энергия активации вследствие экспоненциальной зависимости

Изменение энергии реагирующей системы при некаталитической (1) и каталитической (2) реакции

Рассмотрим энергетическую картину реакционной системы, например для бимолекулярной реакции

,

проходящей в отсутствие катализатора по схеме

через образование активного комплекса АВ * . В присутствии катализатора реакция едет по другому пути через несколько элементарных стадий:

А + = A

A + B = AB *

AB * = R + . . .

Е – энергия активации некаталитической реакции;

Е кат – каталитической реакции;

е 1 и е 2 – энергии активации промежуточных стадий.

Активность катализаторов

Наиболее важной характеристикой катализаторов является их активность, т. к. мера ускоряющего действия катализатора по отношению к данной реакции

Рассмотрим на примере окисления сернистого ангидрида

2SO 2 + O 2 = 2SO 3 + Q

Энергии активации при 420 о С (693 К) составляет 420000 Дж/моль. На ванадиевом катализаторе V 2 O 5 E k = 268 кДж/моль К. R = 8,3 Дж/моль К.

Селективность (избирательность катализаторов)

Избирательность действия – важнейшая особенность катализаторов, которая определила успех их широкого применения в ряде отраслей промышленности. Особенно важен он в производстве органических продуктов, когда селективность позволяет сильно ускорять одну полезную реакцию, проводить процесс при погниженной температуре, подавляя другие реакции.

Селективность действия катализатора I кат можно выразить отношением скорости образования целевого продукта к суммарной скорости превращения основного исходного вещества.

,

где G п – количество продукта;

υ п υ исх – соотношение стехиометрических коэффициентов при образовании продуктов из основного исходного вещества.

Общую интегральную селективность действия катализаторов можно выразить соотношением

.

где G – общее количество исходного вещества, моль;

G поб - количество исходного вещества, вступившего в побочные реакции;

G п - количество исходного вещества, превратившегося в целевой продукт.

Особенно сильно проявляется селективность в сложных органических реакциях. Так, например, этиловый спирт в зависимости от типа катализатора может превращаться в этилен

Следовательно, из одного и того же сырья возможно получить различные целевые продукты.

Ката́лиз (греч. κατάλυσις восходит к καταλύειν - разрушение) - избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий. Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций - каталитические.Случай, когда катализатором является один из продуктов реакции или её исходных веществ, называют автокатализом.Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряютобратимые реакции как в прямом, так и в обратном направлениях. Поэтому они не смещают химическое равновесие [

Применение катализа в промышленности

Гидрирование [править | править вики-текст]

Большое число каталитических реакций связано с активацией атома водорода и какой-либо другой молекулы, приводящей к их химическому взаимодействию. Этот процесс называется гидрированием и лежит в основе многих этапов переработки нефти и получения жидкого топлива из угля (процесс Бергиуса). Производство авиационного бензина и моторного топлива из угля было развито в Германии во время Второй мировой войны, поскольку в этой стране нет нефтяных месторождений. Процесс Бергиуса заключается в непосредственном присоединении водорода к углю. Уголь нагревают под давлением в присутствии водорода и получают жидкий продукт, который затем перерабатывают в авиационный бензин и моторное топливо. В качестве катализатора используют оксид железа, а также катализаторы на основе олова и молибдена. Во время войны на 12 заводах Германии с помощью процесса Бергиуса получали примерно 1400 т жидкого топлива в сутки. Другой процесс, Фишера - Тропша, состоит из двух стадий. Вначале уголь газифицируют, то есть проводят реакцию его с водяным паром и кислородом и получают смесь водорода и оксидов углерода. Эту смесь превращают в жидкое топливо с помощью катализаторов, содержащих железо или кобальт. С окончанием войны производство синтетического топлива из угля в Германии было прекращено. В результате повышения цен на нефть, последовавшего за нефтяным эмбарго в 1973-1974, были предприняты энергичные усилия по разработке экономически выгодного способа получения бензина из угля. Так, прямое ожижение угля можно проводить более эффективно, используя двухстадийный процесс, в котором сначала уголь контактирует с алюмокобальтомолибденовым катализатором при относительно низкой, а затем при более высокой температуре. Стоимость такого синтетического бензина выше, чем получаемого из нефти.



Кислотный катализ [править | править вики-текст]

Каталитическая активность большого класса катализаторов обусловливается их кислотными свойствами. Согласно Й. Брёнстеду и Т. Лоури, кислота - это соединение, способное отдавать протон. Сильные кислоты легко отдают свои протоны основаниям. Концепция кислотности получила дальнейшее развитие в работах Г. Льюиса, который дал определение кислоты как вещества, способного принимать электронную пару от вещества-донора с образованием ковалентной связи за счет обобществления этой электронной пары. Эти идеи вместе с представлениями о реакциях с образованием карбений-ионов помогли понять механизм разнообразных каталитических реакций, особенно тех, в которых участвуют углеводороды.

По влиянию на скорость реакции катализ многие источники делят на положительный (скорость реакции растет) и отрицательный (скорость реакции падает). В последнем случае происходит процесс ингибирования, который нельзя считать "отрицательным катализом", поскольку ингибитор в ходе реакции расходуется.

Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой.

Гомогенный катализ [править | править вики-текст]

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H 2 О 2 + I → H 2 О + IO

H 2 О 2 + IO → H 2 О + О 2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

Гетерогенный катализ [править | править вики-текст]

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела - катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

1. Диффузия реагирующих веществ к поверхности твердого вещества

2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их

3. Химическая реакция между реагирующими молекулами

4. Десорбция продуктов с поверхности катализатора

5. Диффузия продукта с поверхности катализатора в общий поток

Примером гетерогенного катализа является окисление SO 2 в SO 3 на катализаторе V 2 O 5 при производстве серной кислоты (контактный метод).

Течение реакции именно на поверхности катализатора можно продемонстрировать на опыте, в котором пластинку из платины нагревают в пламени газовой горелки, затем пламя тушат и пускают на пластинку струю газа из горелки, при этом пластинка снова раскаляется докрасна - окисление метана происходит на поверхности металла .

Катализ нашел широкое применение в химической промышленности, в частности, в технологии неорганических веществ. Катализ – возбуждение химических реакций или изменение их скорости под влиянием веществ - катализаторов, многократно вступающих в химическое взаимодействие с участниками реакции и восстанавливающихся после каждого цикла взаимодействия свой химический состав. Существуют вещества, уменьшающие скорость реакции, которые называются ингибиторами или отрицательными катализаторами. Катализаторы не изменяют состояния равновесия в системе, а лишь облегчают его достижение. Катализатор может одновременно ускорять как прямую, так и обратную реакции, но при этом константа равновесия остается постоянной. Иными словами, катализатор не может изменить равновесие термодинамически невыгодных обратимых реакций, у которых равновесие сдвинуто в сторону исходных веществ.

Сущность ускоряющего действия катализаторов состоит в понижении энергии активации Е а химической реакции за счет изменения реакционного пути в присутствии катализатора. Для реакции превращения А в В реакционный путь можно представить следующим образом:

А + К  АК

ВК  В + К

Как видно из рисунка 1, вторая стадия механизма является лимитирующей, поскольку имеет наибольшую энергию активации Е кат, однако существенно более низкую, чем для некаталитического процесса Е некат. Снижение энергии активации происходит за счет компенсации энергии разрыва связей реагирующих молекул энергией образования новых связей с катализатором. Количественной характеристикой снижения энергии активации, а значит и эффективности катализатора может служить величина степени компенсации энергии разрываемых связей Дi:

 = (Дi – Е кат)/Дi (1)

Чем ниже энергия активации каталитического процесса, тем выше степень компенсации.

Одновременно со снижением энергии активации во многих случаях происходит снижение порядка реакции. Понижение порядка реакции объясняется тем, что в присутствии катализатора реакции идет через несколько элементарных стадий, порядок которых может быть меньше порядка некаталитических реакций.

Виды катализа

По фазовому состоянию реагентов и катализатора каталитические процессы разделяют на гомогенные и гетерогенные. При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе (газовой или жидкой), при гетерогенном – в разных. Нередко реагирующая система гетерогенного каталитического процесса складывается из трех фаз в различных сочетаниях, например, реагенты могут быть в газовой и жидкой фазах, а катализатор – в твердой.

В особую группу выделяют ферментативные (биологические) каталитические процессы, распространенные в природе и применяемые в промышленности для производства кормовых белков, органических кислот, спиртов, а также при обезвреживании сточных вод.

По типам реакций катализ делят на окислительно-восстановительный и кислотно-основной. В реакциях, протекающих по окислительно-восстановительному механизму, промежуточное взаимодействие с катализатором сопровождается гомолитическим разрывом двухэлектронных связей в реагирующих веществах и образованием связей с катализатором по месту неспаренных электронов последнего. Типичными катализаторами окислительно-восстановительного взаимодействия являются металлы или оксиды переменной валентности.

Кислотно-основные каталитические реакции протекают в результате промежуточного протолитического взаимодействия реагирующих веществ с катализатором или взаимодействия с участием неподеленной пары электронов (гетеролитический) катализ. Гетеролитический катализ протекает с таким разрывом ковалентной связи, при котором, в отличие от гомолитических реакций, электронная пара, осуществляющая связь, целиком или частично остается у одного из атомов или группы атомов. Каталитическая активность зависит от легкости передачи протона реагенту (кислотный катализ) или отрыва протона от реагента (основной катализ) в первом акте катализа. По кислотно-основному механизму протекают каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, алкилирования, изомеризации и др. Активными катализаторами являются соединения бора, фтора, кремния, алюминия, серы и других элементов, обладающих кислотными свойствами, или соединений элементов первой и второй групп периодической системы, обладающих основными свойствами. Гидратация этилена по кислотно-основному механизму с участием кислотного катализатора НА осуществляется следующим образом: на первой стадии катализаторор служит донором протона

СН 2 =СН 2 + НА  СН 3 -СН 2 + + А -

вторая стадия – собственно гидратация

СН 3 -СН 2 + + НОН  СН 3 СН 2 ОН + Н +

третья стадия – регенерация катализатора

Н + + А -  НА.

Окислительно-восстановительные и кислотно-основные реакции можно рассматривать по радикальному механизму, согласно которому образующаяся при хемосорбции прочная связь молекула-решетка катализатора способствует диссоциации реагирующих молекул на радикалы. При гетерогенном катализе свободные радикала, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которые десорбируются.

Существует также фотокатализ, когда процесс инициируется под действием света.

Поскольку в неорганической химии наиболее распространен гетерогенный катализ на твердых катализаторах, то на нем остановимся подробнее. Процесс можно разделить на несколько стадий:

1) внешняя диффузия реагирующих веществ из ядра потока к поверхности катализатора, в промышленных аппаратах обычно преобладает турбулентная (конвективная) диффузия над молекуларной;

2) внутренняя диффузия в порах зерна катализатора, в зависимости от размеров пор катализатора и размеров молекул реагентов диффузия может происходить по молекулярному механизму или по механизму Кнудсена (при стесненном движении);

3) активированная (химическая) адсорбция одного или нескольких реагирующих веществ на поверхности катализатора с образованием поверхностного химического соединения;

4) перегруппировка атомов с образованием поверхностного комплекса продукт-катализатор;

5) десорбция продукта катализа и регенерация активного центра катализатора, для ряда катализаторов активной является не вся его поверхность, а отдельные участки – активные центры;

6) диффузия продукта в порах катализатора;

7) диффузия продукта от поверхности зерна катализатора в поток газа.

Общая скорость гетерогенного каталитического процесса определяется скоростями отдельных стадий и лимитируется наиболее медленной из них. Говоря о стадии, лимитирующей процесс, предполагают, что остальные стадии протекают настолько быстро, что в каждой из них практически достигается равновесие. Скорости отдельных стадий определяются параметрами технологического процесса. По механизму процесса в целом, включая собственно каталитическую реакцию и диффузионные стадии переноса вещества, различают процессы, проходящие в кинетической, внешнедиффузионной и внутридиффузионной областях. Скорость процесса в общем случае определяется выражением:

d/d = k c (2)

где c – движущая сила процесса, равная произведению действующих концентраций реагирующих веществ, для процесса, протекающего в газовой фазе движущая сила выражается в парциальных давлениях реагирующих веществ р; k – константа скорости.

В общем случае константа скорости зависит от многих факторов:

k = f (k 1 , k 2 , k поб, …..D и, D и / , D п, ….) (3)

где k 1 , k 2 , k поб - константы скоростей прямой, обратной и побочной реакции; D и, D и / , D п - коэффициенты диффузии исходных веществ и продукта, определяющие значение k во внешне- или внутридиффузионной областях процесса.

В кинетической области k не зависит от коэффициентов диффузии. Общее кинетическое уравнение скорости газового каталитического процесса с учетом влияния на скорость основных параметров технологического режима:

u = kvpP n  0 = k 0 e -Ea/RT vpP n  0 (4)

где v - расход газа, p - движущая сила процесса при Р0,1 МПа (1 ат), P - отношение рабочего давления к атмосферному нормальному, то есть безразмерная величина,  0 - коэффициент пересчета к нормальному давлению и температуре, n - порядок реакции.

Механизм химических стадий определяется природой реагирующих веществ и катализатора. Процесс может лимитироваться хемосорбцией одного из реагентов поверхностью катализатора или десорбцией продуктов реакции. Скорость реакции может контролироваться образованием заряженного активированного комплекса. В этих случаях заряжение поверхности катализатора под действием каких-либо факторов оказывает существенное влияние на протекание реакции. В кинетической области протекают главным образом процессы на малоактивных катализаторах мелкого зернения с крупными порами при турбулентном течении потока реагентов, а также при низких температурах, близких к температурам зажигания катализатора. Для реакций в жидкостях переход в кинетическую область может происходить и с повышением температуры вследствие понижения вязкости жидкости и, следовательно, ускорения диффузии. С повышением температуры уменьшается степень ассоциации, сольватации, гидратации молекул реагентов в растворах, что приводит к росту коэффициентов диффузии и соответственно переходу из диффузионной области в кинетическую. Для реакций, общий порядок которых выше единицы, характерен переход из диффузионной области в кинетическую при значительном понижении концентрации исходных реагентов. Переход процесса из кинетической области во внешнедиффузионную может происходить при снижении скорости потока, повышении концентрации повышении температуры.

Во внешнедиффузионной области протекают прежде всего процессы на высокоактивных катализаторах, обеспечивающих быструю реакцию и достаточный выход продукта за время контакта реагентов с катализаторами, измеряемое долями секунды. Очень быстрая реакция почти полностью протекает на внешней поверхности катализатора. В этом случае нецелесообразно применять пористые зерна с высокоразвитой внутренней поверхностью, а нужно стремиться развить наружную поверхность катализатора. Так, при окислении аммиака на платине последнюю применяют в виде тончайших сеток, содержащих тысячи переплетений платиновой проволоки. Наиболее эффективным средством ускорения процессов, протекающих в области внешней диффузии, является перемешивание реагентов, которое часто достигается увеличением линейной скорости реагентов. Сильная турбулизация потока приводит к переходу процесса из внешнедиффузионной области во внутридиффузионную (при крупнозернистых мелкопористых катализаторах) или же в кинетическую области.

где G - количество вещества, перенесенное за время  в направлении х, перпендикулярном к поверхности зерна катализатора при концентрации с диффундирующего компонента в ядре потока реагентов, S - свободная внешняя поверхность катализатора, dc/dx -градиент концентрации.

Предложено большое число способов и уравнений для определения коэффициентов диффузии веществ в различных средах. Для бинарной смеси веществ А и В по Арнольду

где Т - температура, К; М А, М В - молярные массы веществ А и В, г/моль; v А, v В - молярные объемы веществ; Р - общее давление (0,1 М Па); С А+В - константа Сезерленда.

Константа Сезерленда равна:

С А+В = 1,47(Т А / +Т В /) 0,5 (7)

г
де Т А / , Т В / - температуры кипения компонентов А и В, К.

Для газов А и В с близкими значениями молярных объемов можно принимать =1, а при значительной разности между ними 1.

Коэффициент диффузии в жидких средах D ж можно определить по формуле

где  - вязкость растворителя, ПаС; М и v - молярная масса и молярный объем диффундирующего вещества; х а - параметр, учитывающий ассоциацию молекул в растворителе.

Во внутридиффузионной области , то есть когда общая скорость процесса лимитируется диффузией реагентов в порах зерна катализатора, существует несколько путей ускорения процесса. Можно уменьшить размеры зерен катализатора и соответственно путь молекул до середины зерна, это возможно если переходят одновременно от фильтрующего слоя к кипящему. Можно изготовить для неподвижного слоя крупнопористые катализаторы, не уменьшая размеров зерен во избежание роста гидравлического сопротивления, но при этом неизбежно уменьшится внутренняя поверхность и соответственно понизится интенсивность работы катализатора по сравнению с мелкозернистым крупнопористым. Можно применять кольцеобразную контактную массу с небольшой толщиной стенок. Наконец, бидисперсные или полидисперсные катализаторы, в которых крупные поры являются транспортными путями к высокоразвитой поверхности, создаваемой тонкими порами. Во всех случаях стремятся настолько уменьшить глубину проникновения реагентов в поры (и продуктов из пор), чтобы ликвидировать внутридиффузионное торможение и перейти в кинетическую область, когда скорость процесса определяется только скоростью собственно химических актов катализа, то есть адсорбции реагентов активными центрами, образования продуктов и его десорбции. Большая часть промышленных процессов, проходящих в фильтрующем слое, тормозится внутренней диффузией, например крупномасштабные каталитические процессы конверсии метана с водяным паром, конверсии оксида углерода, синтез аммиака и т. д.

Время , необходимое для диффузии компонента в поры катализатора на глубину l, можно определить по формуле Эйнштейна:

 = l 2 /2D э (10)

Эффективный коэффициент диффузии в порах определяют приближенно в зависимости от соотношения размеров пор и длины свободного пробега молекул. В газовых средах при длине свободного пробега молекулы компонента , меньшей эквивалентного диаметра поры d=2r (2r), принимают, что в порах происходит нормальная молекулярная диффузия D э =D, которую вычисляют по формуле:

При стесненном режиме движения, когда 2r, определяют D э =D к по ориентировочной формуле Кнудсена:

(
12)

где r - поперечный радиус поры.

(
13)

Диффузия в порах катализатора в жидких средах весьма затруднена вследствие сильного повышения вязкости раствора в узких каналах (аномальная вязкость), поэтому для катализа в жидкостях часто применяют дисперсные катализаторы, то есть мелкие непористые частицы. Во многих каталитических процессах с изменением состава реакционной смеси и других параметров процесса может меняться механизм катализа, а также состав и активность катализатора, поэтому необходимо учитывать возможность изменения характера и скорости процесса даже при относительно небольшом изменении его параметров.

Катализаторы могут неограниченно повышать константу скорости реакции, однако, в отличие от температуры, катализаторы не влияют на скорость диффузии. Поэтому, во многих случаях при значительном повышении скорости реакции общая скорость остается низкой из-за медленного подвода компонентов в зону реакции.

Катализ

Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом .

Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты , аммиака , азотной кислоты и др.). Большая часть всех промышленных реакций - каталитические.

Основные принципы катализа

Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации . Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.

Типы катализа

По влиянию на скорость реакции катализ многие источники делят на положительный (скорость реакции растет) и отрицательный (скорость реакции падает). В последнем случае происходит процесс ингибирования, который нельзя считать "отрицательным катализом", поскольку ингибитор в ходе реакции расходуется.

Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой.

Гомогенный катализ

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода . Реакция протекает в две стадии:

H 2 О 2 + I → H 2 О + IO H 2 О 2 + IO → H 2 О + О 2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации .

Гетерогенный катализ

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела - катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

  1. Диффузия реагирующих веществ к поверхности твердого вещества
  2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их
  3. Химическая реакция между реагирующими молекулами
  4. Десорбция продуктов с поверхности катализатора
  5. Диффузия продукта с поверхности катализатора в общий поток

Примером гетерогенного катализа является окисление SO 2 в SO 3 на катализаторе V 2 O 5 при производстве серной кислоты (контактный метод).

Носитель катализатора

Металлическая платина (показана стрелками), стабилизированная на носителе - оксиде алюминия

Носитель катализатора, иначе подложка (катализатора) (англ. carrier или support) - инертный или малоактивный материал, служащий для стабилизации на его поверхности частиц активной каталитической фазы.

Роль носителя в гетерогенном катализе состоит в предотвращении агломерации или спекания активного компонента, что позволяет поддерживать высокую площадь контакта активного вещества (см. активная каталитическая фаза) и реагентов. Количество носителя, как правило, гораздо больше количества нанесенного на него активного компонента. Основными требованиями к носителям являются большая площадь поверхности и пористость, термическая стабильность, химическая инертность , высокая механическая прочность. В ряде случаев носитель влияет на свойства активной фазы (эффект «сильного взаимодействия металл–носитель»). В качестве носителей применяют как природные (глины, пемза, диатомит, асбест и др.), так и синтетические материалы (активные угли , силикагель , алюмосиликаты , оксиды алюминия , магния , циркония и др.) .

Химия катализа

Химия катализа изучает вещества, изменяющие скорость химических реакций. Вещества, замедляющие реакции, называются ингибиторами . Ферменты - это биологические катализаторы. Катализатор не находится в стехиометрических отношениях с продуктами и регенерируется после каждого цикла превращения реагентов в продукты. Несмотря на появление новых способов активации молекул (плазмохимия, радиационное и лазерное воздействия и другие), катализ − основа химических производств (относительная доля каталитических процессов составляет 80-90 %).

Реакция, накормившая человечество (решение проблемы связанного азота) - цикл Габера-Боша . Аммиак получают с катализатором - пористым железом. Протекает при Р = 30 МПа и Т = 420-500 °C

3Н 2 + N 2 = 2NH 3

Водород для синтеза NH 3 получают путем двух последовательных каталитических процессов: конверсии СН 4 (СН 4 + Н 2 О → СО + 3Н 2) на Ni − катализаторах и конверсии образующегося оксида углерода (СО + Н 2 О → СО 2 + Н 2). Для достижения высоких степеней превращения последнюю реакцию осуществляют в две стадии: высокотемпературная (315-480 °C) - на Fe − Cr − оксидных катализаторах и низкотемпературная (200-350 °C) - на Cu − Zn − оксидных катализаторах. Из аммиака получают азотную кислоту и другие соединения азота - от лекарств и удобрений до взрывчатых веществ.

Различают катализы ""гомогенный , гетерогенный , межфазный , мицеллярный , ферментативный .

Энергия активации E каталитических реакций значительно меньше, чем для той же реакций в отсутствие катализатора. Например, для некаталитического разложения NH 3 на N 2 + Н 2 E ~ 320 кДж/моль , для того же разложения в присутствии Pt Е ~ 150 кДж/моль . Благодаря снижению E обеспечивается ускорение каталитических реакций по сравнению с некаталитическими.

Литература

  • Боресков Г. К. Катализ. Вопросы теории и практики. - Новосибирск, 1987.
  • Гейтс Б. Химия каталитических процессов / Б. Гейтс, Дж. Кетцир.
  • Журнал «Кинетика и катализ ».
  • Колесников И. М. Катализ и производство катализаторов. - М.: Техника, 2004. - 399 с.
  • Шуйт Г. - М.: Мир, 1981. - 551 с.
  • Яблонский Г. С., Быков В. И., Горбань А. Н. Кинетические модели каталитических реакций . - Новосибирск: Наука (Сиб. отделение), 1983. - 255 c.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Катализ" в других словарях:

    КАТАЛИЗ - КАТАЛИЗ, катализаторы. Катал и з ат о р название, введенное в науку Бер целиусом (Berzelius; 1835) для обозначения веществ, к рые вызывают или ускоряют хим. процессы, не принимая в них видимого участия.Позднее Оствальд(СЫ а1с1)и его школа… … Большая медицинская энциклопедия

    - (от греч. katalysis разрушение) ускорение химической реакции в присутствии веществ катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав продуктов. При гомогенном катализе исходные реагенты и… … Большой Энциклопедический словарь

    КАТАЛИЗ, изменение скорости протекания химической реакции посредством добавки вещества КАТАЛИЗАТОРА, которое не участвует в реакции. Каталитическое воздействие позволяет прояснить механизм реакции; во многих промышленных процессах используют… … Научно-технический энциклопедический словарь

    - (от греческого katalysis разрушение), ускорение химической реакции в присутствии вещества катализатора, который взаимодействует с реагентами, но в реакции не расходуется и не входит в состав конечных продуктов. Использование катализаторов… … Современная энциклопедия

    КАТАЛИЗ, катализа, муж. (от греч. katalysis роспуск) (хим.). Ускорение или замедление химической реакции под влиянием катализаторов. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Сущ., кол во синонимов: 4 автокатализ (2) биокатализ (1) фотокатализ (1) … Словарь синонимов

    Ускорение или замедление хим. реакции с помощью некоторых специфически действующих веществ (катализаторов), способных многократно вступать в кратковременное взаимодействие с реагирующими соединениями, облегчая течение реакции. Сущность действия… … Геологическая энциклопедия

    катализ - а, м. catalyse f. <гр. katalysis прекращение. Изменение скорости химической реакции под влиянием некоторых веществ (катализаторов). БАС 1. Заимствовано из фр. яз. в 1837 г. Впервые фиксируется в Горном журнале 1837 г. (2 5 380) в переведенной… … Исторический словарь галлицизмов русского языка

    катализ - — Тематики биотехнологии EN catalysis … Справочник технического переводчика

    катализ - – изменение скорости или возбуждение химической реакции веществами катализаторами. Общая химия: учебник / А. В. Жолнин … Химические термины

    Катализ - [гр. katalysis разрушение] явление увеличения скорости химических реакций в присутствии вещества, которое не претерпевает изменений в ходе реакции. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.]… … Энциклопедия терминов, определений и пояснений строительных материалов